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Abstract. The solvability of second order differential systems with the classical separated
or periodic boundary conditions is considered. The proofs use special classes of curvature
bound sets or bound sets together with the simplest version of the Leray-Schauder con-
tinuation theorem. The special cases where the bound set is a ball, a parallelotope or a
bounded convex set are considered.
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1. Introduction

In a recent paper (see [26]), Szymańska-Dębowska has introduced a generalization

of the Poincaré-Miranda theorem (see e.g. [20]) to some class of set-valued mappings,

and has combined it with a shooting argument to find sufficient conditions for the

solvability of the mixed, Neumann and Dirichlet two-point boundary value problems

for second order differential systems of the form

(1.1) x′′ = f(t, x, x′),

where f : [0, 1]× Rn × Rn → Rn is continuous.

She assumes that the components fi of f satisfy the sign condition:

(S1) For each i ∈ {1, . . . , n}, there exist ri > 0 such that uifi(t, u, v) > 0 when

(t, u, v) ∈ [0, 1]× Rn × Rn and |ui| > ri.

and that f satisfies the linear growth condition:
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(S2) There exist continuous nonnegative functions aj on [0, 1], j = 1, 2, 3 such that

|f(t, u, v)| 6 a1(t)|u|+ a2(t)|v|+ a3(t),

for all (t, u, v) ∈ [0, 1]× Rn × Rn.

For the Dirichlet problem, a supplementary condition is requested:

(S3) For each i ∈ {1, . . . , n}, there exist ri > 0 such that vifi(t, u, v) > 0 when

(t, u, v) ∈ [0, 1]× Rn × Rn and |vi| > ri.

The first two results in [26] state that the mixed boundary value problem

(1.2) x′′ = f(t, x, x′), x′(0) = 0 = x(1)

and the Neumann boundary value problem

(1.3) x′′ = f(t, x, x′), x′(0) = 0 = x′(1)

have a solution when f satisfies conditions (S1) and (S2). The third result in [26]

states that the Dirichlet boundary value problem

(1.4) x′′ = f(t, x, x′), x(0) = 0 = x(1)

has a solution when f satisfies conditions (S2) and (S3).

Denote by 〈·|·〉 the usual inner product in Rn, by |·| the corresponding Euclidean
norm, and by DV and D2V , respectively, the gradient vector and the Hessian matrix

of a smooth real function V on Rn.

In this paper, we replace (S1) by a more general geometrical condition, inspired

by the concept of autonomous curvature bound set for f , introduced in [11] in the

frame of periodic and Dirichlet problems.

(H1) There exists an open bounded neighborhood C of 0 in Rn having the property

that f : [0, 1]×C ×Rn → Rn is continuous and, for each u ∈ ∂C, one can find

a function V (·;u) ∈ C2(Rn,R) such that

(i) C ⊂ {w ∈ Rn : V (w;u) < 0},
(ii) V (u;u) = 0,

(iii) 〈DV (u;u) |u〉 > 0,

(iv) 〈D2V (u;u)v |v〉 > 0 for all v ∈ Rn,

(v) 〈D2V (u;u)v |v〉 + 〈DV (u;u) |f(t, u, v)〉 > 0 for all t ∈ [0, 1] and v ∈ Rn

such that 〈DV (u;u) |v〉 = 0.

The word ‘curvature’ mentioned above comes from the fact that, for u ∈ ∂C, i.e.

such that V (u;u) = 0, with, say C ⊂ R2, DV (u;u) is normal to the curve V (u;u) = 0

at u, hence the v considered in (v), orthogonal to the normal DV (u;u), are tangent
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to the curve at u. Hence 〈D2V (u;u)v |v〉 is proportional to the curvature of the
curve V (u;u) = 0 at u, given by the expression |DV (u)|−3〈D2V (u;u)T (u) |T (u)〉,
where T (u) = (−∂2V (u;u), ∂1V (u;u)), see [29].

The condition (S1) corresponds to the choice of C =
n
∏

j=1

(−rj , rj) for some rj > 0,

j = 1, . . . , n, for which ∂C =
n
⋃

i=1

(C+
i ∪ C−), with

C±

i := {u ∈ C : ui = ±ri}, i = 1, . . . , n.

The choice of

(1.5) V (w;u) =

{

wi − ri if u ∈ C+
i ,

−wi − ri if u ∈ C−

i

gives

DV (w;u) =

{

ei if u ∈ C+
i ,

−ei if u ∈ C−

i ,

where ei is the ith element of the canonical basis of Rn, i = 1, . . . , n, and

D2V (u;u) = 0. When u belongs to several C±

j one can choose any of the cor-

responding V (·;u). Condition (H1)-(v) becomes

uifi(t, u, v) > 0 when |ui| = ri and vi = 0, i = 1, . . . , n,

which is less restrictive than condition (S1).

We replace (S2) by the following growth condition, first introduced by Hartman

(see [12], [13]) for second order differential systems with Dirichlet conditions.

(H2) There exist L > 0 and γ ∈ [0, 1/RC), with RC := max
u∈C

|u|, such that

|f(t, u, v)| 6 γ|v|2 + L

for all (t, u, v) ∈ [0, 1]× C × Rn.

As shown by Hartman in [12], [13], the differential inequality

(1.6) |x′′(t)| 6 γ|x′(t)|2 + L for all t ∈ [0, 1], γRC < 1

implies the existence of a uniform bound for |x′(t)| for the functions such that
|x(t)| 6 RC for all t ∈ [0, 1]. In Section 2, we give a much shorter new proof of

this result (Lemma 2.1), valid for Hilbert space-valued functions x(t) verifying a
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boundary condition containing all the ones considered in this paper. Before Hart-

man, Bass in [2] had introduced, in his study of the asymptotic behavior of the

solutions of some second order systems, the stronger condition

|f(t, u, v)| 6 β|v|+ L,

generalized, independently of Hartman, by Opial (see [23]) to

|f(t, u, v)| 6 β|v|α + L

with β > 0 and α ∈ [0, 2). Slightly more general versions were obtained later

by Schmitt-Thompson (see [25]) and Fabry (see [6]). In the scalar case (n = 1),

Bernstein in [4] had introduced the Bernstein-Hartman condition (1.6) without the

size restriction upon γ, and deduced the bound on |x′(t)|, a result improved by
Nagumo’s replacement of γv2+L by h(|v|) with

∫∞
s ds/h(s) = ∞ (see [22]). Hence,

for n = 1, our results, although valid, are not optimal, and we refer to [5], [11] for a

detailed study of the scalar case.

Condition (S2) implies Condition (H2) for C =
n
∏

j=1

[−rj , rj ], because, if (S2) holds,

then, for all (t, u, v) ∈ [0, 1]× C × Rn, one has, for any ε > 0,

|f(t, u, v)| 6 max
[0,1]

a1
√
n|r|+max

[0,1]
a2|v|+max

[0,1]
a3

6 max
[0,1]

a1
√
n|r|+max

[0,1]
a3 +

max[0,1] a
2
2

2ε2
+

ε2

2
|v|2,

with r = (r1, . . . , rn).

Our first existence result (Theorem 3.1) shows that conditions (H1) and (H2)

imply the existence of a solution x, such that x(t) ∈ C for all t ∈ [0, 1], for the

problems (1.2), (1.3), (1.4), for the second mixed problem

(1.7) x′′ = f(t, x, x′), x(0) = 0 = x′(1)

and for the periodic problem

(1.8) x′′ = f(t, x, x′), x(0)− x(1) = 0 = x′(0)− x′(1).

This result was proved in [11] for Dirichlet and periodic boundary conditions under

assumptions stronger than (H1) and (H2) and with a longer and more complicated

proof. Notice that no condition of type (S3) is required for the Dirichlet conditions.

Consequently, the special case of Theorem 3.1 for C = (−r1, r1) × . . . × (−rn, rn)
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(Corollary 3.2), improves in several directions the first two theorems of [26] mentioned

above.

In the case where C is the open ball BR of center 0 and radius R > 0 (Corol-

lary 3.1), one can take V (w;u) = 1
2 (|w|2−R2) for all u ∈ ∂BR, so thatDV (w;u) = w,

D2V (w;u) is the identity matrix, and (H1)-(v) becomes

(1.9) |v|2 + 〈u |f(t, u, v)〉 > 0 when |u| = R and 〈v |u〉 = 0,

a condition introduced by Hartman for Dirichlet problem in [12]. Recent extensions

of Hartman condition (1.9) in various other directions can be found in [1], [7], [8],

[9], [10], [15], [27], [28], [30].

When C is an open bounded convex neighborhood of 0 (Corollary 3.3), one can

take, for each u ∈ ∂C, V (w;u) = 〈ν(u) |w−u〉, where ν(u) is an outer normal to ∂C
at u. The corresponding condition (H1)-(v)

〈ν(u) |f(t, u, v)〉 > 0 when u ∈ ∂C and 〈v |ν(u)〉 = 0,

was first introduced by Bebernes in [3] (see also [11]) for periodic problems.

Finally, the following generalizations and variants of condition (S3), inspired by

the concept of bound set introduced in [11], provide new existence results for the

mixed boundary value problems. Let coC denote the convex closure of C.

(H3−) (respectively, (H3+)) There exists an open, bounded, neighborhood C of 0

in Rn having the property that f : [0, 1]× coC ×C → Rn is continuous and,

for each v ∈ ∂C, one can find V (·; v) ∈ C1(Rn,R) such that

(i) C ⊂ {w ∈ Rn : V (w; v) < 0},
(ii) V (v; v) = 0,

(iii) 〈DV (v; v)|v〉 > 0,

(iv) One of the followint two inequalities holds:

〈DV (v; v)|f(t, u, v)〉 6 0 when (t, u, v) ∈ [0, 1]× coC × ∂C,(1.10)

(respectively, 〈DV (v; v)|f(t, u, v)〉 > 0 when (t, u, v) ∈ [0, 1]× coC × ∂C).(1.11)

Theorem 4.1 (respectively, Theorem 4.2) states that condition (H3−) (respec-

tively, H3+) implies the existence of a solution to the problem (1.2) (respec-

tively, (1.7)).

Again, conditions of the type (S3) correspond to the special case where C is a

product of intervals (Corollaries 4.2 and 4.5), and the special cases where C is a

ball or a boundet convex set are considered (Corollaries 4.1, 4.4, 4.3 and 4.6). In

the convex case, the results are reminiscent to the ones obtained in [21] for nonlocal

boundary value problems.
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Theorems 3.1, 4.1, and 4.2 are proved by reducing the boundary value problems to

suitable fixed point problems in suitable function spaces, to which the following sim-

plest special case of the Leray-Schauder continuation theorem (see [18] and also [19],

Corollary IV.7) is applied.

Proposition 1.1. Let X be a real normed space, Ω ⊂ X an open bounded

neighborhood of 0, and F : Ω → X a compact mapping. If x 6= λF (x) for every

(x, λ) ∈ ∂Ω× (0, 1), then F has at least one fixed point in Ω.

Notice that, in contrast to [26], the same proof in Theorem 3.1 works for all

considered boundary conditions and is technically simpler than the ones given in [26].

Furthermore, Theorems 4.2 and 4.4 cover situations which have not been considered

in [26] for the mixed boundary conditions.

2. A Bernstein-Hartman type lemma

In order to obtain the C1 a priori estimates requested by Proposition 1.1, we use

the following lemma, a special case of a more general result of Hartman (see [12], [13])

for functions with values in Rn. We give here a much shorter proof for functions

with values in a real Hilbert space H with inner product (·|·) and the corresponding
norm ‖·‖.

Lemma 2.1. Assume that x ∈ C2([0, T ], H) is such that

(2.1) (x(T )|x′(T )) = (x(0)|x′(0))

and satisfies the inequalities

(2.2) ‖x(t)‖ 6 R,

and

(2.3) ‖x′′(t)‖ 6 γ‖x′(t)‖2 +K

for all t ∈ [0, T ] and some R > 0, K > 0 and γ > 0 such that

(2.4) γR < 1.

Then there exists M = M(R, γ,K, T ) such that for all t ∈ [0, T ],

(2.5) ‖x′(t)‖ 6 M.
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P r o o f. For each t ∈ [0, T ] and each function x ∈ C2([0, T ], H) verifying condi-

tions (2.2), (2.3), one has

−(x(t)|x′′(t)) 6 ‖x(t)‖‖x′′(t)‖ 6 R‖x′′(t)‖ 6 γR‖x′(t)‖2 +KR,

and hence

(1 − γR)‖x′(t)‖2 6 (x(t) |x′′(t)) + ‖x′(t)‖2 +KR = ((x(t) |x′(t)))′ +KR.

Consequently, using (2.1) and (2.4),

(2.6)

∫ T

0

‖x′(t)‖2 dt 6 KRT

1− γR
:= M2

0 ,

with M0 = M0(R, γ,K, T ). The mean value theorem for the integral of a continuous

real function implies the existence of τ ∈ [0, T ] such that

(2.7) ‖x′(τ)‖2 =
1

T

∫ T

0

‖x′(t)‖2 dt 6 M2
0

T
.

Now, integrating (2.3) on [0, T ] and using (2.6), we obtain

(2.8)

∫ T

0

‖x′′(t)‖ dt 6 γ

∫ T

0

‖x′(t)‖2 dt+KT 6 γM2
0 +KT.

From (2.7) and (2.8) it follows then that, for all t ∈ [0, T ],

‖x′(t)‖ =

∥

∥

∥

∥

x′(τ) +

∫ t

τ

x′′(s) ds

∥

∥

∥

∥

6 ‖x′(τ)‖ +
∣

∣

∣

∣

∫ t

τ

‖x′′(s)‖ ds
∣

∣

∣

∣

6
M0√
T

+

∫ T

0

‖x′′(s)‖ ds 6 M0√
T

+ γM2
0 +KT,

and the result follows with M := γM2
0 +KT +M0/

√
T . �

R em a r k 2.1. The condition (2.1) is satisfied for all boundary conditions

lj(x) = 0, j = 1, . . . , 5. Furthermore, for n > 2, the condition (2.4) is sharp,

as shown by the example of the family of functions, introduced by Heinz (see [14]),

x : [0, 2π] → R2, t 7→ (cosnt, sinnt), n ∈ N,

for which, with 〈·|·〉 the usual inner product and |·| the Euclidean norm in R2,

|x(t)| = 1, |x′′(t)| = |x′(t)|2 = n2, 〈x(0) |x′(0)〉 = 〈x(2π) |x′(2π)〉,

so that that the conclusion of Lemma 2.1 does not hold for γR = 1 and T = 2π, as

|x′(t)| = n can be arbitrarily large.
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3. A first existence result

Denote by C([0, 1],Rn) the space of all continuous functions with the uniform

norm ‖x‖0 := max
t∈[0,1]

|x(t)|, and, for k > 1, by Ck([0, 1],Rn) the space of k-times

continuously differentiable functions with the norm max
06j6k

‖x(j)‖0.
Let us introduce the following linear functionals lj : C1([0, 1],Rn) → R2n, j =

1, . . . , 5 associated to the classical linear two-point boundary conditions:

l1 : x 7→ (x′(0), x(1)) (first mixed),

l2 : x 7→ (x(0), x′(1)) (second mixed),

l3 : x 7→ (x′(0), x′(1)) (Neumann),

l4 : x 7→ (x(0), x(1)) (Dirichlet),

l5 : x 7→ (x(0)− x(1), x′(0)− x′(1)) (periodic).

The following classical results are just recalled for convenience. Elementary compu-

tations imply that, for each j ∈ {1, . . . , 5} and for each z ∈ C([0, 1],Rn), the linear

two-point boundary value problem

x′′ − x = z(t), lj(x) = 0

has a unique solution which can be written in the form

x(t) =

∫ 1

0

Gj(t, s)z(s) ds,

where the Green functions Gj : [0, 1]× [0, 1] → R, are, respectively, given by

G1(t, s) =

{

− tanh 1 cosh t cosh s+ sinh t cosh s

− tanh 1 cosh t cosh s+ cosh t sinh s

if 0 6 s 6 t 6 1,

if 0 6 t < s 6 1,

G2(t, s) =

{

tanh 1 sinh t sinh s− cosh t sinh s

tanh 1 sinh t sinh s− sinh t cosh s

if 0 6 s 6 t 6 1,

if 0 6 t < s 6 1,

G3(t, s) =

{

− coth 1 cosh t cosh s+ sinh t cosh s

− coth 1 cosh t cosh s+ cosh t sinh s

if 0 6 s 6 t 6 1,

if 0 6 t < s 6 1,

G4(t, s) =

{

coth 1 sinh t sinh s− cosh t sinh s

coth 1 sinh t sinh s− sinh t cosh s

if 0 6 s 6 t 6 1,

if 0 6 t < s 6 1,

G5(t, s) =















−
( et−s

2(e− 1)
+

e−(t−s)

2(1− e−1)

)

−
( et−s

2(1− e−1)
+

e−(t−s)

2(e− 1)

)

if 0 6 s 6 t 6 1,

if 0 6 t < s 6 1.
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Furthermore, the Gj are continuous and their first derivatives ∂tGj(t, s) have a finite

jump when s = t.

Consequently, for each j ∈ {1, . . . , 5}, the nonlinear boundary value problem

(3.1) x′′ = f(t, x, x′), lj(x) = 0,

which can be written as

x′′ − x = f(t, x, x′)− x, lj(x) = 0,

is equivalent to the nonlinear integral equation

x(t) =

∫ 1

0

Gj(t, s)(f(s, x(s), s
′(s))− x(s)) ds := Fj(x)(t),

i.e. to the fixed point problem x = Fj(x) in C1([0, 1],Rn). Using the Ascoli-Arzelà

theorem, it is easy to show that each mapping Fj : C1([0, 1],Rn) → C1([0, 1],Rn),

j = 1, . . . , 5 is compact on bounded sets.

We state and prove our first general existence result.

Theorem 3.1. If f : [0, 1]×C×Rn → Rn satisfies the conditions (H1) and (H2),

then, for each j ∈ {1, . . . , 5}, the problem (3.1) has at least one solution such that

x(t) ∈ C for all t ∈ [0, 1].

P r o o f. Let j ∈ {1, . . . , 5}. In order to apply Proposition 1.1 to Fj , we consider

the family of fixed point problems

x = λFj(x), λ ∈ (0, 1),

or, equivalently, the family of boundary value problems

(3.2) x′′ − x = λ(f(t, x, x′)− x), lj(x) = 0.

By assumption (H2), for any (t, u, v) ∈ [0, 1]× C × Rn and λ ∈ [0, 1] we have

|(1− λ)u + λf(t, u, v)| 6 (1− λ)|u|+ λ|f(t, u, v)| 6 γ|v|2 + (1− λ)RC + λL

6 γ|v|2 +max{RC , L}.

Let M be associated to C, γ, RC and L by Lemma 2.1 with R = RC , K =

max{RC , L}, and let the open bounded neighborhood Ω ⊂ C1([0, 1],Rn) of 0 be

defined by

Ω := {x ∈ C1([0, 1],Rn) : x(t) ∈ C, |x′(t)| < M + 1 ∀ t ∈ [0, 1]}.
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If λ ∈ (0, 1) and x is any possible solution of (3.2) such that x ∈ ∂Ω, then

x(t) ∈ C for all t ∈ [0, 1], which implies that |x′(t)| 6 M < M + 1 for all t ∈ [0, 1],

and x(τ) ∈ ∂C for some τ ∈ [0, 1]. Consequently, the function t 7→ V (x(t);x(τ))

achieves its maximum 0 on [0, 1] at τ . For j = 1, using the boundary conditions,

τ ∈ [0, 1),

(3.3) (V (x(t);x(τ)))′t=τ = 〈DV (x(τ);x(τ)) |x′(τ)〉 = 0,

and, using (H1),

(3.4) 0 > (V (x(t);x(τ)))′′t=τ

= 〈D2V (x(τ);x(τ))x′(τ) |x′(τ)〉 + 〈DV (x(τ);x(τ)) |x′′(τ)〉
= 〈D2V (x(τ);x(τ))x′(τ) |x′(τ)〉

+ 〈DV (x(τ);x(τ)) |(1 − λ)x(τ) + λf(τ, x(τ), x′(τ))〉
= (1− λ)(〈D2V (x(τ);x(τ))x′(τ) |x′(τ)〉 + 〈DV (x(τ);x(τ)) |x(τ)〉)

+ λ(〈D2V (x(τ);x(τ))x′(τ) |x′(τ)〉 + 〈DV (x(τ);x(τ)) |f(τ, x(τ), x′ (τ))〉)
> 0,

a contradiction. For j = 2, similarly, τ ∈ (0, 1], (3.3) holds and (3.4) gives a contra-

diction. For j = 3, τ ∈ [0, 1], (3.3) holds and again (3.4) gives a contradiction. For

j = 4, τ ∈ (0, 1), (3.3) holds and once more (3.4) gives a contradiction. Finally, for

j = 5, if the maximum of V (x(t);x(τ)) is achieved at τ = 0, it is also achieved at

τ = 1, so that

0 > (V (x(0);x(0)))′ = (V (x(1);x(1)))′ > 0.

Thus, both first derivatives vanish and 0 > (V (x(t);x(τ)))′′t=τ for τ = 0 and 1,

leading to the contradiction with (3.4).

It follows from Proposition 1.1 that, for each j ∈ {1, . . . , 5}, Fj has a fixed point

in Ω, and each problem (3.1) has a solution such that x(t) ∈ C for all t ∈ [0, 1]. �

If C = BR, the open ball in Rn of center 0 and radius R > 0, one can take

V (w;u) = 1
2 (|w|2 − R2) for all u ∈ ∂BR, and Theorem 3.1 implies the following

result.

Corollary 3.1. If there exists R > 0 such that f : [0, 1]×BR×Rn → Rn is contin-

uous, satisfies condition |v|2+〈u |f(t, u, v)〉 > 0 when (t, u, v) ∈ [0, 1]×∂BR×Rn and

〈u |v〉 = 0, and if condition (H2) with C = BR holds, then, for each j ∈ {1, . . . , 5},
the problem (3.1) has at least one solution such that |x(t)| 6 R for all t ∈ [0, 1].

The case of Dirichlet conditions goes back to [12] and the case of periodic conditions

to [17] for f locally Lipschitzian with respect to u and v, and to [24] for f continuous,

with proofs less direct and longer than the one of Theorem 3.1.
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E x am p l e 3.1. Let A : [0, 1] → L(Rn,Rn) be a symmetric and continuous

matrix-valued function such that

(3.5) 〈A(t)u |u〉 > a|u|2

for some a > 0 and all (t, u) ∈ [0, 1]×Rn. Let b > 0 and let h : [0, 1]×Rn×Rn → Rn

be continuous and such that

(3.6) |h(t, u, v)| 6 c for some c > 0 and all (t, u, v) ∈ [0, 1]× Rn × Rn,

h(t, 0, 0) 6= 0 for some t ∈ [0, 1].

Let us consider the differential system

(3.7) x′′ = A(t)x − b|x′|2x+ h(t, x, x′).

If |u| = R and v ∈ Rn, we have

|v|2 + 〈u|A(t)u− b|v|2u+ h(t, u, v)〉 = (1− b〈u|u〉)|v|2 + 〈A(t)u|u〉+ 〈u|h(t, u, v)〉
> (1− b|u|2)|v|2 + a|u|2 − c|u|
= (1− bR2)|v|2 +R(aR− c) > 0

when R = c/a and bc2 6 a2. On the other hand, when |u| 6 c/a and v ∈ Rn, we

have

|A(t)u − b|v|2u+ h(t, u, v)| 6 bc

a
|v|2 + max

t∈[0,1]
|A(t)| c

a
+ c,

and hence the condition in Lemma 2.1 holds when

(3.8) bc2 < a2.

Corollary 3.1 implies that the system (3.7) has at least one nontrivial solution such

that |x(t)| 6 c/a for all t ∈ [0, 1] and li(x) = 0, i ∈ {1, . . . , 5}, when condi-
tions (3.5), (3.6), and (3.8) hold. This result does not follow from the theorems in [26].

If we take in Theorem 3.1

C = P := (−r1, r1)× . . .× (−rn, rn)

and V given in (1.5), we obtain the following existence result.

Corollary 3.2. If f : [0, 1] × P × Rn → Rn is continuous, such that, for each

i ∈ {1, . . . , n},
uifi(t, u, v) > 0

when (t, u, v) ∈ [0, 1] × P × Rn, |ui| = ri, and vi = 0, and if f satisfies the condi-

tion (H2) with C = P , then, for each j ∈ {1, . . . , 5}, the problem (3.1) has at least

one solution such that |xi(t)| 6 ri for all t ∈ [0, 1] and all i = 1, . . . , n.
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E x am p l e 3.2. Let us consider the differential system

(3.9) x′′
i = (1 + a|x′|2)bi sinxi + hi(t, x, x

′), i = 1, . . . , n,

where a > 0, bi > 0, i = 1, . . . , n, and, with P := (− 1
2π, 1

2π) × . . . × (− 1
2π, 1

2π),

hi : [0, 1]× P × Rn → Rn is continuous, and such that

(3.10) −bi 6 hi(t, u, v) 6 bi ∀ (t, u, v) ∈ [0, 1]× P × Rn :

|ui| = 1
2π, vi = 0, 1 6 i 6 n.

For ui =
1
2π and vi = 0, we have

π

2

(

(1 + a|v|2)bi + hi(t, u, v)
)

>
π

2
(bi − bi) = 0,

and, for ui = − 1
2π and vi = 0, we have

−π

2

(

−(1 + a|v|2)bi + hi(t, u, v)
)

>
π

2
(bi − bi) = 0.

Furthermore, for u ∈ P and y ∈ Rn, we have

|(1 + a|v|2)bi sinui + hi(t, u, v)| 6 (1 + a|v|2)bi + bi

= abi|v|2 + 2bi, i = 1, . . . , n,

and hence, letting

fi(t, u, v) = (1 + a|v|2)bi sinui + hi(t, u, v), i = 1, . . . , n,

we get

|f(t, u, v)| 6
√
n(|b|(1 + a|v|2) + |b|) =

√
na|v|2 + 2

√
n|b|.

Using Corollary 3.2, the system (3.9) has at least one solution such that − 1
2π 6

xi(t) 6
1
2π, i = 1, . . . , n if conditions (3.10) and a < 2/(nπ) hold, using the fact that

RP =
√
n(12π). This result does not follow from the theorems in [26].

Corollary 3.2 can also be seen as a special case of another consequence of Theo-

rem 3.1, based upon the following result from convex analysis (see [16]).

Proposition 3.1. If C ⊂ Rn is an open convex neighborhood of 0, then, for each

u ∈ ∂C, there exists ν(u) ∈ Rn \ {0} such that 〈ν(u) |u〉 > 0 and

C ⊂ {w ∈ Rn : 〈ν(u) |w − u〉 < 0}.

We call ν : ∂C → Rn \ {0} an outer normal field to ∂C.
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Proposition 3.1 immediately implies that, if C is an open bounded convex neigh-

borhood of 0 and ν is an outer normal field to ∂C, then, for each u ∈ ∂C, V (w;u) =

〈ν(u), w−u〉 satisfies conditions (i)–(iv) in (H1). Hence Theorem 3.1 has the follow-
ing special case.

Corollary 3.3. If there exists an open bounded convex neighborhood C of 0,

with an outer normal field ν, such that f : [0, 1] × C × Rn → Rn is continuous,

satisfies the condition

(3.11) 〈ν(u) |f(t, u, v)〉 > 0

when t ∈ [0, 1], u ∈ ∂C and 〈ν(u) |v〉 = 0, and if condition (H2) holds, then, for each

j ∈ {1, . . . , 5}, the problem (3.1) has at least one solution such that x(t) ∈ C for all

t ∈ [0, 1].

In contrast to Corollary 3.1, Corollary 3.2 is also a special case of Corollary 3.3.

R em a r k 3.1. Going back to Example 3.1, if C = BR, we can take ν(u) = u for

each u ∈ ∂BR. Thus condition (3.11) becomes

(3.12) 〈u| − b |v|2u+A(t)u + h(t, u, v)〉
= −|v|2b〈u |u〉+ 〈A(t)u |u〉 + 〈h(t, u, v) |u〉.

Consequently, if b > 0 is positive definite for some t ∈ [0, 1], there will exist no R > 0

such that (3.12) is nonnegative for |u| = R and all v ∈ Rn. This shows that the

use of curvature bound sets with positive curvature like in Corollary 3.1 can lead to

statements which escape results like Corollary 3.3 where the functions V associated

to the curvature bound set are affine, and have curvature zero.

4. Further existence results for the mixed boundary conditions

We now show that, for j ∈ {1, 2}, the existence of a solution for (3.1) can also be
obtained under conditions related to Assumption (S3).

We need some preliminary results on first order linear and nonlinear problems.

Let z ∈ C([0, 1],Rn). The solutions of the initial value problem

y′ + y = z(t), y(0) = 0

are given by

y(t) =

∫ t

0

e−(t−s)z(s) ds.
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Consequently, if f : [0, 1] × Rn × Rn → Rn is continuous (possibly defined only on

some subset), the global initial value problem

(4.1) y′(t) = f

(

t,

∫ t

1

y(s) ds, y(t)

)

, y(0) = 0,

is equivalent to the nonlinear functional equation

y(t) =

∫ t

0

e−(t−s)

(

f

(

s,

∫ s

1

y(r) dr, y(s)

)

+ y(s)

)

ds := N1(y)(t),

i.e. to the fixed point problem y = N1(y) in C([0, 1],Rn). It is easy to show that N1 :

C([0, 1],Rn) → C([0, 1],Rn) is compact on bounded sets. We apply Proposition 1.1

to N1.

Lemma 4.1. If there exists an open bounded neighborhood C of 0 in Rn such

that f : [0, 1]× coC ×C → Rn satisfies condition (H3−), then the problem (4.1) has

at least one solution y such that y(t) ∈ C for all t ∈ [0, 1].

P r o o f. Define the open bounded neighborhood Ω of 0 in C([0, 1],Rn) by

(4.2) Ω = {y ∈ C([0, 1],Rn) : y(t) ∈ C ∀ t ∈ [0, 1]}.

According to Proposition 1.1, we must show that, for each λ ∈ (0, 1), no possible

fixed point of λN1, i.e. no possible solution of the problem

(4.3) y′(t) + y(t) = λ

(

f

(

t,

∫ t

1

y(s) ds, y(t)

)

+ y(t)

)

, y(0) = 0,

belongs to ∂Ω. If λ ∈ (0, 1) and y(t) ∈ ∂Ω is a possible solution to (4.3), then y(t) ∈ C

for all t ∈ [0, 1] and y(τ) ∈ ∂C for some τ ∈ (0, 1]. Consequently, the function

t 7→ V (y(t); y(τ)) achieves its maximum 0 at τ , so that, using condition (H3−),

0 6 〈DV (y(τ); y(τ)) |y′(τ)〉

=

〈

DV (y(τ); y(τ))

∣

∣

∣

∣

−(1− λ)y(τ) + λf

(

τ,

∫ τ

1

y(s) ds, y(τ)

)〉

= − (1− λ)〈DV (y(τ); y(τ)) |y(τ)〉

+ λ

〈

DV (y(τ); y(τ))

∣

∣

∣

∣

f

(

τ,

∫ τ

1

y(s) ds, y(τ)

)〉

< 0,

a contradiction. �
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Lemma 4.1 easily implies the following existence theorem for a second order system

with the first mixed boundary conditions

(4.4) x′′ = f(t, x, x′), x′(0) = 0 = x(1).

Theorem 4.1. If there exists an open bounded neighborhood C of 0 in Rn such

that f : [0, 1]× coC ×C → Rn satisfies condition (H3−), then the problem (4.4) has

at least one solution x such that x(t) ∈ coC and x′(t) ∈ C for all t ∈ [0, 1].

P r o o f. If we set y = x′, so that, using the boundary condition x(1) = 0,

x(t) =

∫ t

1

y(s) ds, t ∈ [0, 1],

it is clear that the problem (4.4) is equivalent to the problem (4.1). The conclusion

follows from the application of Lemma 4.1 and the fact that
∫ t

1
y(s) ds belongs to

the closed convex hull coC of C. �

The special cases where C is a ball or a parallelotope or a convex set follow

immediately.

Corollary 4.1. If there exists R > 0 such that f : [0, 1] × BR × BR → Rn is

continuous and satisfies the condition

〈v |f(t, u, v)〉 6 0

when t ∈ [0, 1], |u| 6 R and |v| = R, then the problem (4.4) has at least one solution x

such that |x(t)| 6 R and |x′(t)| 6 R for all t ∈ [0, 1].

E x am p l e 4.1. Let A : [0, 1] → L(Rn,Rn) be a symmetric matrix-valued func-

tion such that

(4.5) 〈A(t)v |v〉 6 −a|v|2 for some a > 0 and all ∈ (t, v) ∈ [0, 1]× Rn,

and let p > 1 and h : [0, 1]× Rn × Rn → Rn be continuous and such that

(4.6) 〈v |h(t, u, v)〉 6 b|v|p + c|v| for all (t, u, v) ∈ [0, 1]× Rn × Rn,

for some b ∈ [0, a), c > 0. We consider the boundary value problem

(4.7) x′′ = |x′|p−2A(t)x′ + h(t, x, x′), x′(0) = 0 = x(1).
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If R > 0 and |v| = R, then

〈v | |v|p−2A(t)v〉 + 〈v |h(t, u, v)〉
6 − aRp + bRp + cR = −R((a− b)Rp−1 − c) 6 0

if Rp−1 > c/(a− b). Hence, using Corollary 4.3, the system (4.7) has at least one

solution when conditions (4.5) and (4.6) hold.

Corollary 4.2. If there exists P =
n
∏

i=1

(−ri, ri) such that f : [0, 1]×P ×P → Rn

is continuous and satisfies, for each i ∈ {1, . . . , n}, the condition

vifi(t, u, v) 6 0

when (t, u, v) ∈ [0, 1]× P × P and |vi| = ri, then the problem (4.4) has at least one

solution x such that |xi(t)| 6 ri and |x′
i(t)| 6 ri for all t ∈ [0, 1] and all i = 1, . . . , n.

E x am p l e 4.2. Let a1, . . . , an, p > 0 and let us consider the problem

(4.8) x′′
i = −ai|x′

i|p sinx′
i + hi(t, x, x

′), x′
i(0) = 0 = xi(1), i = 1, . . . , n,

where h : [0, 1]× Rn × Rn → Rn is continuous and such that

−ai
(

1
2π

)p
6 hi(t, u, v) 6 ai

(

1
2π

)p
, i = 1, . . . , n

when (t, u, v) ∈ [0, 1]× P × P and |vi| = 1
2π, with

P :=
(

− 1
2π, 12π

)

× . . .×
(

1
2π, 1

2π

)

.

Corollary 4.2 immediately implies that problem (4.8) has at least one solution such

that |xi(t)| 6 1
2π and |x′

i(t)| 6 1
2π for all t ∈ [0, 1].

Corollary 4.3. If there exists an open bounded convex neighborhood C of 0,

with an outer normal field ν, such that f : [0, 1] × C × C → Rn is continuous and

satisfies the condition

〈ν(v)|f(t, u, v)〉 6 0

when t ∈ [0, 1], u ∈ C and v ∈ ∂C, then the problem (4.4) has at least one solution x

such that x(t) ∈ C and x′(t) ∈ C for all t ∈ [0, 1].
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Similar results hold for a second order system with the second mixed boundary

conditions

(4.9) x′′ = f(t, x, x′), x(0) = 0 = x′(1).

We only emphasize the differences in the statement and in the proofs. For z ∈
C([0, 1],Rn), the solutions of the terminal value problem

y′ − y = z(t), y(1) = 0

are given by

y(t) =

∫ t

1

e(t−s)z(s) ds.

If f : [0, 1]× Rn × Rn → Rn is continuous, the terminal value problem

(4.10) y′(t) = f

(

t,

∫ t

0

y(s) ds, y(t)

)

, y(1) = 0,

is equivalent to the nonlinear functional equation

y(t) =

∫ t

1

e(t−s)

(

f

(

s,

∫ s

0

y(r) dr, y(s)

)

− y(s)

)

ds := N2(y)(t),

i.e. to the fixed point problem y = N2(y) in C([0, 1],Rn), with N2 : C([0, 1],Rn) →
C([0, 1],Rn) compact on bounded subsets.

Lemma 4.2. If there exists an open bounded neighborhood C of 0 in Rn such

that f : [0, 1] × coC × C → Rn satisfies condition (H3+), then the problem (4.10)

has at least one solution y such that y(t) ∈ C for all t ∈ [0, 1].

P r o o f. Let Ω be defined in (4.2), let λ ∈ (0, 1) and let y(t) ∈ ∂Ω be a possible

fixed point of λN2, i.e. a possible solution to

y′(t)− y(t) = λ

(

f

(

t,

∫ t

0

y(s) ds, y(t)

)

− y(t)

)

, y(1) = 0.

Then there is τ ∈ [0, 1) such that the function t 7→ 〈V (y(t); y(τ))〉 reaches its maxi-
mum 0 at τ , so that, using condition (H3−),

0 > 〈DV (y(τ); y(τ)) |y′(τ)〉
= (1 − λ)〈DV (y(τ); y(τ)) |y(τ)〉

+ λ

〈

DV (y(τ); y(τ))

∣

∣

∣

∣

f

(

τ,

∫ τ

0

y(s) ds, y(τ)

)〉

> 0,

a contradiction. The result follows from Proposition 1.1. �
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Theorem 4.2. If there exists an open bounded neighborhood C of 0 in Rn such

that f : [0, 1]× coC ×C → Rn satisfies condition (H3+), then the problem (4.9) has

at least one solution x such that x(t) ∈ coC and x′(t) ∈ C for all t ∈ [0, 1].

P r o o f. If we set y = x′, so that, using the boundary condition x(0) = 0,

x(t) =

∫ t

0

y(s) ds, t ∈ [0, 1],

problem (4.9) is equivalent to the terminal value problem (4.10). The result follows

from Lemma 4.2. �

Corollary 4.4. If there exists R > 0 such that f : [0, 1] × BR × BR → Rn is

continuous and satisfies the condition

〈v |f(t, u, v)〉 > 0

when t ∈ [0, 1], |u| 6 R and |v| = R, then the problem (4.9) has at least one solution x

such that |x(t)| 6 R and |x′(t)| 6 R for all t ∈ [0, 1].

Corollary 4.5. If there exists P =
n
∏

i=1

(−ri, ri) such that f : [0, 1]×P ×P → Rn

is continuous and satisfies, for each i ∈ {1, . . . , n}, the condition

vifi(t, u, v) > 0

when (t, u, v) ∈ [0, 1]× P × P and |vi| = ri, then the problem (4.9) has at least one

solution x such that |xi(t)| 6 ri and |x′
i(t)| 6 ri for all t ∈ [0, 1] and all i ∈ {1, . . . , n}.

Corollary 4.6. If there exists an open bounded convex neighborhood C of 0,

with an outer normal field ν, such that f : [0, 1] × C × C → Rn is continuous and

satisfies the condition

〈ν(v) |f(t, u, v)〉 > 0

when t ∈ [0, 1], u ∈ C and v ∈ ∂C, then the problem (4.9) has at least one solution x

such that x(t) ∈ C and x′(t) ∈ C for all t ∈ [0, 1].

R em a r k 4.1. Theorems 4.1 and 4.2 do not require a growth condition of

type (H2). The reason is that Assumptions (H3−) or (H3+) provide directly an a

priori estimate upon x′, from which, using the boundary conditions, the a priori

estimate on x follows.

390



R em a r k 4.2. The conditions (1.10) and (1.11) have opposite signs in Theo-

rems 4.4 and 4.9. One may lose the existence if one replaces (1.10) by (1.11) in

Theorem 4.1 and (1.11) by (1.10) in Theorem 4.2. It suffices of course to show the

result at the level of the Lemmas 4.1 and 4.2. Indeed, the problem

y′ = 2(1 + y|y|), y(0) = 0

verifies condition (1.11) for any C = (−R,R), has for t > 0 the (unique) solution

y(t) = tan 2t defined on the maximal interval [0, 14π) ( [0, 1), and hence no solution

on [0, 1]. On the other hand, the terminal value problem on [0, 1]

y′ = −2(1 + y|y|), y(1) = 0

verifies condition (1.10) for any C = (−R,R). By the change of variables τ = 1− t

and z(τ) = y(1− τ), it is reduced to the scalar initial value [0, 1]

z′ = 2(1 + z|z|), z(0) = 0

which has no solution in [0, 1].
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