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Abstract. We study a scale of integrals on the real line motivated by the MCα integral
by Ball and Preiss and some recent multidimensional constructions of integral. These
integrals are non-absolutely convergent and contain the Henstock-Kurzweil integral. Most
of the results are of comparison nature. Further, we show that our indefinite integrals are
a.e. approximately differentiable. An example of approximate discontinuity of an indefinite
integral is also presented.
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1. Introduction

The Riemann approach to integration of a function f : I → R is based on limits

of sums
m∑

i=1

f(xi)(bi − ai),

where {[ai, bi], xi}
m
i=1 is a complete tagged partition of the interval I. By this we

mean that the intervals [ai, bi] are nonoverlapping, their union is I and xi ∈ [ai, bi].

The improvement by Henstock and Kurzweil consists in the requirement that the

partitions are δ-fine for some gage δ. This trick makes the class of integrable func-

tions much wider, in particular, the Henstock-Kurzweil integral extends the Lebesgue

integral and integrates all derivatives.
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By the Saks-Henstock lemma, the corresponding indefinite integral F of f is char-

acterized by smallness of the sums

m∑

i=1

|F (bi)− F (ai)− f(xi)(bi − ai)|,

for this {[ai, bi], xi}mi=1 can be an “incomplete” partition, we omit the requirement

concerning the union of the intervals [ai, bi]. Throughout this paper, the term par-

tition will always refer to an incomplete partition.

The aim of this paper is to study a scale of non-absolutely convergent integrals

which includes some integrals introduced recently. The common feature of these new

integrals is that we estimate the expression |F (y) − F (xi) − f(xi)(y − xi)| on the

partition intervals [ai, bi] whereas their multiples denoted as (āi, b̄i) are assumed to

be pairwise disjoint.

A multidimensional modification of this idea is to estimate the expression |F (y)−

F (xi)−f(xi)(y−xi)| on ballsB(xi, ri) and to assume that the multiples B(xi, αri) are

pairwise disjoint. This leads to the so called packing integrals in [28], [24], [15], [23],

investigated in Euclidean or even metric spaces. A natural question arises what

happens with these integrals if we consider them in the one-dimensional situation.

On the other hand, we want also to include a scale of one-dimensional monotoni-

cally controlled integrals studied by Ball and Preiss in [1]. The monotone control is

a descriptive approach introduced in [2] which gives an alternative to Riemann-type

constructive definitions.

We introduce the scales of HKp
α integrals and centered HKp

α integrals. They are

based on partitions {[ai, bi], xi}mi=1. The parameter α says that the α-multiples of

the partition intervals are assumed to be pairwise disjoint. The parameter p is the

Lebesgue exponent of the Lp-norm used to measure the p-oscillation of the expression

|F (y)− F (xi)− f(xi)(y − xi)| in [ai, bi]. If the parameter p is skipped or is equal to

the symbol C, it means that the supremum norm is used instead. Precise definitions

are in Section 3.

All integrals considered here are investigated as indefinite integrals. Definite inte-

grals can be introduced as increments of indefinite integrals.

We show that the HKα integral is exactly the MCα integral of Ball and Preiss

(see [1], Theorem 4.1). Therefore the results of [1] formulated in terms of MCα

integrals can be applied to the scale of HKα integrals as well. The centered HKα

integral is the one-dimensional α-packing BV integral from [23] (Theorem 8.13). The

centered HK1
α integral is the α-packing Lip integral from [24] (Theorem 8.6).

Further, we show that the classes of HKp
α integrable functions are distinct for

different p (Theorem 5.5) and that the classes of centered HKp
α integrable functions

differ from uncentered ones (Theorem 5.7).
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As shown in [1], the class of HKα integrable functions contains the class of

Henstock-Kurzweil integrable functions, and the inclusion is strict if α > 2. Thus,

also the classes of HKp
α integrable functions contain the class of Henstock-Kurzweil

integrable functions and the inclusion is strict if α > 2, or p > 1, or the centered

version is considered.

There is a huge variety of non-absolute convergent integrals which also contain

the Henstock-Kurzweil integral strictly. The most famous of them is the Denjoy-

Khintchine integral (see [7], [21]). Hence, it is interesting to compare the Denjoy-

Khintchine integral with integrals of our scale. For the HKα integrals it has been

done in [1], we extend it to the entire scale. The result is that there is no inclusion

between (centered or uncentered) HKp
α integrable functions and Denjoy-Khintchine

integrable function (with the exception of the case of uncentered HKα for α 6 2).

See Theorem 5.4.

The new non-inclusion is that the HKp
α integral is not contained in the Denjoy-

Khintchine integral. But much more is true. There is a variety of so called ap-

proximately continuous integrals with the property that the indefinite integral is

approximately continuous, see e.g. [4], [22], [40], [9], [10]. Also these integrals do not

contain the packing integral in view of our Theorem 7.2. It shows that there is a

function f on R such that its indefinite HKp
1 integral is not approximately continuous

at the origin.

Most of our results concern comparison of various classes of integrable functions.

To make the list of main results of the present paper complete, let us mention

Theorem 6.3 which states that each (centered) HKp
α integrable function f is at al-

most every point the approximate derivative of its indefinite (centered) HKp
α inte-

gral.

The motivation to study non-absolutely convergent integrals originates from the

task to integrate all derivatives and all Lebesgue integrable functions simultane-

ously. Similarly, the motivation for the multi-dimensional non-absolutely convergent

integrals comes from the task to integrate all divergences or even “generalized diver-

gences” and pass to an application to the divergence theorem. A brief account of the

history is postponed to the last section.

2. Preliminaries

The open ball in R
n with the center at x and radius r is denoted by B(x, r),

whereas B(x, r) stands for the corresponding closed ball. If E is a set, χE denotes

the characteristic function of E. The symbol |E| means the (outer) Lebesgue mea-

sure of a set E ⊂ R
n. The identity function x 7→ x on an interval I is denoted

by Id. If Ω ⊂ R
n is an open set, the symbol D(Ω) stands for the set of all infinitely

395



differentiable functions with compact support in Ω. A collection of intervals is said

to be nonoverlapping if their interiors are pairwise disjoint.

2.1. Regulated functions. We say that F : [a, b] → R is a regulated function if

all one-sided limits of F exist and are finite. The space of all regulated functions

equipped with the supremum norm is a Banach space. See [32] for details.

2.2. Approximate limit and derivative. We say that x ∈ R is a density point

for a set E ⊂ R if

lim
r→0+

|(x − r, x+ r) \ E|

2r
= 0.

Let I ⊂ R be an open interval. We say that a value A ∈ R is an approximate limit of

a function F : I → R at a point x ∈ I if for each ε > 0 there exists a set Eε ⊂ I such

that x is a density point of Eε and |F − A| < ε on Eε. Approximate derivative is

defined as the approximate limit of difference quotients. See e.g. [41], Chapter VII.3

for details.

2.3. Denjoy-Khintchine integral. For the description of the Denjoy-Khintchine

integral we use the equivalent definition according to [41], which follows the descrip-

tive idea of Luzin (see [27]).

Definition 2.1. Let I = (a, b) be an open interval. A function F : I → R is

said to be absolutely continuous (AC for short) on a set E ⊂ I if for each ε > 0

there exists δ > 0 such that for each finite sequence ([aj , bj])
m
j=1 of nonoverlapping

intervals with endpoints in E we have

m∑

j=1

(bj − aj) < δ ⇒
m∑

j=1

|F (bj)− F (aj)| < ε.

We say that F is generalized absolutely continuous (ACG) on I if F is continuous

on I and there exists a sequence (Ek)k of subsets of I such that I =
⋃
k

Ek and F is

AC on each Ek.

Given a function f : I → R, we say that F : I → R is an indefinite Denjoy-

Khintchine integral of f if F is ACG on I and f is the approximate derivative of F a.e.

R em a r k 2.2. Every ACG function has an approximate derivative almost ev-

erywhere and therefore it acts as its indefinite Denjoy-Khintchine integral, see [41],

Chapter VII, Theorem 4.3.
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2.4. Oscillations.

Definition 2.3 (Oscillations). Let [a, b] ⊂ R be a closed interval and p ∈ [1,∞].

We define the p-oscillation of a measurable function F : [a, b] → R as

(1) oscp(F, [a, b]) = (b − a)−1/p inf{‖F − c‖Lp([a,b]) : c ∈ R}.

Here and in the sequel 1/p = 0 if p = ∞.

The ordinary oscillation

osc(F, [a, b]) = oscC(F, [a, b]) :=
1

2
sup

x,y∈[a,b]

|F (y)− F (x)|

differs from osc∞ in the aspect that it does not neglect Lebesgue null sets. The

subscript C refers to the space of continuous functions and the somewhat unusual

factor 1
2 is an output of the usage of the supremum norm instead of the L

p-norm

in (1). To simplify the presentation, we consider the symbol C as a possible value

of p and 1/p is 0 for p = C. This convention will be used to include the choices of

oscillation all at once.

R em a r k 2.4. Observe the elementary but useful inequality

(2) [a, b] ⊂ [A,B] ⇒ (b− a)1/p oscp(F, [a, b]) 6 (B −A)1/p oscp(F, [A,B])

which holds for a measurable function F : [A,B] → R and p ∈ [1,∞] ∪ {C}.

Definition 2.5 (Median). Let F be a measurable function on an interval [a, b]

and µ ∈ R
n. We say that µ is a median of F in [a, b] if there exists a measurable

set M ⊂ [a, b] such that F 6 µ on M , F > µ on [a, b] \ M and |M | = 1
2 (b − a).

Each measurable function on [a, b] has a median. On the other hand, its uniqueness

is not guaranteed; it holds only under some additional assumptions like continuity

of F . Medians give a useful choice of the constant c in (1). As shown in the fol-

lowing proposition, they yield a good estimate for all p and for p = 1 they are even

minimizers.

Proposition 2.6. Let µ be a median of F in [a, b] and p ∈ [1,∞] ∪ {C}. Then

oscp(F, [a, b]) 6 (b − a)−1/p‖F − µ‖p 6 21−1/p oscp(F, [a, b]).

In particular,

(b − a)−1‖F − µ‖1 = osc1(F, [a, b]).
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P r o o f. The first inequality is trivial, let us concentrate on the second one. We

may assume µ = 0. Consider a measurable setM+ ⊂ [a, b] such that |M+| =
1
2 (b−a)

and F > 0 on M+, F 6 0 on M− := [a, b] \M+. Choose c ∈ R, e.g. c > 0. We have

|F (x)|p 6 2p−1(|F (x)− c|p + cp), x ∈ M+,

|F (x)|p 6 |c+ |F (x)||p − cp 6 2p−1(|F (x) − c|p − cp), x ∈ M−.

Integrating over [a, b] we obtain

∫

[a,b]

|F (x)|p dx 6 2p−1

∫

[a,b]

|F (x) − c|p dx,

as |M+| = |M−|. Taking the infimum over c we obtain

‖F‖pp 6 2p−1(b− a)(oscp F )p

as required. �

3. The definition of integral

Definition 3.1. Let α > 1, p ∈ [1,∞] ∪ {C} and I ⊂ R be an open interval. A

finite family ([ai, bi], xi)
m
i=1, where [ai, bi] ⊂ I are closed intervals and xi ∈ [ai, bi], is

called an α-partition in I if the intervals (āi, b̄i), where

(3) āi − xi = α(ai − xi), b̄i − xi = α(bi − xi),

are subsets of I and pairwise disjoint. We say that a partition ([ai, bi], xi)
m
i=1 is

centered if each xi is the center of [ai, bi]. Let δ : I → (0,∞) be a gage (this

means just a strictly positive function). We say that the α-partition is δ-fine if

[ai, bi] ⊂ (xi − δ(xi), xi + δ(xi), i = 1, . . . ,m.

Definition 3.2 (HKSpα integrals). Let I ⊂ R be an open interval, p ∈ [1,∞]∪{C}

and α > 1. Let F , G, f be measurable functions on I. We say that F is an indefinite

HKSpα integral (HKS refers to Henstock-Kurzweil-Stieltjes) of f with respect to G if

for each ε > 0 there exists a gage δ : I → (0,∞) such that for each δ-fine α-partition

([ai, bi], xi)
m
i=1 in I we have

m∑

i=1

oscp(F − f(xi)G, [ai, bi]) < ε.
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We denote HKSα = HKSCα . We reduce the symbol to HKp
α or HKα, respectively,

if G is the identity Id(x) = x. We call the integral centered if the only centered

α-partitions are taken into account. We say that F is a free indefinite HKSp integral

of f with respect to G if there exists α > 1 such that F is an indefinite HKSpα integral

of f with respect to G, similarly to the centered versions.

R em a r k 3.3. There are obvious inclusions between the classes of integrable

functions. The class of HKSpα integrable functions increases with α and the class of

all free HKSp integrable functions is the union of the preceeding ones over α.

The centered version always leads to a wider class of integrable functions.

Using comparison of Lp norms, we also observe that the class of HKSpα integrable

functions decreases with p.

The indefinite integrals to a function f are the same for all choices of α, p which

make f integrable (with the exception that for p = C only continuous representatives

are valid).

R em a r k 3.4. Even if we do not assume that f is measurable in Definition 3.2,

the measurability of f comes out as a consequence of HKSpα integrability (see [28],

Theorem 5.3).

When defining a new notion of indefinite integral, it is desirable to show that this

has the expected uniqueness behavior, namely that the indefinite integrals to the

same functions differ only by an additive constant.

Theorem 3.5. Let f , F1, F2, G be measurable functions on an open interval I.

If F1 and F2 are indefinite (centered) HKSpα integrals of f with respect to G, then

there is a constant C ∈ R such that F2 − F1 = C a.e.

P r o o f. By Remark 3.3, it is possible to reduce the question to the uniqueness

of centered HKSα1 . This follows from [24], Theorem 3.10 (see Theorem 8.6). �

Theorem 3.6. Let f , F1, F2, G be measurable functions on an open interval I,

F1, F2, G be regulated. If F1 and F2 are indefinite (centered) HKSα integrals of f

with respect to G, then there is a constant C ∈ R such that F2 − F1 = C.

P r o o f. Obviously F2 − F1 is an indefinite (centered) HKα integral of 0 and

hence by Theorem 3.5, F2 − F1 = C a.e. Since F2 − F1 is regulated, the equality

turns to hold everywhere. �

Proposition 3.7. Let I ⊂ R be an open interval and F, f,G : I → R be mea-

surable functions. Then F is an indefinite HKS1 integral of f if and only if F is an

indefinite Henstock-Kurzweil-Stieltjes integral of f .
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P r o o f. Suppose that F is an indefinite Henstock-Kurzweil-Stieltjes integral

of f . By the Saks-Henstock lemma (see [32], Lemma 6.5.1), for each ε > 0 there

exists a gage δ : I → (0,∞) such that for each δ-fine partition {([ai, bi], xi)}mi=1 we

have
m∑

i=1

|F (bi)− F (ai)− f(xi)(G(bi)−G(ai))| < ε.

Consider a δ-fine partition {([Ai, Bi], xi)}mi=1. For each j we find zi ∈ [Ai, Bi] such

that zi 6= xi and

|F (zi)− F (xi)− f(xi)(G(zi)−G(xi))| >
1

2
osc(F − f(xi)G, [Ai, Bi]).

Set

[ai, bi] =

{
[zi, xi], zi < xi,

[xi, zi], xi < zi.

Then {([ai, bi], xi)}mi=1 is a δ-fine partition and thus

m∑

i=1

osc(F − f(xi)G, [Ai, Bi]) 6 2

m∑

i=1

|F (bi)− F (ai)− f(xi)(G(bi)−G(ai))| < 2ε.

It follows that F is an indefinite HKS1 integral of f . The converse implication is

obvious. �

4. Monotone control

Let I ⊂ R be an interval and p ∈ [1,∞]∪{C} be fixed. Let f , F , G be measurable

functions on I. We say that an increasing function ϕ : I → R is an α-control function

for the triple (f, F,G) if for each x ∈ I we have

lim
r→0+

oscp(F − f(x)G, [x, x + r])

ϕ(x + αr) − ϕ(x)
= lim

r→0+

oscp(F − f(x)G, [x − r, x])

ϕ(x) − ϕ(x− αr)
= 0.

We say that an increasing function ϕ : I → R is a centered α-control function for

the triple (f, F,G) and HKα integration if for each x ∈ I we have

lim
r→0+

oscp(F − f(x)G, [x − r, x+ r])

ϕ(x + αr)− ϕ(x− αr)
= 0.

Following Ball and Preiss in [1], we say that F is an indefinite MCα integral of f if

there exists an α-control function for (f, F, Id) and the choice p = C. In particular,

the MC1 integral is the MC integral of [2].
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Theorem 4.1. Let I ⊂ R be an interval and p ∈ [1,∞] ∪ {C} be fixed. Let f ,

F , G be measurable functions on I. Then F is an indefinite HKSpα integral of f with

respect to G if and only if there exists an α-control function for the triple (f, F,G).

In particular, F is an indefinite HKα integral of f if and only if F is an indefinite

MCα integral of f .

P r o o f. Suppose that the α-control function ϕ exists. We may assume that |ϕ|

is bounded by 1
2 (otherwise ϕ can be replaced by (arctanϕ)/π). Given ε > 0, for

each x ∈ I we can find δ(x) > 0 such that

x ∈ [a, b] ⊂ (x− δ(x), x + δ(x)) ⇒ oscp(F − f(x)G, [a, b]) < ε(ϕ(b̄)− ϕ(ā)),

where

ā = x+ α(a− x), b̄ = x+ α(b − x).

Then δ is the desired gage. Indeed, if ([ai, bi], xi)
m
i=1 is a δ-fine α-partition, then

m∑

i=1

oscp(F − f(xi)G, [ai, bi]) 6 ε
m∑

i=1

(ϕ(b̄i)− ϕ(āi)) 6 ε osc(ϕ, I) 6 ε.

For the reverse implication we introduce the following variation depending on an

open interval J ⊂ I and a gage δ:

V (J, δ) = V (J, δ, f, F,G) = sup

{ m∑

i=1

oscp(F − f(xi)G, [ai, bi]) :

([ai, bi], xi)
m
i=1 is a δ-fine α-partition in J

}
.

For each k = 1, 2, . . . we find a gage δk : I → (0,∞) such that

V (I, δk) < 2−k

and set

ϕk(x) = V (I ∩ (−∞, x), δk), ϕ(x) = x+
∞∑

k=1

kϕk(x).

Then ϕ : I → R is a strictly increasing function. We want to show that ϕ is an

α-control function to the triple (f, F,G). Fix x ∈ I and choose ε > 0. Find k ∈ N

such that 1/k < ε. If x ∈ [a, b] ⊂ (x − δ(x), x + δ(x)), then for each α-partition

([ai, bi], xi)
m
i=1 in I ∩ (−∞, ā) we observe that ([ai, bi], xi)

m+1
i=1 is an α-partition in

I ∩ (−∞, b̄), where we set ([am+1, bm+1], xm+1) = ([a, b], x). Hence

ϕk(ā) + oscp(F − f(x)G, [a, b]) 6 ϕk(b̄)
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and thus
oscp(F − f(x)G, [a, b])

ϕ(b̄)− ϕ(ā)
6

ϕk(b̄)− ϕk(ā)

ϕ(b̄)− ϕ(ā)
6

1

k
< ε

as required. �

Theorem 4.2. Let I ⊂ R be an interval p ∈ [1,∞] ∪ {C}. Let f , F , G be

measurable functions on I. Then F is an indefinite centered HKSpα integral of f

with respect to G if and only if there exists a centered α-control function for the

triple f , F , G.

P r o o f. The proof is almost the same as that of Theorem 4.1 with obvious

modifications. �

5. Counterexamples

Definition 5.1. We denote by {0, 1}k the family of all multiindices s =

(s1, . . . , sk), where s1, . . . , sk ∈ {0, 1}. The set {0, 1}0 contains just one element

denoted by o. We simplify the symbols (0), (1) ∈ {0, 1}1 to 0, 1. We denote

S =
∞⋃

k=0

{0, 1}k.

If s = (s1, . . . , sm) ∈ {0, 1}m and t = (t1, . . . , tn) ∈ {0, 1}n, we define the concatena-

tion of s and t as

s a t = (s1, . . . , sm, t1, . . . , tn) ∈ {0, 1}m+n.

In particular, if s ∈ {0, 1}k, then s a 0 = (s1, . . . , sk, 0) and s a 1 = (s1, . . . , sk, 1).

The length of s ∈ {0, 1}k is |s| := k.

We define the relations s ≺ t and s ≻ t: We write s ≺ t if there exists u ∈ S such

that t = s a u; the symbol s ≻ t means t ≺ s.

E x am p l e 5.2. Set

(4) ̺ =
1

2 + 4α
.

We construct a Cantor type set in [0, 1]. Let Po = [Uo, Vo] = [0, 1]. Let s ∈ {0, 1}k

and Ps = [Us, Vs] be an interval of the kth generation of length ̺k. We consider the

concentric interval Qs = (us, vs) of length ̺k(1− 2̺). Also, consider the intervals

P ∗
s = [us, us + 2̺k+1], Q∗

s = (us + ̺k+1, us + 2̺k+1).
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The annulus Ps \Qs splits into two intervals of (k + 1)st generation of length ̺k+1,

namely

Psa0 = [Usa0, Vsa0] := [Us, us], Psa1 = [Usa1, Vsa1] := [vs, Vs].

Let η : R → R be a nonnegative smooth function with support in (0, 1) such that

sup
x∈(0,1)

η(x) = 2 and

∫ 1

0

η(y) dy = 1.

Consider sequences (λk)
∞
k=0, (σk)

∞
k=0 of positive real numbers such that 0 < σk 6 1,

k = 0, 1, . . . For each k = 0, 1, . . . and s ∈ {0, 1}k we set

Fs

(
us+(1+σkx)̺

k+1
)
= λkη(x), x ∈ R,

βk,p = oscp(Fs, P
∗
s ), p ∈ [1,∞] ∪ {C}.

Then Fs is supported in Q∗
s and

(5) βk,C = λk, βk,p ≈ σ
1/p
k λk, 1 6 p 6 ∞.

We define the sets

Kk =
⋃

s∈{0,1}k

Ps, K =

∞⋂

k=1

Kk and F =
∑

s∈S

Fs.

We observe thatK is a Cantor type set of measure 0. Further, F is smooth outsideK

as the intervals Q∗
s are pairwise disjoint and the support of each Fs is in Q

∗
s. Finally,

we set

f(x) =

{
F ′(x), x ∈ R \K,

0, x ∈ K.

Theorem 5.3. Let p ∈ [1,∞] ∪ {C}.

(a) If
∞∑

j=1

βj,p = ∞,

then f does not have an indefinite centered HKp
α integral.

(b) If

(6)

∞∑

j=1

2jβj,p = ∞,

then F does not have an indefinite HKp
α integral.
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P r o o f. We use the Baire category theorem similarly to the usage for counterex-

amples in [1]. Consider a gage δ : R → (0,∞) and denote

En =
{
x ∈ K : δ(x) >

1

n

}
.

Then, by the Baire category theorem, there exist n ∈ N and an open set Ω ⊂ R

such that Ω ∩K is nonempty and Ω ∩ En is dense in Ω ∩K. We find k ∈ N and a

multiindex t ∈ {0, 1}k such that Pt ⊂ Ω and Vt − Ut = ̺k 6 1/n. We denote

[t, 0] = t, [t, 1] = t a 1, [t, 2] = t a (1, 1), . . .

Now, we distinguish the cases (a), (b).

(a) Assume that F̃ is an indefinite centered HKp
α integral of f . Let δ be chosen so

that for each δ-fine centered α-partition {([ai, bi), xi}mi=1 with xi ∈ K we have

(7)

m∑

i=1

oscp(F̃ , [a, b]) < 1.

The existence of such a gage is clear from the definition of the integral as f = 0

on K. For each j = 0, 1, 2, . . . we find xj ∈ [U[t,j], u[t,j]] ∩K such that δ(xj) > 1/n

and set

[aj , bj ] = [xj − 3̺k+j+1, xj + 3̺k+j+1].

Let āj , b̄j be as in (3). Since by (4)

b̄j = xj + 3α̺k+j+1 6 u[t,j] + 3α̺k+j+1 6 v[t,j] − α̺k+j+1

= U[t,j+1] − α̺k+j+1
6 xj+1 − 3α̺k+j+2 = āj+1,

the intervals (āj , b̄j), j = 1, 2 . . ., are pairwise disjoint and contained in Pt.

Thus, {([aj , bj], xj)}mj=1 is a δ-fine α-partition for each m ∈ N. We observe that

[aj , bj] ⊃ P ∗
[t,j]. Since F is smooth in Q[t,j], both F and F̃ are indefinite centered

HKp
α integrals of f in Q[t,j] and thus by uniqueness, F̃ = F + Cj on Q[t,j] for some

constant Cj . It follows that

(8) oscp(F̃ , P ∗
[t,j]) = oscp(F, P

∗
[t,j]) = βk+j,p.

Since bj − aj = 6̺k+j+1 and the length of P ∗
[t,j] is 2̺

k+j+1, by (2) we have

(9) oscp(F̃ , [aj , bj ]) >
1

31/p
oscp(F̃ , P ∗

[t,j]) =
1

31/p
βk+j,p.

Since the sum
∑
j

βj,p diverges, we obtain a contradiction with (7).
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(b) Assume that F̃ is an indefinite HKα,p integral of f . Let δ be chosen so that

for each δ-fine (uncentered) α-partition {([ai, bi), xi)}
m
i=1 with xi ∈ K we have

(10)

m∑

i=1

oscp(F̃ , [aj , bj]) < 1.

As in (8) we obtain that

oscp(F̃ , P ∗
s ) = βk+j,p, s ∈ {0, 1}k+j.

Hence
∞∑

j=1

∑

s∈{0,1}k+j ,s≻t

oscp(F̃ , P ∗
s ) =

∞∑

j=1

2jβk+j,p = ∞.

Find m ∈ N such that

(11)
∑

s∈S

oscp(F̃ , P ∗
s ) > 2,

where

S :=

m⋃

j=1

{s ∈ {0, 1}k+j, s ≻ t}.

Since the intervals [us, vs] are pairwise disjoint and S is finite, we can find xs ∈

[Us, us]∩K such that δ(xs) > 1/n and the intervals [xs, vs] are still pairwise disjoint

when s runs through S. Set

as = xs, bs = us + 2̺|s|+1.

As in (3), write

ās = xs + α(as − xs) = as, b̄s = xs + α(bs − xs) = as + α(bs − as).

Since

b̄s = as + α(bs − as) 6 us + α(us + 2α̺|s|+1 − Us) = us + 3α̺|s|+1 < vs,

we have [ās, b̄s] ⊂ [xs, vs], and thus the intervals (ās, b̄s), s ∈ S, are pairwise disjoint

and contained in Pt. It follows that {([as, bs], xs)}s∈S is a δ-fine α-partition in Pt.

Since [as, bs] contains P
∗
s for each s ∈ S, by (11) and (2) we obtain

m∑

i=1

oscp(F̃ , [ai, bi]) > 1,

which contradicts (10). �
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5.1. Denjoy-Khintchine integrable function which is not HK1
α integrable.

In [1], it is shown that for α > 2 there exists a HKα integrable function which is

not Denjoy-Khintchine integrable. By Remark 3.3, such a function is also HKp
α

integrable. Also discontinuous HKp
α integrable functions serve as examples of HK

p
α

integrable functions which are not Denjoy-Khintchine integrable, see Example 7.1.

We show that the converse inclusion also fails. We prove this for the widest class of

our scale.

Theorem 5.4. For each α > 1 there exists a Denjoy-Khintchine integrable func-

tion which is not centered HK1
α integrable.

P r o o f. Let F , f be as in Example 5.2. Set λj = 1/j and σj = 1, so by (5)

βj,∞ → 0 and
∑
j

βj,1 diverges. By Theorem 5.3, f does not have an indefinite

centered HK1
α integral.

We show that F is the indefinite Denjoy-Khintchine integral of f . The function F

is smooth, thus AC and the derivative of F is f on each Qs. Further, F = 0 is AC

on K and |K| = 0. It follows that F is ACG and a.e. differentiable in R and f = F ′

a.e. Hence, F is an indefinite Denjoy-Khintchine integral of f on R. �

5.2. Comparison of HKp
α integral and HKq

α integral.

Theorem 5.5. For each α > 1 and 1 6 p < q 6 ∞ there exists a HKp
1 integrable

function which is not centered HKq
α integrable.

P r o o f. Let F , f be as in Example 5.2. Set

λj = 3jp/(q−p), σj = 3−jpq/(q−p),

so by (5) we have
∑
j

βj,q = ∞ and
∑
j

2jβj,p < ∞. Then by Theorem 5.3, f does not

have an indefinite centered HKq
α integral.

We will show that F is an indefinite HKp
1 integral of f . Choose ε > 0. Since

F ′ = f in R \K, for each x ∈ R \K we can find δ(x) > 0 such that

(12) |y − x| < δ(x) ⇒ |F (y)− F (x)− f(x)(y − x)| < ε|arctany − arctanx|.

Find k ∈ N such that ∑

j>k

2jβj,p < ε.

If x ∈ K, we can find δ(x) > 0 such that the interval (x − δ(x), x + δ(x)) does not

intersect any of the intervals Q∗
s with |s| 6 k. This defines a gage δ : R → (0,∞).
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Let {([ai, bi], xi)}mi=1 be a δ-fine partition. Without loss of generality we may assume

that x1, . . . , xn ∈ K and xn+1, . . . , xm /∈ K. Set

Si = {s ∈ S : [ai, bi] ∩Q∗
s 6= ∅}, i = 1, . . . , n, S =

m⋃

i=1

Si.

Then |s| > k for each s ∈ S. Fix i ∈ {1, . . . , n}. If [ai, bi] ∩ Q∗
s 6= ∅, then [ai, bi]

contains either [us, us + ̺|s|+1], or [us + 2̺|s|+1, vs] ⊃ [vs − ̺|s|+1, vs]. (The last

inclusion follows from (4).) It follows that the length of [ai, bi] is at least ̺
|s|+1.

Observe that 0 is a median of F in P ∗
s for each s. In view of Proposition 2.6, we

have ∫

P∗

s

|F |p 6 2p−1 oscp(F, P
∗
s )

p = 2p−1βp
|s|,p|P

∗
s | = 2p̺|s|+1βp

|s|,p.

Thus

∫ bi

ai

|F (y)|p dy 6
∑

s∈Si

2p̺|s|+1βp
|s|,p 6 2p(bi−ai)

∑

s∈Si

βp
|s|,p 6 2p(bi−ai)

(∑

s∈Si

β|s|,p

)p

,

so

oscp(F, [ai, bi]) 6 2
∑

s∈Si

β|s|,p.

Since each Q∗
s intersects at most two [ai, bi], summing over i = 1, . . . , n we obtain

(13)

n∑

i=1

oscp(F − f(xi) Id, [ai, bi]) =

n∑

i=1

oscp(F, [ai, bi])

6 4
∑

s∈S,|s|>k

β|s|,p 6 4
∑

j>k

2jβ|s|,p < 4ε.

From (12) we obtain

(14)

m∑

i=n+1

oscp(F − f(xi) Id, [ai, bi])

6

m∑

i=n+1

(bi − ai)
−1/p

(∫ bi

ai

|F (y)− F (x)− f(x)(y − x)|p dy

)1/p

6 ε
m∑

i=n+1

(arctan bi − arctanai) 6 πε.

From (13) and (14) we conclude that F is an indefinite HKp
1 integral of f . �
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5.3. Centered HK1 integrable function which is not HKp
α integrable.

Lemma 5.6. Let S ⊂ S be a finite set. For each s ∈ S denote T 0
s = {t ∈ S :

s a 0 a t ∈ S} and T 1
s = {t ∈ S : s a 1 a t ∈ S}. Assume the following property:

(15) ∀ s ∈ S either T 0
s = ∅ or T 1

s = ∅.

Then ∑

s∈S

2−|s| < 2.

P r o o f. Denote by #S the number of elements of S. We prove by induction on

#S. The statement is true if S consists of one multiindex. Assume that the statement

is true when #S 6 n and consider S with #S = n+1. Consider k = min{|s| : s ∈ S}

and Sk = {u ∈ S : |u| = k}. For each u ∈ Sk, T
0
u and T 1

u satisfy the property in

consideration and #T i
u 6 n, i = 0, 1. Therefore

∑

t∈T 0
u

2−|ua0at| = 2−k−1
∑

t∈T 0
u

2−|t| < 2−k

and similarly ∑

t∈T 1
u

2−|ua1at| < 2−k.

Since at most one of the sets T 0
u , T

1
u is nonempty, we have

∑

s∈S : s≻u

2−|s| < 2−|u| + 2−k = 2−k+1, u ∈ Sk.

Finally, as #Sk 6 2k, we have ∑

s∈S

2−|s| < 2.

�

Theorem 5.7. Let p ∈ [1,∞]∪ {C}. Then for each α > 1 there exists a centered

HK1 integrable function which is not HK
p
α integrable.

P r o o f. Let F , f be as in Example 5.2. Set

λj =
1

j
2−j, σj = 1,

so by (5)
∑
j

2jβj,p diverges. Then by Theorem 5.3, f does not have an indefinite

HKp
α integral.
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We will show that F is an indefinite centered HK1 integral of f . Choose ε > 0.

Since F ′ = f in R \K, for each x ∈ R \K we can find δ(x) > 0 such that

(16) |y − x| < δ(x) ⇒ |F (y)− F (x)− f(x)(y − x)| < ε|arctany − arctanx|.

Find k ∈ N such that 2/k < ε. If x ∈ K, we can find δ(x) > 0 such that the interval

(x − δ(x), x + δ(x)) does not intersect any of the intervals Q∗
s with |s| > k. This

defines a gage δ : R → (0,∞). Let {([ai, bi], xi)}mi=1 be a δ-fine partition. Without

loss of generality we may assume that x1, . . . , xn ∈ K and xn+1, . . . , xm /∈ K. For

each i = 1, . . . , n find si ∈ S such that

[ai, bi] ∩Q∗
si 6= ∅, sup

[ai,bi]

F = sup
[ai,bi]∩Q∗

si

F.

Set

S = {s1, . . . , sn}.

Assume that s = si ∈ S. If xi 6 us, then [xi, bi] contains [us, us + ̺|s|+1], hence

xi − ai = bi − xi > ̺|s|+1 and

ai = xi − (xi − ai) 6 us − ̺|s|+1 = Us = Usa0, bi > us = Vsa0.

Therefore none of the intervals [aj , bj], j 6= i, intersects Psa0. Similarly, if xi > vs,

then none of the intervals [aj , bj ], j 6= i, intersects Psa1. It follows that S satis-

fies (15). We estimate

n∑

i=1

osc(F, [ai, bi]) 6
n∑

i=1

β|si|,C =
∑

s∈S

1

|s|
2−|s|.

Since |s| > k for each s ∈ S, using Lemma 5.6 we can continue:

(17)

n∑

i=1

osc(F − f(xi) Id, [ai, bi]) =

n∑

i=1

osc(F, [ai, bi]) 6
1

k

∑

s∈S

2−|s| 6
2

k
< ε.

From (16), as in (14) we obtain

(18)

m∑

i=n+1

osc(F − f(xi) Id, [ai, bi]) 6
m∑

i=n+1

(arctan bi − arctanai) 6 πε.

From (17) and (18) we conclude that F is an indefinite centered HK1 integral of f .

�
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R em a r k 5.8. In all these constructions, the resulting function has the required

non-integrability property with a fixed α. The construction can be easily modified to

obtain the corresponding free non-integrability. It is enough to propose a function f

which fails the α = n integrability property on [1/(n+ 1), 1/n], n = 1, 2, . . ., and

multiply the function f on each [1/(n+ 1), 1/n] by an appropriate constant cn to

keep control over the behavior at 0.

6. Differentiability and approximate differentiability

Lemma 6.1. Let I be an open interval. Let α > 1 and p ∈ [1,∞] ∪ {C}. Let F

be an indefinite centered HKp
α integral of f on I. Then

(19) lim
r→0+

oscp(F − f(x) Id, [x− r, x+ r])

r
= 0

for a.e. x ∈ I.

P r o o f. From Theorem 4.2 we infer that there is a centered α-control function ϕ

for the triple (f, F, Id) and centered HKp
α integration. Since ϕ is monotone, it is

a.e. differentiable. If x is a point where ϕ is differentiable, it is evident that (19)

holds at x. �

Lemma 6.2. Let I be an open interval and F : I → R be a measurable function.

Let p ∈ [1,∞]. Let r0 > 0 be such that (x − r0, x+ r0) ⊂ I and for each r ∈ (0, r0)

let µ(r) be a median of F in (x− r, x+ r). Suppose that

(20) lim
r→0+

oscp(F, [x − r, x+ r])

r
= 0.

Then there exists a limit

l = lim
r→0+

µ(r)

and

(21) lim
r→0+

µ(r)− l

r
= 0.

If, in addition, F (x) = l (in particular, if F is approximately continuous at x), then 0

is the approximate derivative of F at x.
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P r o o f. It is enough to consider the case p = 1. Pick s, r ∈ (0, r0) such that

s < r 6 2s. We claim that

(22) |µ(r) − µ(s)| 6 8 osc1(F, [x − r, x+ r]).

Assume that µ(r) > µ(s). Find measurable sets Es, Er such that Er ⊂ (x−r, x+r),

Es ⊂ (x − s, x + s), F 6 µ(s) on Es, F > µ(r) on Er, |Es| = s and |Er| = r. Let

c ∈ R. If c 6 1
2 (µ(s) + µ(r)), then

∫ x+r

x−r

|F (y)− c| dy >

∫

Er

(µ(r) − c) >
r

2
(µ(r) − µ(s)).

If c > 1
2 (µ(s) + µ(r)), then

∫ x+r

x−r

|F (y)− c| dy >

∫

Es

(c− µ(s)) >
s

2
(µ(r) − µ(s)) >

r

4
(µ(r) − µ(s)),

as we have assumed r 6 2s. In both cases

(23) µ(r) − µ(s) 6
4

r

∫ x+r

x−r

|F (y)− c| dy 6 8 osc1(F, [x − r, x+ r]).

The case µ(r) < µ(s) is similar, so (23) is verified. Choose ε > 0 and find δ ∈ (0, r0)

such that

0 < r < δ ⇒ 8 osc1(F, [x− r, x+ r]) 6 εr.

Find k ∈ N such that 2−k < δ. Then by (23)

(24)

∞∑

j=k+1

|µ(2−j−1)− µ(2−j)| 6
∞∑

j=k+1

2−jε = 2−kε,

similarly

(25) 2−k−1 6 r 6 2−k ⇒ |µ(r) − µ(2−k−1)| 6 rε.

We see that the sum

µ(2−k) + (µ(2−k−1)− µ(2−k)) + (µ(2−k−2)− µ(2−k−1)) + . . .

converges absolutely and thus it converges. Set

l = lim
k→∞

µ(2−k).
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Then l makes sense. Now, for r ∈ (0, δ) we can find k ∈ N such that 2−k−1 < r 6 2−k.

By (24) and (25), for j > k we have

|µ(r) − µ(2−j)| 6 |µ(r)− µ(2−k−1)|+ |µ(2−k−2)− µ(2−k−1)|

+ |µ(2−k−2)− µ(2−k−3)|+ . . . 6 rε+ 2−kε 6 3rε.

Letting j → ∞ we obtain

|µ(r) − l| 6 3rε for 0 < r < δ,

which verifies (21). Now, suppose that F (x) = l. Using Proposition 2.6 we estimate

1

2r2

∫ x+r

x−r

|F (y)− F (x)| dy 6
1

2r2

∫ x+r

x−r

|F (y)− µ(r)| dy +
1

r
|µ(r) − l| → 0.

It is well known that this property implies that the approximate derivative at x is 0,

see the proof of [8], Chapter 6.1, Theorem 4. �

Theorem 6.3. Let I ⊂ R be an open interval. Let α > 1 and p ∈ [1,∞]. Let F be

an indefinite centered HKp
α integral of f on I. Then f is the approximate derivative

of F a.e. If F is an indefinite centered HKα integral of f on I, then even f is the

ordinary derivative of F a.e.

P r o o f. Let x be a point where F is approximately continuous and (19) holds.

(By Lemma 6.2 and the Denjoy-Stepanov theorem (see [41], Chapter IV, Theo-

rem 10.6), almost every point x ∈ R satisfies these properties.) Set F̃ (y) = F (y) −

f(x)y and f̃(y) = f(y)− f(x). Then F̃ is an indefinite centered HKp
α integral of f̃ ,

F̃ is approximately continuous at x and (19) holds for the pair (F̃ , f̃) at x as well.

Thus, by Lemma 6.2, 0 is the approximate derivative of F̃ at x, so f(x) is the ap-

proximate derivative of F at x. The ordinary differentiability at a point where (19)

holds with p = C is obvious. �

7. Discontinuity

E x am p l e 7.1. Let h : (0,∞) → R be a smooth function such that |h′| 6 1.

Interesting choices are e.g. h(t) = t of h(t) = sin t. Set

F (x) =





h
(
log log

1

|x|

)
,

0,

0 < |x| < 1,

x = 0,

f(x) =

{
F ′(x),

0,

0 < |x| < 1,

x = 0.
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Theorem 7.2. Let F , f be as in Example 7.1 and p ∈ [1,∞). Then

(a) F is an indefinite HKp
1 integral of f on (−1, 1),

(b) F has an approximate limit at 0 if and only if it has the ordinary limit at 0.

P r o o f. (a) In view of Remark 3.3 we can restrict our attention to p > 1.

Since F is continuously differentiable outside the origin, it is enough to verify that

lim
r→0+

oscp(F, [0, r]) = lim
r→0+

oscp(F, [−r, 0]) = 0.

Since

(
y
(
log log

1

y

)p−1)′

=
(
log log

1

y

)p−1(
1− (p− 1)

(
log

1

y
log log

1

y

)−1)
,

there exists δ ∈ (0, 1/e) such that

(
y
(
log log

1

y

)p−1)′

>
1

2

(
log log

1

y

)p−1

, y ∈ (0, δ),

and thus ∫ t

0

(
log log

1

y

)p−1

dy 6 2t
(
log log

1

t

)p−1

for each t ∈ (0, δ). We can also assume that the function

t 7→
(
log log

1

t

)p−1(
log

1

t

)−1

is increasing on (0, δ). Pick r ∈ (0, δ). Since the Lipschitz constant of h does not

exceed 1, we estimate

(26)

∫ r

0

|F (y)− F (r)|p dy 6

∫ r

0

(
log log

1

y
− log log

1

r

)p

dy

6

∫ r

0

(
log log

1

y

)p−1
(∫ r

y

(
t log

1

t

)−1

dt

)
dy

=

∫ r

0

(∫ t

0

(
log log

1

y

)p−1(
t log

1

t

)−1

dy

)
dt

6 2

∫ r

0

(
log log

1

t

)p−1(
log

1

t

)−1

dt

6 2r
(
log log

1

r

)p−1(
log

1

r

)−1

.

Similarly, ∫ 0

−r

|F (y)− F (r)| dy 6 2r
(
log log

1

r

)p−1(
log

1

r

)−1

.
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It follows that

lim
r→0+

oscp(F, [0, r]) = lim
r→0+

oscp(F, [−r, 0]) = 0.

(b) Assume that F has an approximate limit at 0. Then there exists the limit

lim
r→0+

1

er − r

∫ er

r

F (y) dy.

Let y ∈ [r, er]. Then

|F (y)− F (r)| 6 log log
1

r
− log log

1

y
6 log log

e

r
− log log

1

r

= log
(
1 +

(
log

1

r

)−1)
6

(
log

1

r

)−1

→ 0.

It follows that

lim
r→0

F (r) = lim
1

er − r

∫ er

r

F (y) dy.

�

R em a r k 7.3. The choice h(t) = t shows that the indefinite HKp
α integral can

be unbounded. If F does not have any limit at 0, as if, for example, h(t) = sin t, then

the “definite HKp
α integral” of f does not make sense over any integral with endpoint

at 0. The nonexistence of the approximate limit shows that even an attempt to define

an “approximate definite integral” fails.

8. Notes and problems

8.1. The Henstock-Kurzweil integral. The first construction of an integral

which integrates all derivatives and includes the Lebesgue integral at the same time

was done by Denjoy (see [6]) in 1912, shortly followed by Luzin (see [27]) and Perron

(see [34]).

In the fifties of the last century, Henstock (see [12]) and Kurzweil (see [25]) dis-

covered independently that the Denjoy-Perron integral can be obtained by a minor,

but ingenious, modification of the classical Riemann integral. The advantage of their

approach is that it is more comprehensible than the former constructions and opens

the possibility of multi-dimensional generalization.

8.2. Multi-dimensional analogues and the Pfeffer integral. Both Kurzweil

and Henstock considered also multidimensional or abstract versions of their integral
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(see [13], [14], [26]). The fundamental issue in n-dimensional integration is what sets

should act as counterparts of intervals in partitions. The choice of all n-dimensional

intervals allows straightforward generalization of some one-dimensional ideas but is

not suitable for applications. An important step forward has been done by Mawhin

(see [31]), who brought the idea of regularity of the partition sets to n-dimensional

integration resulting in integrability of all divergences. This idea has been further

developed and improved e.g. in [30], [19], [16], [35], [18], [17], [36], [20], [33], see

also [3] for a survey.

The most fruitful solution of the problem was to use partitions consisting of regular

BV sets. This has been invented by Pfeffer [37], see also a presentation in [38], [39]

and a generalization in [29]. The Pfeffer integral leads to a very general setting of

the Gauss-Green divergence theorem.

8.3. General packing integrals. The packing integrals were introduced in [28],

[24], [15] to define a class of integrals in R
n which can be applied to non-absolutely

convergent integration with respect to distributions. They can be even generalized

to metric measure spaces. One of main motivations was also to prove very general

versions of the Gauss-Green divergence theorem.

Definition 8.1 (Packing). Let α > 1. A system {B(xi, ri)}
m
i=1 of balls in R

n is

called an α-packing if the balls B(xi, αri) are pairwise disjoint. If δ : R
n → [0,∞)

is a nonnegative function, we say that {B(xi, ri)}
m
i=1 is δ-fine if ri < δ(xi) for each

i = 1, . . . ,m. If δ(x) = 0, it has the effect that x cannot be any of xi for the δ-fine

α-packing. If N is a system of subsets of Rn, we say that δ : R
n → [0,∞) is an

N -gage if {x : δ(x) = 0} ∈ N .

R em a r k 8.2. Another application of α-packing related to absolute continuity

has been studied by Hencl in [11].

Definition 8.3 (Packing integral). Let (X ,p) be a structure which associates

with any ball B = B(x, r) a normed linear space (X (B),p(·, B)) of distributions

on B. Let F , G be distributions on Rn which belong to X (B) for each ball B ⊂ R
n.

Let f be a function on R
n. We say that F is an indefinite α-packing (X ,p) integral

of f with respect to G if for each ε > 0 there exists a gage δ : R
n → (0,∞) such that

for each δ-fine α-packing {B(xi, ri)}mi=1 we have

m∑

i=1

p(F − f(xi)G), B(xi, ri)) < ε.

R em a r k 8.4. In [24], [15] we considered 1-packing and the norm has been read

on the balls B(xi, τri) with τ 6 1. This is clearly equivalent to the setting above by
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the choice α = 1/τ . We have made the change for the purpose of compatibility with

the approach of [1].

R em a r k 8.5. This general notion of packing integral opens possibilities of fur-

ther research. If we want to apply this general definition to the one-dimensional

situation, it is useful to identify a locally integrable function F with its distribu-

tional derivative F . We investigated the norms

p(F , [a, b]) = oscp(F, [a, b])

defined through the norms of Lp of C. There is a variety of further norms which

could be taken into account, like Lorentz norms or Sobolev norms.

8.4. Lip-packing integral and centered HK1
α integral. In [24] we have studied

the case of

(27) pLip(F , B(x, r)) = sup
{
〈F , ϕ〉 : ϕ ∈ Lip0(B(x, r)), Lipϕ 6

1

r

}
,

where Lip0(B(x, r)) is the class of all Lipschitz continuous functions on Rn supported

in B(x, r) normed by the Lipschitz constant. Let us label the resulting packing

integral as the Lip α-packing integral. This choice is convenient for generalization to

metric spaces and appears to be one of the most natural ones. The right space X (B)

to be used here is the closure of D(B(x, r)) in the dual space Lip0(B(x, r))∗ to

Lip0(B(x, r)), see [28].

If n = 1 and F is the distributional derivative of a locally integrable function F ,

we observe that

pLip(F , B(x, r)) = sup

{∫ x+r

x−r

F (y)ϕ′(y) dy : ϕ ∈ Lip0(B(x, r)), |ϕ′| 6
1

r

}

= sup

{∫ x+r

x−r

(F (y)− c)ϕ′(y) dy : ϕ ∈ Lip0(B(x, r)), |ϕ′| 6
1

r

}

=
1

r

∫ x+r

x−r

|F (y)− c| dy,

where c is a median of F in (x − r, x + r). Indeed, the supremum is attained at a

function ϕ with ϕ′(y) = 1/r a.e. on E+ and ϕ′(y) = −1/r a.e. on E−, where E+

and E− are disjoint, of equal measure, E+ ∪ E− = [x − r, x + r] and F > c on E+,

F 6 c on E−. By Proposition 2.6,

pLip(F , B(x, r)) = 2 osc1(F, [x − r, x+ r]).

Thus, we have verified the following theorem.
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Theorem 8.6. Let f, F,G : R → R be measurable functions and α > 1. Then F

is an indefinite α-packing Lip integral of f with respect to G if and only if F is the

indefinite centered HKS1α integral of f with respect to G.

8.5. BV -packing integral and centered HKSα integral. The Lipα packing

integral does not include the Pfeffer integral. If we apply the Lipα packing integral

in [28], [24] to generalize the divergence theorem, we obtain new results but we miss

the useful features of the Pfeffer integral. To share both advantages of the Pfeffer

integral (see [38]) and of the packing approach, in [23] a new integral is introduced.

To explain this integral we need first to introduce the notion of charge, which is

fundamental also for the Pfeffer integral.

Definition 8.7. Recall that the space BV (Rn) is defined as the space of all L1

functions u on R
n such that the distributional derivative Du of u is a R

n-valued

Radon measure. Then ‖Du‖ is defined as the total variation of Du. The BV

sets are sets E whose characteristic function χE is a BV function; perimeter of a

BV -set E is ‖E‖ := ‖χE‖. Also, we denote the Lebesgue measure of E by |E| and

the diameter of E by d(E). Then the regularity of a pair (E, x) is the number

r(E, x) =






|E|

d(E ∪ {x})‖E‖
if |E| > 0,

0 if |E| = 0.

Definition 8.8 (Charge). Let F be a linear functional on D(Rn). We say that F

is a charge if for each ε > 0 there is θ > 0 such that

〈F , ϕ〉 6 θ‖ϕ‖1 + ε(‖∇ϕ‖1 + ‖ϕ‖∞)

for each ϕ ∈ D(Rn) with support in B(0, 1/ε), see [5]. We write

F(E) := F(χE)

if E is a BV set.

Definition 8.9 (Norms on charges). Let F be a charge, B(x, r) be a ball in R
n

and ε > 0. We define

(28) p
ε
BV (F , B(x, r)) = sup{F(E) : E ⊂ B(x, r) is a BV set, r(E, x) > ε}.

Definition 8.10 (Packing BV integral). Let N be the class of all sets of σ-

finite (n − 1)-dimensional Hausdorff measure, see [38]. Let F , G be charges and
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f : R
n → R be a function. We say that F is an indefinite BV α-packing integral

of f with respect to G if for each ε > 0 there is an N -gage δ such that for each δ-fine

α-packing {B(xi, ri)}mi=1 we have

m∑

i=1

p
ε
BV (F − f(xi)G, B(xi, ri)) < ε.

R em a r k 8.11. The integral defined in Definition 8.10 follows the philosophy of

packing integrals, but it does not fall to the category of general packing integrals

of Definition 8.3 as the seminorm depends on ε and the system N of exceptional

sets is considered. However, we did not want to give the general definition more

complicated for the sake of one example.

8.6. BV packing integral in R and centered HKSα integral. In the one-

dimensional setting things simplify a lot.

First, BV sets can be represented by figures. These are defined as finite unions of

bounded closed intervals. The representation means that the BV set E differs from

its representing figure E′ only by a Lebesgue null set, thus χE and χE′ represent the

same element of the BV function space.

Second, charges are represented by continuous functions: a distribution F on R is

a charge if and only if there is a continuous function F : R → R such that for any

closed interval [a, b] we have

(29) F([a, b]) = F (b)− F (a).

Then F acts on test functions as the distributional derivative of F .

Third, if B(x, r) = (x− r, x+ r) is a ball in R, E ⊂ B(x, r) is a figure of the form
k⋃

j=1

[uj, vj ], where the intervals [uj, vj ] are pairwise disjoint, (E, x) is ε-regular and F

is a charge given by (29), then ‖E‖ = 2k, |E| 6 d(E ∪ {x}), and thus 2k < 1/ε and

F(E) 6 2k osc(F,B(x, r)) <
1

ε
osc(F,B(x, r)).

It follows that

(30) p
ε
BV (B(x, r)) 6

1

ε
osc(F,B(x, r)).

On the other hand, the regularity of any interval x ∈ [a, b] ⊂ (x − r, x + r) is

r([a, b], x) = 1
2 , so

(31) 0 < ε < 1
2 ⇒ osc(F,B(x, r)) 6 p

ε
BV (B(x, r)).
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Fourth, the exceptional sets are just the countable sets. So, we consider N -gages,

where N is the family of all countable subsets of R.

We can then reformulate the definition of the BV α-packing integral from [23] for

the one-dimensional case as follows:

Definition 8.12. Let f, F,G : R → R be measurable functions and α > 1.

Assume that F , G are continuous. Let N be the family of all countable subsets

of R. Then F is the indefinite α-packing BV integral of f with respect to G if for

each ε > 0 there exists an N -gage δ : R → [0,∞) such that for each δ-fine centered

α-partition {([ai, bi], xi} in R we have

m∑

i=1

p
ε
BV (F − f(xi)G, [ai, bi]) < ε.

Theorem 8.13. Let f, F,G : R → R be measurable functions. Assume that F , G

are continuous. Then F is an indefinite α-packing BV integral of f with respect

to G if and only if F is the indefinite centered HKSα integral of f with respect to G.

P r o o f. Let F be an indefinite centered HKSα integral of f with respect to G.

Choose ε > 0. We can find a gage δ > 0 such that for each δ-fine centered α-partition

{([ai, bi], xi} in R we have

m∑

i=1

osc(F − f(xi)G, [ai, bi]) < ε2.

Using (30) we obtain

m∑

i=1

p
ε
BV (F − f(xi)G, [ai, bi]) 6

1

ε

m∑

i=1

osc(F − f(xi)G, [ai, bi]) < ε.

Thus, F is an indefinite α-packing BV integral of f with respect to G.

Conversely, if F is an indefinite α-packing BV integral of f with respect to G

and ε ∈ (0, 1
2 ), then there is an N -gage δ > 0 such that for each δ-fine centered

α-partition {([ai, bi], xi} in R we have

m∑

i=1

p
ε
BV (F − f(xi)G, [ai, bi]) < ε.

Let N = {x ∈ R : δ(x) = 0}. Since N is countable, there exists ξ : N → (0,∞) such

that ∑

x∈N

ξ(x) < ε.
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Using continuity of F and G, for each x ∈ N we find δ̂(x) > 0 such that for each

y ∈ R we have

(32) |y − x| < δ̂(x) ⇒ |F (y)− F (x) − f(x)(G(y) −G(x))| < ξ(x).

We define a gage δ̄ : R → (0,∞) as

δ̄(x) =

{
δ(x), x ∈ R \N,

δ̂(x), x ∈ N.

Now let us fix a δ̄-fine α partition {[ai, bi], xi}mi=1 in R. Without loss of generality we

may assume that x1, . . . , xk /∈ N and xk+1, . . . , xm ∈ N for some k ∈ {0, 1, . . . ,m}.

Then {[ai, bi], xi}ki=1 is δ-fine and thus by (31)

k∑

i=1

osc(F − f(xi)G, [ai, bi]) < ε.

For i > k we estimate

m∑

i=k+1

osc(F − f(xi)G, [ai, bi]) 6

m∑

i=k+1

ξ(xi) 6 ε.

Together
m∑

i=1

osc(F − f(xi)G, [ai, bi]) 6 2ε.

Therefore F is the indefinite centered HKSα integral of f with respect to G. �

8.7. Open problem: dependence on α. In [1], it is shown that each HK2 inte-

grable function on an open interval I ⊂ R is HK1 integrable, but for each 2 6 α < β

there is a HKβ integrable function f which is not α integrable. The characteriza-

tion of pairs (α, β) such that HKp
α = HKp

β (here the symbol represents the class of

integrable functions) is known neither for p > 1, nor for the centered version.

8.8. Open problem: approximate nondifferentiability. It would be inter-

esting to know how large can be the set of approximate nondifferentiability of an

indefinite (centered) HKp
α integral.
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