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MULTIAGENT OPINION DYNAMICS INFLUENCED
BY INDIVIDUAL SUSCEPTIBILITY
AND ANCHORING EFFECT

Zihan Chen, Yu Xing and Huashu Qin

This paper studies a new model of social opinion dynamics in multiagent system by counting
in two important factors, individual susceptibility and anchoring effect. Different from many
existing models only focusing on one factor, this model can exhibit not only agreement phe-
nomena, but also disagreement phenomena such as clustering and fluctuation, during opinion
evolution. Then we provide several conditions to show how individual susceptibility and anchor-
ing effect work on steady-state behaviors in some specific situations, with strict mathematical
analysis. Finally, we investigate the model for general situations via simulations.

Keywords: opinion dynamics, individual susceptibility, anchoring effect, steady-state be-
havior

Classification: 91C99, 91D30, 91E99

1. INTRODUCTION

Social opinion evolution takes place ubiquitously in our daily life [3, 11, 24]. In fact,
social influence happens because of various reasons such as persuasion and conformity
[8]. Numerous theories appear to describe the processes and reveal the underlying mech-
anisms [6, 8, 18]. With regarding human opinions as scalar or vector quantities, different
mathematical models are proposed in the literature [3, 6, 9, 11, 13]. A great number
of these models are agent-based and established in multiagent systems [6, 9, 11]. In
addition to opinion agreement, there are disagreement phenomena such as clustering
and fluctuation, which widely exist in everyday experience [2, 7, 10, 15, 25].

Individual susceptibility of exogenous information, which is independent of social
networks, is a significant factor of opinion formation [9, 10]. A famous opinion dynamics
concerning this factor is Friedkin–Johnsen model [9]. In this model, individuals modify
their opinions based on the exogenous information and aggregate opinion from others.
Individual susceptibility describes the influence degree of the exogenous information in
opinion formation.

Anchoring effect demonstrates that a person has a cognitive bias towards exogenous
information in social interactions [21]. It indicates that the exogenous information not
only provides continuous direct influence, as in the Friedkin–Johnsen model, but also
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serves as a constant reference point when individuals update their opinions. Specifically
speaking, individuals may check, before updating, whether the aggregate opinions are
acceptable based on their initial opinions. We can use thresholds to characterize these
individual tolerances of the difference between aggregate opinions and reference points.

Because of diverse phenomena in reality, the analysis of opinion evolution is a popular
and essential issue of opinion dynamics [4, 6, 10, 11]. The DeGroot model leads to an
agreement across the entire society, when the network structure has sufficient connec-
tivity [6]. We can find clustering phenomenon in the Friedkin–Johnsen model because
of individual susceptibilities of exogenous information [10]. When the social network
changes randomly, opinion fluctuations appear [1]. Thus, we can conclude that steady-
state behaviors are determined by social network topologies, initial values and model
parameters [6, 10, 11].

To our best knowledge, there are few results which combine individual susceptibility
and anchoring effect. In this paper, we introduce an opinion dynamic model considering
these two mechanisms together. We use individual susceptibility parameters and accept-
able thresholds to describe individual susceptibility and anchoring effect. This model can
exhibit not only consensus, but also clustering and fluctuation phenomena. We thus give
some examples to describe the impacts of exogenous information, susceptibility param-
eters, and acceptable thresholds on steady-state behaviors. Then we establish several
conditions on these three factors to classify steady-state behaviors. One main result is
that the emergence of agreement relates to large acceptable threshold, and the disagree-
ment is due to small one. We also prove a necessary condition of clustering based on
both susceptibility parameters and acceptable thresholds. Finally, we give some simula-
tions to further illustrate the combined effects of these two mechanisms. These results
show that our effort to consider both individual susceptibility and anchoring effect is
effective and deepen our understanding of opinion evolution processes.

2. MODEL DEFINITION

In this section, we introduce the multiagent opinion model influenced by individual
susceptibility and anchoring effect of exogenous information, which is a generalization
of model in [22].

Consider a social network with n individuals, which are called nodes or agents in the
sequel, indexed by the elements in V = {1, . . . , n}. The structure of the social network
is represented by an undirected graph G = (V, E), where each edge {i, j} ∈ E is an
unordered pair of two different nodes in V. The graph G is assumed to be connected
without loss of generality. Each i ∈ V holds an opinion xi(t) ∈ R at slotted time
t = 0, 1, 2, ..., and let x(t) be the opinion vector. Node i interacts with neighbors in the
set Ni :=

{
j ∈ V : {i, j} ∈ E or j = i

}
. It is noteworthy that, for node i, the initial

opinion xi(0) can be also regarded as exogenous information at the same time. Without
loss of generality, we assume that maxi∈V xi(0) − mini∈V xi(0) > 0, which means that
the initial opinions are not the same value.

The interpersonal influence strength between two neighboring nodes i and j is rep-
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resented by wij > 0. If j /∈ Ni, wij = 0. Suppose that
∑

j∈V wij = 1, and let

si(t) :=
∑
j∈Ni

wijxj(t)

be the weighted aggregate opinion of neighbors for i at time t.
After receiving the aggregate opinion from neighbors, agents determine to what extent

they accept it according to the anchoring effect. The reference point of every individual
is his or her own exogenous information. To be more specific, individual i examines
whether the aggregate opinion si(t) lies in an acceptable interval which centers at the
exogenous information xi(0) and has radius ci ≥ 0, i. e., I0(i) := [xi(0)− ci, xi(0) + ci].
We refer to ci as the acceptable threshold of agent i. If the difference between the
aggregate opinion and xi(0) is smaller than the acceptable threshold, that is, si(t) ∈
I0(i), then individual i adopts si(t) as its new opinion. Otherwise, i holds an opinion
which is a linear combination of the aggregate opinion and the exogenous information,
according to individual susceptibility mechanism. Therefore, we can describe this process
mathematically as follows.

xi(t + 1) =

{
si(t), if si(t) ∈ I0(i),

(1− hi)si(t) + hixi(0), if si(t) 6∈ I0(i),
(1)

where hi ∈ [0, 1] measures i’s susceptibility to others, called susceptibility parameter of
i. In reality, hi reflects i’s tendency to defer to others’ opinions.

Clearly, if all individuals ignore the exogenous information, that is, hi = 0 for all
i ∈ V, our model (1) turns into the DeGroot model in [6]. If acceptable thresholds based
on anchoring effect are removed, that is ci = 0 for all i ∈ V, our model (1) becomes the
Friedkin–Johnson model in [9] with Λ = diag(1− h1, ..., 1− hn).

3. MODEL ANALYSIS

In this section, we focus on how individual susceptibility and anchoring effect influence
the opinion dynamics and its steady-state behaviors, via ci, hi and xi(0) for all i ∈ V.
It is worth noting that conclusions are obtained not relying on the network information,
the estimation of which takes great efforts [19].

3.1. Behaviors of the proposed model

First of all, Figure 1 shows three important kinds of phenomena found in our model,
i. e., consensus, clustering, and fluctuation.

When acceptable thresholds {ci}i∈V are large, the group reaches a consensus, which
accords with social psychological findings [11]. To be more specific, large ci represents
that individual i tends to be more acceptable of others’ views. This may be due to
difficulties of judgments or attempts to satisfy others [17].

The clustering phenomenon emerges when acceptable thresholds {ci}i∈V are small. It
is a common phenomenon in opinion formation and studied in a lot of classical opinion
models in depth [10, 11]. Reasons for this are possibly due to less unanimity of opinions,
distrust of each other, or high relevance to oneself [17].
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Fluctuation is another common phenomenon in social reality [1, 12, 25]. This hap-
pens in our model when acceptable thresholds ci take moderate values. The opinion
fluctuation may be attributed to that people cannot determine whether to follow others
or to stick to their own biases under mild social pressure. Empirical studies for large
population behaviors such as voting discover this phenomenon [14].
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Fig. 1. Basic behaviors of system (1). There are three kinds of

steady-state behaviors, namely, clustering in (a), fluctuations in (b)

and (c) where red frames demonstrate one period of the trajectories,

and consensus in (d).

As we mentioned before, the whole system depends on the social network topology
G, exogenous information {xi(0)}i∈V , acceptable thresholds {ci}i∈V , and susceptibility
parameters {hi}i∈V . To emphasize individual susceptibility and anchoring effect in this
model, we study steady-state behaviors without concerning the influence of different
types of G. We thus present a specific example to obtain intuitive understandings of the
relation between steady-state behaviors and xi(0), ci, as well as hi, i ∈ V.

In this example, the topology G is a complete graph with 3 nodes and wij = 1/3 for
all i, j ∈ V. Furthermore, suppose that for all i ∈ V, ci = c ≥ 0 and hi = h ≥ 0. We
show how these three factors influence the system. Without loss of generality, the largest
initial opinion is taken as x1(0) = 1, and the smallest initial opinion x3(0) = 0. As in
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Figure 2(a), for fixed c and h, the model finally converges to a period orbit when x2(0)
is smaller than 0.12, but the pattern of the period is complicated. For a large x2(0), the
clustering phenomenon emerges and remains. In Figure 2(b), the initial values xi(0),
h are fixed and c varies from 0 to 1. The model is able to reach an equilibrium of
clustering for small c, but as c grows larger, fluctuation appears. The behavior of this
system returns to clustering when c is close to 0.5, and finally becomes consensus when
c > 0.5. If the initial values xi(0) and c are fixed, the period seems to decrease as h
increases from 0 to 1, which is shown in Figure 2(c).
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(a) The effect of initial value x2(0).
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(b) The effect of acceptable threshold c.
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(c) The effect of susceptibility parameter h.

Fig. 2. Bifurcation patterns when the initial value, acceptable

threshold and susceptibility parameter change. Cluster number 0

represents fluctuation in each subfigure.
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Theoretically, we can prove following results for system (1).

Lemma 3.1. mini∈V xi(0) ≤ xi(t) ≤ maxi∈V xi(0) for all i ∈ V and t ∈ N.

P r o o f . We use mathematical induction to prove this result. First, when t = 0, we have
that mini∈V xi(0) ≤ xi(0) ≤ maxi∈V xi(0) for all i ∈ V. We suppose that mini∈V xi(0) ≤
xi(k) ≤ maxi∈V xi(0) for all i ∈ V, and consider the situation when t = k + 1. In view
of
∑

j∈V wij = 1 with wij ≥ 0,

si(k + 1) =
∑
j∈Ni

wijxj(k) ∈
[

min
i∈Ni

xi(k),max
i∈Ni

xi(k)

]
.

From mini∈V xi(0) ≤ xi(k) ≤ maxi∈V xi(0) for all i ∈ V,

si(k + 1) ∈
[
min
i∈V

xi(0),max
i∈V

xi(0)

]
.

According to (1),

xi(k + 1) ∈
[
min
i∈V

xi(0),max
i∈V

xi(0)

]
.

The conclusion follows from mathematical induction. �

This property can also be found in some pre-existing models, for example, the De-
Groot model [6]. But the same result does not hold in other models, e. g. [4, 5]. More
precisely, when all individuals hold the similar polarized opinions, all of them converge
to corresponding extreme opinions finally [4].

Then, we provide a sufficient condition of reaching a consensus. It is also another
situation, where our model can turn into the DeGroot model different from hi = 0 for
all i ∈ V.

Theorem 3.2. If mini∈V ci ≥ maxi∈V xi(0)−mini∈V xi(0), then limt→∞ xi(t) = x∞ for
all i ∈ V with a constant x∞ ∈ [mini∈V xi(0),maxi∈V xi(0)].

P r o o f . From Lemma 3.1 we know that si(t) ∈ [mini∈V xi(0),maxi∈V xi(0)] for all
t ∈ N. According to maxi∈V xi(0) −mini∈V xi(0) ≤ mini∈V ci, there holds that si(t) ∈
[xj(0)− cj , xj(0) + cj ] for all i, j ∈ V and t ∈ N. Therefore, system (1) becomes

xi(t + 1) = si(t)

for all i ∈ V.
Therefore, system (1) turns into a DeGroot model. In view of results in [6], limt→∞ xi(t)

= x∞ for all i ∈ V, where x∞ ∈ [mini∈V xi(0),maxi∈V xi(0)]. �

Clearly, Theorem 3.2 provides a theoretical support to Figure 2(b) when c is large
enough. On the other hand, we can prove an corresponding result illustrated in Figure
2(b) at the same time. In other words, all individuals never reach a consensus opinion
when some of ci are sufficient small.
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Theorem 3.3. If ∩i∈V [xi(0)− ci, xi(0) + ci] = ∅, then there exists no constant x∞ ∈ R,
s.t. limt→∞ xi(t) = x∞ for all i ∈ V.

P r o o f . According to Lemma 3.1, we suppose that there exists a number x∞ ∈ [0, 1]
such that limt→∞ xi(t) = x∞ for all i ∈ V. Then limt→∞ si(t) = x∞ for all i ∈ V. From
(1), there holds that x∞ ∈ I0(i) for all i ∈ V. In other words, ∩i∈V [xi(0)−ci, xi(0)+ci] 6=
∅, which contradicts the assumption. Therefore, there exists no consensus point x∞ if
∩i∈V [xi(0)− ci, xi(0) + ci] = ∅. �

In Theorems 3.2 and 3.3, we provide a sufficient condition and a necessary one of
reaching a consensus. Next, we introduce a necessary condition for clustering phe-
nomenon. It provides a criterion for when the public opinions cluster into different
groups, which is shown in Figure 1 (a).

To ease the presentation, we impose the following assumptions in the rest of our
paper. First, wij = 1

|Ni| for all i ∈ V and j ∈ Ni. Furthermore, for all i ∈ V, ci = c ≥ 0

and hi = h ≥ 0. Then we consider the system as follows,

xi(t + 1) =

{
si(t), if si(t) ∈ I0(i),

(1− h)si(t) + hxi(0), if si(t) 6∈ I0(i),
(2)

where si(t) =
∑

j∈Ni

1
|Ni|xj(t) and I0(i) = [xi(0)− c, xi(0) + c].

Theorem 3.4. If maxi∈V xi(0)−mini∈V xi(0) ≤ (2−h)c, that is, |∩i∈V [xi(0)−c, xi(0)+
c]| ≥ hc, then system (2) cannot cluster into different groups.

P r o o f . Let Ω := ∩i∈V [xi(0)−c, xi(0)+c] 6= ∅ and y ∈ Ω. Then xi(0) ∈ [y−c, y+c] for
all i ∈ V. Suppose that the final values of nodes in system (2) are 0 ≤ x1 < ... < xk ≤ 1
where k ≤ n.

Suppose that there is m ∈ V such that limt→∞ xm(t) = x1 and there is at least
one node p ∈ N (m) such that limt→∞ xq(t) 6= x1. Define sm := limt→∞ sm(t). Then
sm > x1 in view of the definitions of x1 and node m, and therefore sm /∈ I0(m). That
is sm < xm(0)− c or sm > xm(0) + c.

If sm < xm(0)− c and xm(0)− c > 0, then

x1 < sm < xm(0)− c < xm(0).

Furthermore,

x1 = (1− h)sm + hxm(0) > (1− h)x1 + hxm(0)

⇒ x1 > xm(0).

which leads to a contradiction. Thus sm ≥ xm(0)− c.
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Next we consider the case where sm > xm(0) + c and xm(0) + c < 1. In this case,

x1 = xm(∞) = (1− h)sm + hxm(0)

> (1− h)(xm(0) + c) + hxm(0)

= xm(0) + (1− h)c

≥ (y − c) + (1− h)c

= y − hc

where the first inequality holds for sm > xm(0)+c and the second one holds for xm(0) ≥
y − c. Now we know that x1 > y − hc.

Analogously, we can obtain that xk < y + hc. Therefore, we know that

xm(0) + c < sm < y + hc,

and

sup Ω = min
i∈V
{xi(0) + c} < y + hc.

Let y = inf Ω. Then

|Ω| = sup Ω− inf Ω < hc.

We have proved that |Ω| < hc is a necessary condition of the case where opinions in
system (2) divide into different values. Therefore, the conclusion follows. �

Remark 3.5. Notice that the only condition on the network topology in Lemma 3.1,
Theorems 3.2, 3.3 and 3.4 is connectivity. Therefore, when the network topology is a
series of switching graphs each of which is connected, all the results in this section also
hold.

It is worth pointing out that the bound of the clustering condition in Theorem 3.4
does not depend singly on susceptibility parameter h or acceptable threshold c, but
their product hc. This shows the combined impact of both individual susceptibility and
anchoring effect in opinion evolution. Therefore, we are going to investigate c, h and
their combined effects in depth.

3.2. The effect of c and h, and their combined effects

To examine the effect of susceptibility parameter h and acceptable threshold c, we carry
out simulations over both two fundamental networks and two classical random graphs.
Without loss of generality, we set x̂ := maxi∈V xi(0) −mini∈V xi(0) = 1 for simplicity,
because it can be verified that model (2) with parameters c, h and x(0), behaves the
same as that with parameters c/x̂, h and x(0)/x̂.

We take two fundamental graphs (namely, the complete graph and cycle graph) to
demonstrate the results, and select 100 initial vectors randomly from uniform distribu-
tion to run the simulation. Figure 3 shows that the proportions of different steady-state
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(a) Complete Graph.
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(b) Cycle Graph.

Fig. 3. The proportions of consensus (first row), clustering (second

row) and fluctuation (third row) for complete graph and cycle graph.

behaviors with different c and h. The pink line in the first row of Figure 3 is the theoret-
ical bound of clustering in Theorem 3.4, so we can comprehend this result intuitively. A
natural conjecture base on both of three rows in Figure 3 is, the constraint (2− h)c ≥ 1
is a sufficient condition of consensus. We prove a special case, in which c > 0.5 leads
to consensus in [22]. On the other hand, consensus does not appear when c < 0.5 over
neither complete graph nor cycle graph. This discovery matches results in previous sec-
tions. All six subfigures in Figure 3 illustrate that clustering and fluctuation phenomena
are mixing together at the same time. Furthermore, comparing (a) and (b) in Figure 3,
we may find that higher connectivity weakens the fluctuation phenomena.
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(a) Barabasi–Albert Network.
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(b) Erdos–Renyi Graph.

Fig. 4. The proportions of consensus (first row), clustering (second

row) and fluctuation (third row) for two random graphs.

We also randomly select 50 initial vectors to conduct simulations over two random
graphs with more nodes, i. e., Barabasi–Albert graphs and Erdos–Renyi graphs with
100 nodes and average degree 6 in Figure 4. All the observations and conjectures from
complete graph and cycle graph still hold for these two graphs. Furthermore, fluctuation
phenomena happen more often than clustering, which may due to the complexities of
larger graphs.

In addition to above findings, we notice that when the steady states of the model are
fluctuation and clustering, the dispersion of individual opinions has close connections
with the susceptibility parameter h and acceptable threshold c. Figure 4 and 5 shows
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(b) Cycle Graph.
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(c) Barabasi–Albert Network.
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(d) Erdos–Renyi Graph.

Fig. 5. The variance of steady-state opinion vectors.

the pattern of the variance of steady-state opinions. In these simulations, if the model
ends in fluctuating, we take the average of the variance of opinion vectors at the last
20 time steps as a characterization of the dispersion. As h varies from 0 to 1, the
variance increases, which indicates the growth of opinion dispersion among a crowd.
Furthermore, the smaller c is, the larger the variance is. Intuitively, these phenomena
illustrate that the dispersion of steady-state opinions as well as steady-state category
depends on individual tendency to change their ideas (represented by h) and intensity
of the anchoring effect (represented by c).

4. CONCLUSIONS

In this paper, we studied a new model of multiagent opinion dynamics by counting
in two important factors, individual susceptibility and anchoring effect of exogenous
information. We showed that this model can exhibit not only consensus, but also clus-
tering and fluctuation phenomena by simulations. Then we proved several sufficient or
necessary conditions for steady-state behaviors of the opinion dynamics based on the
exogenous information, susceptibility parameters and acceptable thresholds. We also
provided several numerical examples to validate our study and investigate the model for
general situations. Future work includes systematic classifications of steady-state behav-
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iors in opinion evolution based on all the factors; they are the social network topology,
exogenous information, individual susceptibility parameters and acceptable thresholds.

(Received April 21, 2019)
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