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A MULTI-SUBPOPULATION BAT OPTIMIZATION
ALGORITHM FOR ECONOMIC DISPATCH PROBLEM
WITH NON-ESSENTIAL DEMAND RESPONSE

Yanjun Shen, Bo Yang, Xiongfeng Huang, Yujiao Zhang, Chao Tan

In this paper, we propose a new economic dispatch model with random wind power, de-
mand response and carbon tax. The specific feature of the demand response model is that
the consumer’s electricity demand is divided into two parts: necessary part and non-essential
part. The part of the consumer’s participation in the demand response is the non-essential
part of the electricity consumption. The optimal dispatch objective is to obtain the minimum
total cost (fuel cost, random wind power cost and emission cost) and the maximum consumer’s
non-essential demand response benefit while satisfying some given constraints. In order to solve
the optimal dispatch objective, a multi-subpopulation bat optimization algorithm (MSPBA) is
proposed by using different search strategies. Finally, a case of an economic dispatch model
is given to verify the feasibility and effectiveness of the established mathematical model and
proposed algorithm. The economic dispatch model includes three thermal generators, two wind
turbines and two consumers. The simulation results show that the proposed model can reduce
the consumer’s electricity demand, reduce fuel cost and reduce the impact on the environment
while considering random wind energy, non-essential demand response and carbon tax. In ad-
dition, the superiority of the proposed algorithm is verified by comparing with the optimization
results of CPLEX+YALMIP toolbox for MATLAB, BA, DBA and ILSSIWBA.

Keywords: economic dispatch, non-essential demand response, random wind power, bat
algorithm, multi-subpopulation

Classification: 90Bxx

1. INTRODUCTION

Economic dispatch is an important problem in power system optimization dispatch.
Its purpose is to minimize the fuel cost after power generation while satisfying some
equality and inequality constraints. However, environmental problems caused by fossil
fuel during power generation are intensifying in traditional economic dispatch. Thus, it
is necessary to propose a better solution by combining both the objectives of cost and
emission. With the integration of multiple forms of renewable energy into the power
system, environmental challenges are largely alleviated. Wind energy, a common form
of renewable energy, has been applied to economic dispatch problem in power system.
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For example, a novel hybrid bat algorithm was proposed to deal with the economic
dispatch problem incorporating thermal generators and wind turbines in [24]. In [15], a
distributed economic dispatch method was proposed, which combines traditional thermal
generators and wind turbines. The aggregated virtual power plants was used for a two-
phase economic dispatch model incorporating wind turbines [23]. In [39], a computation
framework for power system daily operations considering wind power uncertainties was
proposed, which included two major stages, wind power forecast and stochastic unit
commitment/economic dispatch.

Nowadays, most optimization problems are complex problems of highly nonlinear
and multi-constrained, especially dispatch problem in power systems. The objective of
optimization problems is usually the minimum cost, the least impact on the environment,
the maximum utilization, the biggest profit and so on [26]. Traditional methods, such
as linear programming [18], dynamic programming [4], λ-iteration method [34], gradient
method [22], projection method [14] and other methods often fail to solve such large-
scale problems, especially nonlinear objective functions. Most of them require use of
gradient information to solve non-differentiable functions. In addition, such techniques
often fail to solve optimization problems with many local optimal solutions. Therefore,
many intelligent algorithms have been proposed to solve such optimization problems and
have obtained good effectiveness. These intelligent algorithms include genetic algorithm
(GA) [3, 38], differential evolution (DE) [6], particle swarm optimization (PSO) [21, 30],
cuckoo search (CS) [36], ant colony optimization (ACO) [7], etc. With the deepening
of intelligent algorithm research, it is more and more widely used in signal processing,
automatic control, optimization dispatch, pattern recognition and so on.

BA is a swarm intelligence algorithm proposed by Professor Yang in 2010, inspired by
the behavior of bat hunting for prey [35]. Some previous studies have shown that BA has
better efficiency and stability when solving engineering optimization problems [12, 37].
However, BA has some shortcomings including easy to fall into local optima and low
precision of solution when solving some complex problem. In order to solve high dimen-
sional, highly nonlinear complex optimization problem, some improved versions of BA
have been proposed. In [11], the chaotic mapping was introduced into BA to improve
the global search ability. The simulated annealing and Gaussian perturbation was com-
bined with BA to improve global convergence speed and accuracy [16]. The directional
echolocation was introduced in BA to enhance its exploration and exploitation capabil-
ities [2]. In addition, There are also different versions of BA that have been applied to
economic/emission dispatch problem, control system parameter optimization, etc.

Recently, many intelligent meta heuristic algorithms have been proposed to solve the
economic dispatch problem. For example, a modified gravitational search algorithm
based on a non-dominated sorting genetic approach was proposed for hydro-thermal-
wind economic emission dispatch problem in [5]. A modified harmony search algorithm
was proposed for environmental/economic dispatch [19]. In [32], a hybrid ACO-ABC-HS
optimization algorithm was used for economic dispatch problem. An implementation of
flower pollination algorithm was applied to solve economic load dispatch and combined
economic emission dispatch problems [1].

In the above literature, the economic/emission dispatch models are based on the
power generation side. With the continuous development of power industry, relying
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solely on dispatching power generation resources has not been able to meet the energy
and power shortages. The demand side response changes the “one-way” mode of resource
planning in the traditional dispatch mode by relying only on the power generation side
resources, and the dispatch mode performs a “two-way” interactive transition of the
integrated resource allocation to the power generation side and the user side. At present,
the flexible interactive intelligent power consumption method that considers the demand
side response has become a research focus and development trend [29].

In this paper, we present an economic dispatch model incorporating random wind
power, non-essential demand response and carbon tax, which objective is the mini-
mum fuel cost of traditional thermal generators, the minimum cost of wind power and
the maximum consumer’s non-essential demand response benefit. At the same time, the
proposed model must satisfy some equality and inequality constraints. The proposed de-
mand response model is to let consumers participate in the process of power distribution
and reduces the electricity demand by giving proper compensation to customers. The
demand response model proposed is characterized by dividing the consumer’s demand
for electricity into essential and non-essential parts. That is, the consumer must partially
use the electricity consumption, and the consumer’s reduced electricity consumption is
the non-essential part of the electricity consumption. In the case of considering the
power company to obtain a certain profit, the objective of the demand response is the
the maximum benefit of the consumers. Moreover, we propose a multi-subpopulation
bat optimization algorithm (MSPBA). The main idea is to divide the population into
three subgroups by using three different search strategies. The first subgroup does global
search to improve the global exploration ability of the algorithm. The second subgroup
performs local search to improve the accuracy of the algorithm. The third subgroup is
used to jump out of the local optima. At last, the validity and feasibility of the proposed
algorithm and model are verified by numerical simulations. It is also shown that the pro-
posed model can reduce the consumer’s electricity demand, reduce fuel cost and reduce
the impact on the environment while considering random wind energy, non-essential
demand response and carbon tax.

The other sections of this paper are arranged as follows: The model of economic
dispatch with non-essential demand response is described in section 2. The multi-
subpopulation strategy based bat algorithm is presented in section 3. Then, the results
of numerical experiments based on the proposed model and algorithm are presented in
section 4. The conclusion is described in Section 5.

2. PROBLEM FORMULATION

The present formulation treats economic dispatch problem of non-essential demand re-
sponse and carbon tax which attempts to minimize the total cost, while satisfying some
equality and inequality constraints. The total cost include three parts: thermal gener-
ators (TGs) cost, wind turbines cost and emission cost. The objectives and constraints
of economic dispatch problem are formulated as follows.
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2.1. The total cost objective function

2.1.1. The cost function of thermal generators and random wind turbines

The cost function of thermal generators and wind turbines is expressed as [17]:

S1 =

Ns∑
n=1

T∑
t=1

fn(Pn,t) +

Nr∑
r=1

T∑
t=1

gr(Wr,t) (1)

where Ns , Nr are the numbers of TGs and WTs, respectively, Pn, Wr are the scheduled
power outputs of the nth TG and the rth WT, respectively.

1) The fuel cost function of each thermal generating unit considering valve-point
effects [33] is expressed as:

fn(Pn,t) = anP
2
n,t + bnPn,t + cn + |dn sin(en(Pmin

n − Pn,t))| (2)

where an, bn, cn, dn and en are the cost coefficients of the nth TG.

2) The cost of jth WT is described as [17, 25]:

gr(Wr,t) = drWr,t + Cow,rE(Yoe,r,t) + Cuw,rE(Yue,r,t) (3)

where drWr is a linear cost function for wind power generation with dr being the
cost coefficient or the “price” of the rth WT; Cow,r represents the cost coefficient of
purchasing electricity from other sources due to overestimation of the availability
of rth wind power, and Cuw,r indicates that the cost coefficient of all wind power
provided by the wind turbine is fully utilized due to underestimation of the avail-
ability of rth wind power; Cuw,rE(Yue,r,t) and Cow,rE(Yoe,r,t) denote the costs of
underestimation Yue(= Wr −Wpredict) and overestimation Yoe(= Wpredict −Wr)
for the rth wind turbine, respectively; E(Yue,r,t) and E(Yoe,r,t) represent the av-
erage of the underestimation and overestimation of wind energy, respectively. The
definitions of E(Yue,r,t) and E(Yoe,r,t) are more complicated and not given because
of space limitation. Their detailed introduction are referred to [2].

2.1.2. Emission cost function (carbon tax)

The amount of emissions caused by fossil-fueled generating units such as carbon diox-
ide (CO2), nitrogen oxides (NOx) and sulphur oxides (SOx) are modelled as a sum of
quadratic and exponential terms in the emission function. The mathematical formula-
tion of the emission function is given by [13]:

E(Pn,t) =

T∑
t=1

Ns∑
n=1

[10−2(αnP
2
n,t + βnPn,t + γn) + εn exp(λnPn,t)] (4)

where αn, βn, γn, εn and λn are emission coefficients of the nth TG.
Recently, environmental problems caused by fuel combustion have intensified, and

many countries impose a carbon tax on greenhouse gas emissions to reduce carbon
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emissions. The purpose is to encourage investment in clean energy such as wind energy.
The emission cost function is represented as:

f2 = CtaxCefE(Pn,t) (5)

where Ctax is the carbon tax price of the unit of the thermal generator, and Cef is the
fuel emission factor of CO2 for thermal generator.

In summary, the total minimum cost function is expressed as:

min F1 = S1 + f2. (6)

2.2. Constraint conditions

In economic dispatch problem, the objective functions are subjected to the following
equality and inequality constraints.

2.2.1. Power balance constraint

The power balance constraint is described as:

Ns∑
n=1

Pn,t +

Nr∑
r=1

Wr,t = P td + P tloss (7)

where t ∈ (1, 2, . . . , T ), P td and P tloss are the power load demand and transmission losses
at the t time interval, respectively. P tloss can be represented by B-loss coefficients, which
is calculated by

P tloss =

Ns∑
n=1

Ns∑
i=1

Pn,tBn,iPi,t +

Ns∑
n=1

B0,nPn,t +Boo (8)

where Bn,i, B0,n and Boo are the power transmission loss B coefficient matrix.

2.2.2. Generation power limits

The active power output limit for the nth TG and the rth WT are given by

Pmin
n 6 Pn,t 6 Pmax

n (9)

Wmin
r 6Wr,t 6Wmax

r (10)

where Pmin
n and Pmax

n are the lower and upper bounds of active power output for the
nth TG, respectively; Wmin

r and Wmax
r are the lower and upper bounds of active power

output for the rth WT, respectively.

2.2.3. Ramp rate limits

The ramp rate characteristic of thermal generators can be expressed as:

Pn,t − Pn,t−1 6 URn (11)

Pn,t−1 − Pn,t 6 DRn (12)

where URn and DRn denote the up and down ramp rate limit of nth TG.
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2.3. Non-essential demand response model

Demand response is a measure of consumers participating in the process of power distri-
bution. The purpose is to adopt a certain compensation strategy to enable consumers
to reduce the need for electrical energy within a reasonable range. Inspired by [29],
this paper proposes a demand response model based on consumer benefits. Firstly, let
P(B)j,t and p(n)j,t denote the necessary part and non-essential part of the power demand
of the j-consumer during the t time interval, respectively. When the j-consumer does
not participate in the demand response in the t time interval, the total power demand
is given by:

P(D)j,t = P(B)j,t + p(n)j,t. (13)

After the consumer participates in the demand response, the reduced power con-
sumption is the non-essential part of the power demand p(n)j,t. When the consumer
participates in the demand response, the total power demand of the j-consumer during
the t time interval is described as:

P(C)j,t = P(B)j,t + qj,t (14)

where qj,t indicates the actual power consumption of the non-essential part of the j-
consumer after participating in the demand response during the t time interval. There-
fore, the reduction in power consumption of consumers is calculated by:

mj,t = p(n)j,t − qj,t. (15)

Lj,t(m, θ) is defined as the loss of j-consumer’s use of m MW during the t time
interval. The consumer benefit can be expressed as:

yj,t(m, θ) = βtmj,t − Lj,t(m, θ) (16)

where βt is the compensation for the power company to reduce the amount of power per
MW for consumers during the t time interval. θ is the participation factor [9, 27, 28],
θ ∈[0, 1], the larger θ, the higher participation enthusiasm of consumers. In this paper,
the mathematical function of Lj,t(m, θ) is defined as follow [8]:

Lj,t(m, θ) = k1m
2
j,t + k2mj,t − k2mj,tθj (17)

where k1, k2 are the loss coefficients. Similarly, the profits of the power company are
expressed as:

Cj,t = (λt − βt)mj,t (18)

where λt is the cost reduced by the power company for each MW reduction in power
supply during the t time interval.

We take the maximum consumer interest as the objective function, which is given by:

max F2 =

T∑
t=1

J∑
j=1

[βtmj,t − Lj,t(m, θ)] (19)
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s.t.
T∑
t=1

λtmj,t >

T∑
t=1

βtmj,t, j = 1, . . . , J (20)

T∑
t=1

J∑
j=1

βtmj,t 6 UB (21)

0 6 mj,t 6 p(n)j,t (22)

T∑
t=1

mj,t 6 CMj (23)

where UB is the budget compensation limit of the power company and CMj is the upper
limit of the j-consumer’s ability to reduce power consumption during the T scheduling
period. The constraint (20) indicates that the cost of reducing power consumption by
consumers is greater than the compensation of the power company in each time interval.
That is, the profit of power companies is greater than that of consumers who do not
participate in demand response. The constraint (21) ensures that the total compensation
cost is less than the budget ceiling of the power company. The constraint (22) ensures
that the power consumption reduced by each consumer is between 0 and p(n)j,t at each t
time interval. The constraint (23) ensures the total power consumption by each customer
is less than the upper limit of interruptible power.

Remark 2.1. The demand response in literature [29] only considers the consumer’s
power consumption reduction and its corresponding compensation, and does not con-
sider the range of consumers’ reduced power consumption. Its objective is the maximum
benefit of the power company. In this paper, the demand response considers that the
consumer must partially use the electricity consumption, and the consumer’s reduced
electricity consumption is the non-essential part of the electricity consumption. In the
case of considering the power company to obtain a certain profit, the objective of the
demand response is to maximize benefit of the consumers. That is, the more compensa-
tion the consumer receives, the higher the enthusiasm for participating in the demand
response, and the more power is reduced.

2.4. The economic dispatch with non-essential demand response
and carbon tax

In this section, the economic dispatch with non-essential demand response and carbon
tax is proposed. Its specific advantage is to take into account two aspects of the power
generation side and the demand side, so that consumers participate in the process of
power distribution. Under the certain incentives of the power company, taking into
account the profit of the power company and the benefits of the consumers, the power
demand of the consumers is appropriately reduced, thereby reducing the burden on the
power generation side.

For the economic dispatch with demand response and carbon tax, there are two
objective functions. The first objective function is to minimize total costs (including
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thermal generator, wind turbine and emission cost). The second objective function is to
maximize the consumer’s benefit under the demand response. The mathematical form
of the total objective function is as follows:

min F = ω1

[
Ns∑
n=1

T∑
t=1

fn(Pn,t) +

Nr∑
r=1

T∑
t=1

gr(Wr,t) +

Ns∑
n=1

T∑
t=1

CtaxCefE(Pn,t)

]

+ (1− ω1)

T∑
t=1

J∑
j=1

[Lj,t(m, θ)− βtmj,t]. (24)

A simplified form of the total objective function can be expressed as:

min F = ω1F1 + (1− ω1)(−F2) (25)

where ω1 and 1−ω1 are the objective function weights. Since the objective function F2

is maximization value, the negative value of F2 in the total objective function F is to
minimized. The constraints of the total objective function are not changed except the
power balance constraint (7). It is modified as below:

Ns∑
n=1

Pn,t +

Nr∑
r=1

Wr,t =

J∑
j=1

P(B)j,t +

J∑
j=1

qj,t + P tloss. (26)

In summary, the constraints of the total objective function (24) are as follows:

Ns∑
n=1

Pn,t +

Nr∑
r=1

Wr,t =

J∑
j=1

P(B)j,t +

J∑
j=1

qj,t + P tloss (27)

P tloss =

Ns∑
n=1

Ns∑
i=1

Pn,tBn,iPi,t +

Ns∑
n=1

B0,nPn,t +Boo (28)

Pmin
n 6 Pn,t 6 Pmax

n (29)

Wmin
r 6Wr,t 6Wmax

r (30)

Pn,t − Pn,t−1 6 URn (31)

Pn,t−1 − Pn,t 6 DRn (32)

T∑
t=1

λtmj,t >

T∑
t=1

βtmj,t, j = 1, . . . , J (33)

T∑
t=1

J∑
j=1

βtmj,t 6 UB (34)

0 6 mj,t 6 p(n)j,t (35)

T∑
t=1

mj,t 6 CMj . (36)
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3. MULTI-SUBPOPULATION BAT ALGORITHM (MSPBA)

In this section, the main idea and steps of BA are described. In view of the shortcoming
of the BA, which tends to fall into local optima and low accuracy of solution, multi-
subpopulation bat algorithm (MSPBA) is proposed. The main idea of MSPBA is that
the total population of bats is divided into three subpopulation according to the initial
fitness value. The first and second subpopulation are mainly used for global and local
search with the aim to enhance the exploitation and exploration capabilities, the third
subpopulation strategy is used to escape local optima.

3.1. The bat algorithm

Tiny bats use a sonar called echo locator to detect prey and avoid obstacles. They
usually emit a very loud sound pulse and can hear the sound reflected back from around
the object. When searching for prey, the ratio of pulses emitted by bats flying close
to prey can quickly reach a large value. However, the direction of the sound pulse
decreases when bats gradually approach the prey. Based on the above behavior, BA
was proposed by professor Yang (2010) [35]. For simplicity, Yang(2010) formulated the
following approximate or idealized rules [35]:

1) All bats use echolocation to sense distance, and they also “know” the difference
between food/prey and background barriers in some magical way [35];

2) Bats fly randomly with velocity vi at position xi with a fixed frequency fmin,
varying wavelength λ and loudness A0 to search for prey. They can automatically
adjust the wavelength (or frequency) of their emitted pulses and adjust the rate
of pulse emission r∈[0, 1], depending on the proximity of their target [35];

3) Although the loudness can vary in many ways, we assume that the loudness varies
from a large (positive) A0 to a minimum constant value Amin [35].

For each virtual bat, its position (xi) and velocity (vi) in a d-dimensional search space
should be defined. xi and vi should be subsequently updated during the iterations. The
pulse frequency fi, velocity vti and solution xti at time step t are defined by:

fi = fmin + (fmax − fmin)βo (37)

vt+1
i = vti + (xti − xt∗)fi (38)

xt+1
i = xti + vt+1

i (39)

where βo ∼ U([0, 1]) is a uniformly distributed random number; fmax and fmin are the
maximum and minimum pulse frequency; xt∗ is the current global best location (solution)
at time step t in the current population.

For the local search part, a new solution for each bat is generated locally using random
walk given by:

xt+1
i,new = xt∗ + ξAt (40)

where ξ ∼ U([0, 1]) is a random number, and At is the average loudness at time step t.
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The loudness Ai and the rate of pulses emission ri are updated as the iterations
proceed. The loudness decreases and the pulse rate increases as the bat gets closer to
its prey. The loudness and the pulse rate are described as follow:

At+1
i = αmA

t
i (41)

rt+1
i = r0i (1− exp(−γmt)) (42)

where 0 < αm < 1 and γm > 0 are constants. As t→∞, we have Ati → 0 and rti → r0i .
The initial loudness A0 can typically be A0 ∼ U([1, 2]), while the initial emission rate
r0 ∼ U([0, 1]). The pseudo code of BA is shown in Algorithm 1.

Algorithm 1: The bat algorithm (BA)
1. Define the objective function f(x), x = (x1, x2, . . . , xn)T

2. Initialize the bat population xi, vi, Ai, fmin, fmax and ri
3. Get the fitness value and the current best solution by Initialize population
4. While(t < Max number of iterations)
5. Update fi, vi and xi by the equations (37), (38) and (39)
6. if (rand > ri)
7. Select a solution among the best solutions
8. Generate a local solution by the equation (40)
9. end if
10. if (rand < Ai & f(xi) < f(x∗))
11. Accept the new solutions
12. Update ri and Ai by the equations (41), (42)
13. end if
14. Rank the bats and find the current best x∗
15. end while
16. Postprocess results and visualization

3.2. The first subpopulation search model

The first subpopulation is mainly used for global search with the aim to enhance the
exploitation capability. So the pulse rate of bat (ri) should be set to a larger value be-
tween 0 and 1 (ri = 0.8). A small number of bats conduct basic local search according
to (40). The frequency of bats is produced by the Cauchy distribution, and each di-
mension of bats searches at different velocities. The current best location xt∗ is replaced
by a random solution xtk to expand the global search capability. The bat population is
one-third of the entire population. The mathematical formulas of the bats’ movement
are as follows:

fi = 0.1 · tan(π · (ε− 1/2)) (43)

vt+1
i = (xtj − xtk)fi (44)

xt+1
i = xti + vt+1

i (45)

where ε is a uniformly distributed random number, ε ∼ U([0, 1]).
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3.3. The second subpopulation search model

The second subpopulation is concerned about the local search mode. A new local search
mechanism is used to enhance the exploration capability of the algorithm. In the local
search process of BA, (40) only shows that the bats are allowed to move from their current
positions to new random positions and not toward the optimal individual. Therefore
the local search of BA is less effective and the result is not very accurate. In order to
overcome these weakness, the new local search update formula is given by:

xt+1
i = xti + α(xt∗ − xti) + β(xtj − xtk), (t = 1) (46)

xt+1
i = xti + c(xtj − xtk) +W, (t 6= 1) (47)

W = γ · a(xt∗ − xti) + (1− γ) · b(xt−1∗ − xti) (48)

where xt∗, x
t−1
∗ are the best solutions at iteration step t and t−1 in the current population,

respectively. γ is a weight coefficient, which represents the proportion of learning from
the best solutions at iteration step t and t−1. α, β, a and b are random numbers between
0 and 1.

The second subpopulation selects a few number of individuals for global search, which
avoids excessive concentration of the subpopulation for local search. The pulse frequency
of global search is generated by the Lévy flight [31], and then the update formula of the
speed and solution of the each bat is obtained. Their specific mathematical forms are
expressed by:

fi = L(λ) (49)

vt+1
i = µ(xti − xt∗)fi (50)

xt+1
i = xti + vt+1

i (51)

where µ is the pulse frequency scaling factor, L(λ) is a function that follows the Lévy
distribution, and L(λ) can be expressed by:

L(λ) ∼
λΓ (λ) sin(λπ2 )

π

1

s1+λ
(s� s0 > 0) (52)

where λ = 3
2 , Γ (λ) is the standard gamma function.

3.4. The third subpopulation search model

In order to enhance the diversity of the population and escape local optima, the third
subpopulation generates random individuals through logical chaotic mapping, and re-
tains the optimal solution.

A logistic chaotic mapping system [20] can be produced using the following expression:

xt+1 = uxt(1− xt) (53)

where t represents the step of iterations and u is the chaos control parameter. If u = 4,
then the above defined system exhibits chaotic behavior. The chaotic variable Cxi
expression is as follows:
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Cxt+1
i = 4Cxti(1− Cxti) (54)

Cxi = (xi − Lbi)/(Ubi − Lbi) (55)

x′i = Lbi + Cxi(Ubi − Lbi) (56)

where xi is mapped to a chaotic variable Cxi between 0 and 1 according to (55). xi ∈
[Lbi, Ubi] in (54) can be changed into Cxi using expressions (55) and (56), where
x′i means to transform chaotic variable Cxi into traditional variable after the chaotic
mapping transformation.

When Cxi ∼ U([0, 1]) and Cxi 6∈ {0.25, 0.50, 0.75}, the subpopulation will be in a
chaotic state. The pseudo code of MSPBA is shown in Algorithm 2.

Algorithm 2: The Multi-subpopulation bat algorithm (MSPBA)
1. Define the objective function f(x), x = (x1, x2, . . . , xn)T

2. Initialize the bat population xi, vi, Ai, fmin, fmax and ri
3. Get the fitness value and the current best solution by Initialize population
4. While (t <Max number of iterations)
5. Divide the population into three subgroups according to fitness

values (n/3)
6. for i = 1 : n/3
7. (1) Update fi, vi and xi by the equations (43), (44) and (45)
8. if (rand > ri)
9. Generate a local solution by the equation (40)
10. if (rand < Ai & f(xi) < f(x∗))
11. Accept the new solutions
12. end if
13. (2) Update fi, vi and xi by the equations (46), (47) and (48)
14. if (rand > ri)
15. Generate a local solution by the equations (49), (50) and (51)
16. if (rand < Ai & f(xi) < f(x∗))
17. Accept the new solutions
18. end if
19. (3) Generate g random each bats through chaotic sequences by

the equations (53)-(56), retaining the best each bats
21. if (rand < Ai & f(xi) < f(x∗))
22. Accept the new solutions
23. Update ri and Ai by the equations (41), (42)
24. end if
25. Rank the three subpopulation bats and find the current best x∗
26. end while
27. Postprocess results and visualization
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4. EXPERIMENT AND DISCUSSION

In order to validate the superiority of the proposed MSPBA, we perform two differ-
ent forms of simulation experiment. The first one is to use MSPBA to solve a case
of economic dispatch that considers demand response. This economic dispatch model
includes three thermal generators, two wind turbines and two consumers. The second
one is compared with other four methods based on this economic dispatch model. Ex-
periment environment: MATLAB2012a; Win 7; Intel Core i5-4690 CPU; 3.3GHz; 4GB
RAM.

4.1. Simulation results and analysis for a case using MSPBA

In order to verify the feasibility of the proposed model and algorithm, we select a case
including three thermal generators, two wind turbines and two consumers. The schedul-
ing period is 24 hours. The decision variables are Pn,t, Wr,t and mj,t. The population
n, loudnessAi and pulse emission rate ri are set as 180, 0.5 and 0.8, respectively. The
frequency fi is produced by the Cauchy distribution. Table 1 shows thermal generator
fuel cost parameters. Table 2 shows thermal generator emission parameters and ramp
rate limits and Table 3 shows wind turbine parameters. The carbon tax Ctax and emis-
sion factor Cef are set to USD20$/t, 3.1604kg/kg. Two wind turbine parameters and
wind power predictions are taken from [39]. The total hourly necessary partial power
demand P t(B), the total hourly non-essential partial power demand P t(n), the cost of per
MW for the t time interval λt and the power company’s compensation of per MW for
the t time interval βt are shown in Table 4. Table 5 shows the customer participation
factor (θj), the customer loss coefficient(k1,j and k2,j) and the consumer upper limit
of interruptible power in 24 hour(CMj). The budget compensation limit of the power
company (UB) is $ 50000.

n an($/(MW )2h) bn($/MWh) cn($/h) dn($/h) en(1/MW) Pmin
n Pmax

n

1 0.002 10 200 200 0.08 20 110
2 0.0025 15 250 300 0.04 20 100
3 0.0018 19 600 400 0.04 120 600

Tab. 1. Thermal generator fuel cost parameters.

n αn βn γn εn λn URn(MW/h) DRn(MW/h)
1 0.00004 0.2 40 0.4968 0.01925 20 60
2 0.00005 0.3 50 0.4860 0.01694 20 60
3 0.000024 0.12 80 0.5035 0.01478 120 160

Tab. 2. Thermal generator emission parameters and ramp rate limits.

r dr Cow,r Cuw,r vin vout vr wr C k
1 0 30 5 4 25 16 3 4.6024 1.8862
2 0 20 5 3 25 13 3 4.4363 1.7128

Tab. 3. Wind turbine parameters.
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Time(h) P t
(B)(MW) P t

(n)(MW) λt($/MW) βt($/MW)

1 180 25 30.6 28.5
2 160 20 31.8 30.1
3 160 20 32.1 28.9
4 180 25 29.9 28.8
5 180 25 33.5 32.3
6 200 30 38.8 36.7
7 220 30 91.4 90.1
8 240 30 83.5 82.9
9 260 40 114.8 113.5
10 300 40 76.6 75.5
11 340 40 81.3 80.2
12 300 40 68.7 67.6
13 340 40 49.8 48.6
14 350 40 69.2 67.8
15 300 40 50.8 49.4
16 280 35 51.7 50.3
17 260 35 72.9 70.1
18 240 30 68.6 66.6
19 240 30 58.1 57.7
20 220 30 60.8 59.4
21 200 30 51.2 50.1
22 190 25 55.8 54.4
23 180 25 36.6 34.7
24 180 25 32.9 30.8

Tab. 4. The total hourly necessary and non-essential partial power

demand, λ and β value.

j k1,j k2,j θj CMj(MW/h)

1 3.6 29.1 0.45 380
2 3.7 30.2 0.60 370

Tab. 5. Customer participation factor, loss coefficient and upper

limit of Interruptible power.

ω1 F ($) F1($) F2($)
0.25 18952.7794 97207.8992 7132.2605
0.5 45033.6423 95815.9257 5748.6415
0.75 71456.5916 96955.1066 5038.9534

1 100068.7010 100068.7010 0

Tab. 6. Mean of different ω1 results.
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Based on the data given above, the proposed MSPBA is used to calculate the economic
dispatch problem. We use MATLAB2012a for simulation research. The number of
iterations is 1000 and the dimension is 168. In the objective function, the weight ω1 is
selected by different values. 1) When ω1 = 0.5, the two objective functions F1 and −F2

have the same weights. 2) When ω1 = 1, the objective function is the minimum total
cost F1, regardless of the benefits of consumers in the participation demand response.
3) When ω1 = 0.25, F1 is dominant in the objective function. 4) When ω1 = 0.75, F2

is dominant in the objective function. The objective functions of the above different
weights are independently run 20 times to obtain the mean value of the results as shown
in Table 6.

In Table 6, as the weight ω1 continues to increase, the value of the objective function
F and the total cost function F1 continues to increase, and the consumer’s compensation
F2 is continuously decreasing. When the weight ω1 = 0.5, the total cost function F2 has
the smallest value, that is, the cost on the power generation side is the smallest. When
the demand response is not considered (ω1 = 1), the value of the objective function F
is the value of the total cost function F1 (F = F1 = 100068.7010 $) and the value of the
objective function F is the largest. Combined with the data in Table 6, we can see that
the total cost F1 with considering the demand response is less than then one without
considering the demand response. In summary, the model proposed in this paper can
effectively reduce the cost of the power generation side.

For further explanation, this paper selects the objective function value of the weight
ω1 = 0.5 for specific analysis. In Table 6, the mean value of the simulation results is
the objective function F = 45033.6423 $, the total cost F1 = 95815.9257 $ and the
consumer compensation F2 = 5748.6415 $ when ω1 = 0.5. The optimal value of the
11th group is selected in the case of W=0.5 independent operation 20 times for specific
discussion. The optimal solution for group 11 is F = 44644.6152 $, F1 = 94962.8379 $
and F2 = 5673.6075 $. The power generation of each thermal generator and wind turbine
at each hour is shown in Table 7. Figure 1 and 2 show the power generation of three
thermal generators and two wind turbines in each hour. Table 8 details the reduced
power consumption and compensation amount for each consumer’s 24-hour scheduling
period. It is shown that the relationship between the total cost F1 and the number of
iterations with and without considering the demand response in Figure 3.

In Table 8, it can be found that the more electricity consumers reduce, the more
the amount of compensation. In each period, the unit compensation for consumers to
reduce electricity consumption is different. The closer to the peak period of electricity
consumption, the more unit compensation consumers receive for reducing electricity
consumption. For example, in the 6th hour, the consumer 1 reduced the electricity
consumption by 6.1014 MWh and the compensation amount was 223.9214 $; In the 7th
hour, the consumer 1 reduced the electricity consumption by 11.5999 MWh and the
compensation amount was 1045.1150 $; In the 9th hour, the consumer 1 reduced the
electricity consumption by 14.3038 MWh and the compensation amount was 1623.4813
$. The unit compensation amount for consumers in the 6th, 7th and 9th hours is 36.7
$/MW, 90.1 $/MW and 113.5 $/MW, respectively. The above is the incentives for
consumers in the demand response model.

In order to illustrate the advantages of the demand response model, Figure 3 shows
a comparison of the convergence curves of the total cost function F1 when participating
in and not participating in the demand response. From Figure 3, we can see that F1 is
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t P1 P2 P2 W1 W2 Ploss

1 59.28 20.05 120.08 0.25 0.77 4.48
2 20.28 20.41 121.42 0.15 9.51 3.81
3 22.10 21.55 121.35 1.52 5.26 3.84
4 59.30 20.00 120.07 0.18 1.44 4.48
5 59.28 20.04 120.01 0.04 1.45 4.47
6 64.95 20.24 125.53 0.93 10.43 4.96
7 20.04 20.05 194.55 0.03 0.77 9.37
8 20.77 20.07 198.62 0.22 17.25 9.77
9 59.28 20.00 198.61 0.003 1.30 10.44
10 25.45 26.28 277.50 0.84 3.38 18.92
11 56.94 39.37 277.15 0.15 2.08 19.74
12 100.78 20.92 203.41 1.07 4.63 12.39
13 59.72 24.11 283.03 0.97 15.52 20.25
14 21.67 22.86 353.55 0.98 0.36 30.38
15 99.07 24.15 207.11 0.82 3.43 12.77
16 83.39 20.03 198.51 0.14 9.68 11.19
17 59.41 21.04 200.51 0.44 2.51 10.65
18 28.51 31.81 198.53 0.26 1.20 10.01
19 23.82 20.06 203.34 0.43 14.88 10.25
20 20.02 20.16 198.54 0.16 2.99 9.75
21 68.05 20.60 124.07 0.55 4.64 4.98
22 59.26 20.03 120.09 0.86 1.48 4.48
23 58.46 20.03 120.03 0.11 0.28 4.45
24 57.45 20.02 120.02 0.11 2.76 4.42

Tab. 7. Power generation of each thermal generator and wind

turbine (MWh).
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Fig. 1. Power generation of thermal generators in each period.
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Fig. 2. Power generation of wind turbines in each period.

t m1,t y1,t m2,t y2,t
1 4.5959 130.9832 4.4595 127.0958
2 6.1196 184.2000 5.9237 178.3034
3 5.8735 169.7442 6.1972 179.0991
4 4.2433 122.2070 4.2243 121.6598
5 3.7014 119.5552 4.9548 160.0400
6 6.1014 223.9214 6.7858 249.0389
7 11.5995 1045.1150 12.3518 1112.8972
8 11.1319 922.8345 11.6992 969.8637
9 14.3038 1623.4813 16.9443 1923.1781
10 12.0188 907.4194 13.4480 1015.3240
11 12.1133 971.4867 11.9517 958.5263
12 11.3298 765.8945 10.2413 692.3119
13 7.9366 385.7188 8.9596 435.4366
14 10.0612 682.1494 10.8888 738.2606
15 9.0554 447.3368 9.1347 451.2542
16 6.6827 336.1398 7.7569 390.1721
17 10.8808 762.7441 10.8546 760.9075
18 9.7043 646.3064 9.9962 665.7469
19 8.4208 485.8802 9.2950 536.3215
20 9.0000 534.6000 8.8919 528.1789
21 8.1114 406.3811 8.9476 448.2748
22 8.7810 477.6864 8.9646 487.6742
23 4.9512 171.8066 5.6032 194.4310
24 4.0526 124.8201 5.0056 154.1725

Tab. 8. Consumers reduce electricity(MWh) and corresponding

compensation($) during each period.
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greatly reduced with demand response. The total cost of not considering the demand
response reached 1.004E+05 $, and the total cost of participating in the demand response
was 9.412E+04 $. In summary, under the demand response model, consumers reduce
electricity consumption and receive corresponding compensation, which makes the total
cost of power generation of power companies greatly reduced.
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Fig. 3. Comparison of the function F1 convergence curves of

participation and non-participation in demand response.

4.2. Comparisons with other methods

To further illustrate the effectiveness of the proposed algorithm, CPLEX+YALMIP
toolbox for MATLAB, DBA, BA, ILSSIWBA [10] and MSPBA are applied to the case
study with ω1 = 0.5. For the sake of uniformity, the population n, loudness Ai and pulse
emission rate ri of the BA, BA, ILSSIWBA and MSPBA algorithms are set to 180, 0.5
and 0.8, respectively. The number of iterations is 1000 and the dimension is 168.

First, the CPLEX+YALMIP toolbox for MATLAB and MSPBA are used to solve the
economic dispatch problem for the purpose of comparison. When ω1 = 0.5, we obtain
that the objective function F = 1.6123e+05 $, the total cost F1 = 3.2978e+05 $ and the
consumer compensation F2 = 7314.2881 $ by the CPLEX+YALMIP toolbox for MAT-
LAB, and the objective function F = 45446.5149 $, the total cost F1 = 96550.3024 $
and the consumer compensation F2 = 5657.2876 $ by MSPBA. It is shown that MSPBA
has superior performance.

Second, the computational time of CPLEX+YALMIP toolbox for MATLAB, DBA,
BA, ILSSIWBA and MSPBA are 4791.2068s, 829.167s, 217.273s, 221.161s and 1058.077s,
respectively (running once independently). It is observed that the CPLEX+YALMIP
toolbox for MATLAB has the longest computational time, whereas BA has the shortest
computational time. The computational time of MSPBA is longer than those of DBA,
BA and ILSSIWBA, except that of the CPLEX+YALMIP toolbox for MATLAB. We
will further improve the computational time of MSPBA in the future research.
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Algorithm Mean Best Worst SD

BA 48304.7596 47476.8764 49402.9266 491.8839
DBA 49242.1948 48376.0837 50707.9592 640.5430

ILSSIWBA 46569.7784 45749.3223 47554.8438 556.5728
MSPBA 45033.6423 44644.6140 45446.5149 203.6348

Tab. 9. Comparison of four algorithms.

Third, the comparison results of DBA, BA, ILSSIWBA and MSPBA running inde-
pendently for 20 times are shown in Table 9 (the best results are marked in bold). It
can be seen from Table 9 that the average, optimal, worst value and standard devia-
tion of the MSPBA optimization objective function are most superior to the other three
algorithms. The results of the comparison demonstrate the effectiveness of MSPBA in
dealing with economic dispatch problems.

5. CONCLUSION

In this paper, a new economic dispatch with demand response model was proposed. The
demand response model divided consumers’ electricity demand into necessary part and
non-essential part. The part of the consumer’s participation in the demand response
was the non-essential part of the electricity consumption. This model took into ac-
count the minimum total cost (fuel cost, random wind power cost and emission cost)
and the maximum consumer’s demand response benefit while satisfying some given con-
straints. Then, a multi-subpopulation bat algorithm MSPBA was proposed to overcome
the weakness of BA. In the proposed MSPBA, the population was divided into three
subgroups for different search strategies, which were able to enhance the global search
ability and accuracy of the algorithm. In the first experiment, a case of three thermal
generators, two wind turbines and two consumers was demonstrated the effectiveness of
using MSPBA to deal with economic dispatch problem. The results showed that the
economic dispatch with demand response model could effectively reduce consumer de-
mand for electrical energy, reduce fuel costs and emissions. Finally, the superiority of the
proposed algorithm was proved by comparing with other five algorithms. In future, we
will further explore computational time and stability of MSPBA dealing with complex
problems, and test the effectiveness of the proposed algorithm in a larger power system
with the experimental conditions.
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