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ON THE UNIFORM PERFECTNESS OF GROUPS

OF BUNDLE HOMEOMORPHISMS

Tomasz Rybicki

Abstract. Groups of homeomorphisms related to locally trivial bundles are
studied. It is shown that these groups are perfect. Moreover if the homeomor-
phism isotopy group of the base is bounded then the bundle homeomorphism
group of the total space is uniformly perfect.

1. Introduction

Let M be a topological metrizable (and so paracompact) and second countable
manifold, let Homeo(M) denote the group of all homeomorphisms of M and let
Homeoc(M) be the subgroup of all compactly supported elements. Next the symbol
H(M) (resp. Hc(M)) stands for the subgroup of all elements of Homeo(M) that
can be joined to the identity by an isotopy (resp. a compactly supported isotopy) in
Homeo(M). Recall that a group G is called perfect if it is equal to its commutator
subgroup, i.e. any element of G can be expressed as a product of commutators
[f, g] = fgf−1g−1, where f, g ∈ G. Then we have the following theorem which
essentially follows from the results of Mather [10], and Edwards and Kirby [3].

Theorem 1.1 ([7, Theorem 1.1, Cor. 1.3]). Assume that either M is compact
(possibly with boundary), or M is open and admits a compact exhaustion. Then
the group Hc(M) is perfect. Moreover, for M connected, Hc(M) is simple if and
only if ∂M = ∅.

As a topological group, Homeo(M) will be endowed with the Whitney (or graph)
topology. If M is compact this topology coincides with the compact-open topology.

From now on we will assume that that M , B and F are topological metrizable
and second countable manifolds and π : M → B is a locally trivial bundle with the
standard fiber F . Denote by Homeo(M,π) (resp. Homeoc(M,π)) the totality of
fiber preserving homeomorphism (resp. with compact support). Next denote by
Homeoπ(M) the group of all bundle homeomorphisms of π. It is clear that π induces
the homomorphism P : Homeoπ(M)→ Homeo(B) given by P (f)(π(x)) = π(f(x)).
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Let Homeoπ,c(M) be the subgroup of Homeoπ(M) of all transversely compactly
supported bundle homeomorphisms of M . That is, f ∈ Homeoπ,c(M) if and
only if f sends each fiber onto another fiber and π(supp(f)) is compact. Then
Homeoc(M,π) is a normal subgroup of Homeoπ,c(M). The symbol Hπ,c(M) (resp.
Hc(M,π)) stands for the group of all homeomorphisms from Homeoπ,c(M) (resp.
Homeoc(M,π)) that can be joined to the identity by an isotopy in Homeoπ,c(M)
(resp. Homeoc(M,π)). It follows the existence of the homomorphism P : Hπ,c(M)→
Hc(M,π).

Theorem 1.2. Let π : M → B be a locally trivial bundle with the standard fiber
F . If F is closed or is the interior of a compact manifold with boundary then the
group Hc(M,π) is perfect. Moreover, if F is closed then Hπ,c(M) is perfect too.

Clearly these groups are not simple.
For a topological group G by PG we denote the isotopy or path group of G, that

is the totality of continuous paths f : I → G with f(0) = e, I = [0, 1].
A subgroup G ≤ Homeo(M) is called fragmentable if each element of G can be

written as a product of homeomorphisms from G supported in open balls. Next G
is said to be path fragmentable if the path group PG is fragmentable. Observe that
the group Hc(M) is path fragmentable (and so fragmentable) due to Theorem 3.3
below.

Recall that a group is called bounded if it is bounded with respect to any
bi-invariant metric on it. Next a group G is uniformly perfect if any element can be
expressed as a product of a bounded number of commutators. Clearly any bounded
and perfect group is uniformly perfect. See Section 2 for more details.

The main result is the following

Theorem 1.3. Assume that π : M → B is a locally trivial bundle with the
standard fiber F closed. Then we have:

(1) If Hπ,c(M) is uniformly perfect then Hc(B) is also uniformly perfect.

(2) If the fragmentation norm on the group PHc(B) is bounded, then Hπ,c(M)
is uniformly perfect and

cldHπ,c(M) ≤ fdPHc(B) + 2(n+ 1) ,

where n = dimB and cld (resp. fd) is the commutator length diameter
(resp. fragmentation diameter), cf. Section 2.

The problem of the algebraic structure of homeomorphism groups, especially
the boundedness and uniform perfectness of them, has drawn much attention. It
has been studied among others in [1], [4], [5], [6], [7], [8], [9], [11], [12], [14], [15],
[16] (see also references therein).

Throughout all manifolds are topological, second countable and metrizable. The
symbol of composition in homeomorphism groups will be omitted.
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2. Conjugation-invariant norms

The notion of boundedness can be expressed in terms of a conjugation-invariant
norms. A conjugation-invariant norm on a group G is a function ν : G → [0,∞)
which satisfies the following conditions. For any g, h ∈ G

(1) ν(g) > 0 if and only if g 6= e,
(2) ν(g−1) = ν(g),
(3) ν(gh) ≤ ν(g) + ν(h),
(4) ν(hgh−1) = ν(g).

It is easily seen that G is bounded if and only if any conjugation-invariant norm
on G is bounded. By the diameter of ν we mean supg∈G ν(g).

Let G be a group and let [G,G] be its commutator subgroup. For g ∈ [G,G]
the symbol clG(g) stands for the least k such that g is written as a product
of k commutators and is called the commutator length of g. Observe that the
commutator length clG is a conjugation-invariant norm on [G,G]. In particular, if
G is a perfect group then clG is a conjugation-invariant norm on G. For any perfect
group G denote by cldG the commutator length diameter of G, cldG := sup

g∈G
clG(g).

Then G is uniformly perfect iff cldG <∞.
Another example of conjugation-invariant norm is the following. Let G be a

subgroup of Homeo(M) and assume that G is fragmentable. For h ∈ G, h 6= id,
we define the fragmentation norm fragG(h) to be the smallest integer r > 0
such that h = h1 . . . hr with supp(hi) ⊂ Ui for all i, where Ui is a ball. By
definition fragG(id) = 0. Next by fdG we denote the fragmentation diameter of G,
fdG := suph∈G fragG(h).

Recall the notion of displacement of a subgroup. A subgroup K of G is called
strongly m-displaceable if there is g ∈ G such that the subgroups K, gKg−1, . . . ,
gmKg−mpairwise commute. Then we say that g m-displaces K.

Proposition 2.1 ([2]). Assume that g m-displaces K ≤ G for every m ≥ 1. Then
for any f ∈ [K,K] we have clG(f) ≤ 2.

3. Locally continuously fragmentable groups

The following type of fragmentations is important when studying groups of
homeomorphisms.

Definition 3.1. A subgroup G ≤ Homeo(M) is called locally continuously frag-
mentable with respect to a finite open cover {Ui}di=1 if there exist a neighborhood N
of id ∈ G and continuous mappings σi : N → G, i = 1, . . . , d, such that σi(id) = id
and for all f ∈ N one has

f = σ1(f) · · ·σd(f) , supp(σi(f)) ⊂ Ui,∀i .

Moreover, we assume that each supp(σi(f)) is compact whenever f ∈ Homeoc(M).
If N = G then G is called globally continuously fragmentable.
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Clearly, if G is connected and locally continuously fragmentable then it is
fragmentable. Observe that Def. 3.1 can also be formulated for PG rather than G,
where G ≤ H(M).

For a manifold X and a subgroup G ≤ H(M), let C(X,G) stand for the group of
all continuous maps X → G with the pointwise multiplication and the compact-open
topology. For f ∈ C(X,G) we define supp(f) =

⋃
x∈X supp(fx), where fx : p ∈

M 7→ f(x)(p) ∈M . Then Def. 3.1 extends obviously for C(X,G). It is easy to check
that if G is a topological group then C(X,G) is also a topological group.

Proposition 3.2. If X is compact and G is locally continuously fragmentable with
respect to {Ui}di=1, then so is C(X,G).

Proof. Let σi : N → G, i = 1, . . . , d, be as in Def. 3.1. Define N̂ = {f ∈
C(X,G) : f(X) ⊂ N} and continuous maps σCi : N̂ → C(X,G) by the formulae
σCi (f)(x) = σi(fx), where f ∈ C(X,G), x ∈ X. It follows that supp(σCi (f)x) ⊂ Ui
for all i and x. Consequently we have supp(σCi (f)) ⊂ Ui. �

The results of this paper depend essentially on the deformation properties for the
spaces of imbeddings obtained by Edwards and Kirby in [3]. See also Siebenmann
[17]. All manifolds are assumed to be metrizable and second countable (i.e. have at
most countably many connected components).

A ball U in an n-dimensional manifold M is a relatively compact, open ball
imbedded with its closure in M . For M closed, let d = dM is the smallest integer
such that M =

⋃d
i=1 Ui where Ui is a ball if M is connected (or Ui is the union of

disjoint open balls, each ball lies in a different connected component, if M is not
connected) such that cl(Ui) 6= M for each i. Then d ≤ n+ 1 . Next if M is an open
manifold, then M admits an open cover {Ui}n+1

i=1 (see [13]), called a Palais cover,
such that each Ui is the union of a countable, locally finite family of balls with
pairwise disjoint closures. In each case such a cover will be called related to M .

Theorem 3.3. Assume that M is closed or M is the interior of a compact manifold.
Then Hc(M) is a locally continuously fragmentable group (Def. 3.1) with respect to
any cover {Ui}di=1, d ≤ n+ 1, related to M . Moreover the isotopy group PHc(M)
is also locally continuously fragmentable with respect to {Ui}di=1.

For the proof see Prop. 3.2 [16] and the proof of Theorem 1.3 in [16]. The second
claim follows from Prop. 3.2 above.

Proposition 3.4. If π : M → B be a locally trivial bundle then PHc(M,π) is
globally continuously fragmentable with respect to {π−1(Ui)}, where {Ui} is a cover
related to B. Next if F is closed or is the interior of a compact manifold with
boundary, and {Vj} is a cover related to F , then PHc(M,π) is locally continuously
fragmentable with respect to {Ui × Vj)}i,j.

Proof. To show the first claim, suppose that {λi}di=1 is a partition of unity
subordinate to {Ui}di=1, a cover related to B. Let g = {gt} ∈ PHc(M,π).

For p ∈M put ht1(p) = gλ1(π(p))t(p). Next

ht2(p) =
(
(gλ1(π(p)t))−1g(λ1+λ2)(π(p))t)(p) .
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In general, for 3 ≤ i ≤ d we define
hti(p) =

(
(g(λ1+···λi−1)(π(p))t))−1g(λ1+···+λi)(π(p))t)(p) .

Then supp(hti) ⊂ π−1(Ui) for all i and t, and gt = ht1 . . . h
t
d. Moreover, the maps

σi : g 7→ hi = {hti} are continuous.
In order to show the second assertion let g ∈ PHc(M,π) and {Ui}di=1 be related

to B so that π trivializes over each Ui. We suppose that g is so small that for
each hti as above we have that hti|π−1(x) ∈ N , where N is as in Def. 3.1, for all
x ∈ Ui, i = 1, . . . , d. Then we apply Theorem 3.3 to the family hti|π(x), x ∈ Ui, in
a fiberwise fashion, with respect to a cover {Ui × Vj}j , where {Vj} is related to
F . It follows that PHc(M,π) is locally continuously fragmentable with respect to
{Ui × Vj}i,j . �

The following basic lemma for homeomorphisms is no longer true in the C1

category.

Lemma 3.5 ([10], [16]). Let W and V be balls such that cl(W ) ⊂ V . Then there
exist φ ∈ Hc(V ) and a continuous map S : Hc(W )→ Hc(V ) such that g = [S(g), φ]
for all g ∈ Hc(W ).

We also need the following

Proposition 3.6. If π : M → B is a locally trivial bundle with the standard fiber F
closed, then the homomorphism P : Hπ,c(M)→ Hc(B) is surjective. Furthermore,
the induced map for isotopies P : PHπ,c(M)→ PHc(B) is also surjective.

Proof. Obviously, the second assertion implies the first. To show the second, let
h ∈ PHc(B). From Theorem 3.3 it follows that h = h1 . . . hp with all hi ∈ PHc(B)
supported balls. Consequently, each hi can be lifted by means of a trivialization
of π to an isotopy h̃i ∈ PHπ,c(M) such that P (h̃i) = hi. Thus P (h̃) = h, where
h̃ = h̃1 . . . h̃p. �

Proof of Theorem 1.2. First we prove that Hc(M,π) is perfect. According to
Prop. 3.4 it suffices to assume that M = U × V , where U (resp. V ) is a ball
in B (resp. in F ) and π is the projection U × V → U . If f ∈ Hc(U × V, π)
then supp(f) ⊂ U ×W such that cl(W ) ⊂ V . In view of Lemma 3.5 there are
φ ∈ Hc(V ) and a continuous map S : Hc(W )→ Hc(V ) such that g = [S(g), φ] for
all g ∈ Hc(W ).

Consider S̃ : Hc(U ×W )→ Hc(U × V ) given by S̃(g̃)(x, y) = (x, S(g̃|π−1(x))(y))
for all g̃ ∈ Hc(U ×W ). Then we get f = [S̃(f), id×φ]. It remains to modify id×φ
to be compactly supported. Namely, if φ = φ̄1 with φ̄ ∈ PHc(V ) and λ : B → [0, 1]
is a compactly supported bump function satisfying λ|π(supp(f)) = 1, then we may
use φ̂ given by φ̂(x, y) = (x, φ̄λ(x)(y)) instead of id×φ.

To show that Hπ,c(M) is perfect, let f ∈ Hπ,c(M). Take f̄ ∈ PHπ,c(M) such
that f̄1 = f . According to Theorem 3.3 we have a decomposition of isotopies
P (f̄) = h1 . . . hr, where each hi is supported in a ball in B, say Ui (or a union of
locally finite family of balls with pairwise disjoint closures). In view of Prop. 3.6
there exist lifts h̄1, . . . , h̄r ∈ PHπ,c(M) of h1, . . . , hr, resp. If h̄ := h̄1 . . . h̄r then
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ḡ = f̄ h̄−1 lies in ker(P ). Consequently, ḡ1 belongs to Hc(M,π) and so is a product
of commutators due to the first part. On the other hand, each h̄1

i can be viewed
as an element of Hc(Ui) if we use a local trivialization over Ui. Therefore, due
to Lemma 3.5, each h̄1

i is a commutator. Thus f = f̄1 = ḡ1h̄1 is a product of
commutators and Hπ,c(M) is perfect. �

4. Proof of Theorem 1.3

(1) It follows from Prop. 3.6.
(2) Let f ∈ Hπ,c(M) and let f̄ ∈ PHπ,c(M) such that f̄1 = f . We have

P (f̄) ∈ PHc(B) and we may use Theorem 3.3 to get a fragmentation of isotopies

P (f̄) = h1 . . . hp ,

where each isotopy hi ∈ PHc(Ui), where Ui is a ball for all i, and where p is bounded
according to the assumption. In view of Prop. 3.6 we define h̄i ∈ PHπ,c(π−1(Ui)),
the lifts of hi, and we put

h̄ = h̄1 . . . h̄p and ḡ = f̄ h̄−1 .

Since P (h̄) = P (f̄), it follows that ḡ is an isotopy in ker(P ) joining g = ḡ1 to the
identity.

By using local trivialization of π, each h̄i can be regarded as an element of
PHc(Ui). Then due to Lemma 3.5 each h̄1

i can be written as a commutator.
Now in view of Prop. 3.4 g = ḡ1 can be written as a product of at most n+ 1

factors,
g = g1 . . . gn+1 , supp(gi) ⊂ π−1(Ui)

for all i, where Ui is a ball provided B is closed. If B is open then Ui is a finite union
of balls with disjoint closures. In both cases each gi can be expressed as a product
of at most two commutators. In fact, for every Ui there exists φi ∈ Hπ,c(M) such
that the family {φki (π−1(Ui))}k∈N0 is pairwise disjoint, and we apply Theorem 1.2
and Prop. 2.1. Observe that the reasoning from [10] does not apply in this case.

Consequently, f can be expressed as a product of p + 2(n + 1) commutators.
Therefore Hπ,c(M) is uniformly perfect and

cldHπ,c(M) ≤ fdPHc(B) + 2(n+ 1) ,
as required.
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