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AN ALTERNATING MINIMIZATION ALGORITHM
FOR FACTOR ANALYSIS

Valentina Ciccone, Augusto Ferrante and Mattia Zorzi

The problem of decomposing a given covariance matrix as the sum of a positive semi-
definite matrix of given rank and a positive semi-definite diagonal matrix, is considered. We
present a projection-type algorithm to address this problem. This algorithm appears to perform
extremely well and is extremely fast even when the given covariance matrix has a very large
dimension. The effectiveness of the algorithm is assessed through simulation studies and by
applications to three real benchmark datasets that are considered. A local convergence analysis
of the algorithm is also presented.

Keywords: matrix decomposition, factor analysis, covariance matrices, low rank matrices,
projections

Classification: 62H25

1. INTRODUCTION

The problem of decomposing a given covariance matrix into the sum of a low rank matrix
L plus a diagonal matrix D bursts more than a century of tradition in scientific literature.
In fact, it may be viewed as a linear algebraic counterpart of a Factor Analysis problem
which is a problem in multivariate statistics, see [7, 9, 13, 16, 22, 25], with applications
in countless fields of science. Factor analysis aims to extract statistical commonalities
among data and is therefore a tool of great importance in signal processing as pointed
out in [5] and [20]: we refer to these works for an extensive discussion on the importance
of the problem, on its applications, on the formidable stream of literature produced on
this topic in the last century, and on the numerous variants in which the problem can
be formulated.

This work takes an optimization-oriented approach: for a given covariance matrix Σ
and a given rank r, we seek a positive semidefinite matrix L with rank not larger than r
and a positive semidefinite diagonal matrix D such that their sum is as close as possible
to Σ. A closed-form solution for this problem appears to be out of reach. We propose
an easy-to-implement iterative algorithm, based on alternating minimization, to solve
numerically the considered problem. This algorithm appears to perform extremely well
and in simulations converges very rapidly to the solution. Despite the simplicity of the
algorithm, the convergence analysis is non trivial due to the non-convexity of the set of
low rank matrices.
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Notation. Given a matrix M , M> denotes its transpose and tr(M) denotes its trace
(for a square M). The symbol Qn denotes the space of real symmetric matrices of size
n. If X ∈ Qn is positive definite or positive semi-definite we write X � 0 or X � 0,
respectively. We denote by Dn the space of diagonal matrices of size n an by On the
set of orthogonal matrices of size n. The Frobenius norm is denoted by ‖ · ‖F while ‖ · ‖
denotes the Euclidean norm.

2. PRELIMINARIES AND PROBLEM DEFINITION

Factor models are used to described high dimensional vectors of data in terms of a small
number of common latent factors. In its simplest formulation, the classic (linear static)
factor model is given by

y = Ax+ z (1)

where A ∈ Rn×r, with r � n, is the so-called factor loading matrix, x is the vector of
(independent) latent factors and z represents the idiosyncratic component. Here, x and
z are zero-mean, independent Gaussian random vectors; the covariance matrix of x is
the identity matrix of dimension r and the covariance matrix of z is a diagonal matrix
D ∈ Dn. Note that, Ax represents the latent variable. Clearly, y is itself a Gaussian
random vector with zero mean and we denote by Σ its covariance matrix. Since x and
z are independent it holds that

Σ = L+D (2)

where L := AA> and D are the covariance matrices of Ax and z, respectively. Thus, L
has rank equal to r, and D is diagonal. Hence, in its original conception the construction
of a factor model is mathematically equivalent to a matrix additive decomposition prob-
lem which seeks, for a given Σ, a decomposition of the type of (2). Of course the model
is maximally parsimonious if the rank of L is minimum. The problem of minimizing
the rank of L in decomposition (2) is known as Frisch’s problem and, to date, no exact
solution for such a problem is actually available, with the only exception of the special
case when this minimum rank is r = n− 1, in which case a closed-form parametrization
of the solutions is provided in [21]. This lack of explicit formulas has motivated a rich
stream of literature and different numerical approaches which have been proposed over
the years. A relaxation of this problem has also been considered in which the matrix
D is only required to be diagonal but not positive semi-definite. The main difficulty
in these problems is related to the non-convexity of the rank function so that a viable
alternative is to consider the so called minimum trace factor analysis problem, [10, 23]:

min
L,D∈Qn

tr(L) subject to L,D � 0, Σ = L+D, D ∈ Dn, (3)

where the trace of L is used as convex surrogate of the rank function as in [11, 12].
Note that, in many cases the equality constraint in (3) may be too compelling. There-

fore, an alternative approach is to allow for residuals in the decomposition. Typically,
this leads to an optimization problem where the residual Σ− L−D is minimized with
respect to a chosen norm under a constraint limiting the rank of L. This approach is
known as minimum residual factor analysis, see [5, 15, 24]. Note that the presence of
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the rank constraint makes such problems non convex and several heuristic have been
proposed to deal with it. Other approaches to factor analysis encompass: principal
component factor analysis as in [4], maximum likelihood methods as in [2], or the es-
tablishing of a certificate of optimal low rank as in [14]. Moreover, several variants of
the mentioned approaches have been proposed by weakening modelling assumptions or
by introducing additional constraints for example to account for errors in the covariance
matrix estimation as in [8, 20] and [1].

The problem we are going to consider is a minimum residual type problem: for a
given r and a given matrix Σ we want to find a positive semidefinite matrix L with rank
at most r and a positive semidefinite diagonal matrix D such that their sum is as close
as possible to Σ. This can be formalized as follows:

(L∗, D∗) := arg min
L∈Ln,r,D∈Dn

‖Σ− L−D‖2F (4)

where the sets Ln,r and Dn are defined as:

Ln,r := {X ∈ Qn : X � 0, rank(X) ≤ r}, Dn := {X ∈ Dn : X � 0}.

Note that, in practice, r can be obtained by resorting to available methods for estimating
the number of factors, see [3, 6, 8] and references therein. Alternatively, the problem
can be solved for increasing values of r until the residue ‖Σ− L∗ −D∗‖F is not greater
than a certain tolerance. In the case when Σ is the sample covariance matrix estimated
from the data, the residue Σ − L∗ −D∗ accounts for the uncertainty in the estimation
of Σ, and our problem is equivalent to find a good trade-off between the fit term (i. e.
the residue) and the complexity of the model (i. e. r).

3. THE PROPOSED ALGORITHM

A closed-form solution for Problem (4) appears to be out of reach. However, this Prob-
lem appears to be well suited for a coordinate descent type iterative algorithm. Such
algorithm alternates between solving a minimization problem with respect to L and a
minimization problem with respect to D:

Lk = arg min
L∈Ln,r

‖Σ− L−Dk−1‖F , Dk = arg min
D∈Dn

‖Σ− Lk −D‖F , (5)

where Lk and Dk denote the values of L and D at the kth iteration. Both these
sub-problems admit explicit solutions which are provided by the projection operators
onto the sets Ln,r and Dn, respectively. Indeed, let X ∈ Qn and consider its spectral
decomposition X = USU>, U ∈ On and S = diag(s1, . . . , sn) with s1 ≥ s2 ≥ . . . ≥ sn
being the eigenvalues of X arranged in decreasing order. Then, the matrix with rank
at most r that is closest to X in the Frobenius norm is obtained applying the projector
PLn,r

:

PLn,r
(X) := U diag(fl(s1), . . . , fl(sn))U>

with fl(·) defined as

fl(si) :=

{
si for i ≤ r ∧ si > 0

0 otherwise.
(6)
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On the other hand, the projector PDn onto the set Dn is:

PDn(X) := diag(fd(X11), . . . ., fd(Xnn)) (7)

with fd(·) defined as
fd(Xii) := max{Xii, 0} (8)

and Xii is the entry of X in row i and column i.
Then, at kth iteration the algorithm computes Lk := PLn,r

(Σ − Dk−1) and Dk :=
PDn

(Σ − Lk). The complete procedure is outlined in Algorithm 1: ε > 0 is the maxi-
mum error allowed in the relative decomposition error, while N represents the maximum
number of iterations.

Algorithm 1

Input: Σ, r, ε, N
Output: L∗, D∗

Initialize: initialize D randomly, i=0
while ‖Σ− L−D‖2F /‖Σ‖2F < ε and i < N
L = PLn,r (Σ−D)
D = PDn

(Σ− L)
i=i+1

end while
L∗ = L, D∗ = D

4. NUMERICAL SIMULATIONS

To provide empirical evidence of the convergence properties of the algorithm simulations
studies have been performed by using the software Matlab-R2012b on a 2014 laptop
MacBook Pro, Quad-i7 2.0 GHz.
Simulations with synthetic data. To begin with, we have considered the case of a
covariance matrix, Σ, computed as the sum of a randomly generated positive semidefinite
low-rank matrix L of dimension n and rank r, and a randomly generated positive definite
diagonal matrix D. We have performed 200 Monte Carlo runs with n = 40 and r = 4
and 200 runs with n = 40 and r = 10. The original low-rank and diagonal matrices are
recovered with negligible numerical errors. Indeed the following quantities:

• the relative decomposition error on L+D: ‖Σ− L∗ −D∗‖/‖Σ‖;

• the relative error on L: ‖L− L∗‖/‖L‖;

• the relative error on D: ‖D −D∗‖/‖D‖;

are all of the order of 10−10. The average computational time for each experiment is less
than five hundredths of a second: in less than half minute all 2× 200 runs converged.

To account for how the algorithm scales with the dimensionality of the problem
two further numerical experiments have been conducted with increasing values of the
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dimension n: n = 20 ∗ 2j , with j = 0 . . . 5. In the first experiment, the rank was fixed at
the value r = 8, while in the second experiment the ratio r/n was fixed the value 0.2.
In both experiments, for each value of n, 50 factor models have been generated and the
resulting covariance matrices have been used as input for our algorithm which recovered
the correct decomposition except for a handful of times. The statistics of the execution
time (in seconds) are summarized in Table 1 for the first experiment and in Table 2 for
the second. Both experiments provide evidence that the algorithm scales extremely well
with dimensionality.

n r mean st. dev.
20 8 0.0610 0.0545
40 8 0.0349 0.0092
80 8 0.0642 0.0081
160 8 0.1927 0.0173
320 8 1.2286 0.0875
640 8 5.4973 0.2793
1280 8 26.3725 0.9813

Tab. 1. For each value of n the table displays the mean execution

time (in seconds) and standard deviation across 50 experiments.

n r mean st. dev.
20 4 0.0219 0.0452
40 8 0.0362 0.0093
80 16 0.1069 0.0171
160 32 0.3842 0.0444
320 64 2.7974 0.1565
640 128 14.7181 0.6733
1280 256 85.5031 26.8018

Tab. 2. For each couple of (n, r) the table displays the mean

execution time (in seconds) and standard deviation across 50

experiments.

Finally, we have considered the case of a covariance matrix which admits only ap-
proximately a “low-rank plus diagonal” decomposition. Given a covariance matrix Σ
generated as before (which therefore admits an exact “low-rank plus diagonal” decom-
position), we have generated a sample of numerosity N from the distribution N (0,Σ)
and we have estimated the corresponding sample covariance Σ̂N which have been used
as input for the algorithm. We have considered the same setting as before with n = 40,
r = 4 and n = 40, r = 10. In both cases for each sample size N = 200, 500, 1000 we have
performed 200 Monte Carlo runs. The 6× 200 simulations took less than 5 minutes to
converge and we observed the following:

1. In all the 6 × 200 simulations the sequence (Dk, Lk) produced by Algorithm 1
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converged to a stationary point (L∗, D∗) and, as discussed in Proposition 5.1 below,
this point is a (at least) local optimum.

2. In all the 6× 200 simulations, the inequality

‖L∗ +D∗ − Σ̂N‖F − ‖Σtrue − Σ̂N‖F ≤ 0

is satisfied which provides a sanity check on the performance of the proposed
algorithm. In fact, especially for N = 1000, Σtrue may be viewed as a good
approximation of Σ̂N and, on the other hand, we know that, by construction,
Σtrue may be decomposed as the sum of a low rank positive semidefinite matrix
and a diagonal positive matrix. Hence, Σtrue = Ltrue + Dtrue may be viewed as
a benchmark which is always outperformed by the decomposition provided by the
proposed algorithm.

The results for the decomposition error ‖Σ̂N − L∗ − D∗‖/‖Σ̂‖ are summarized in
Figures 1 and 2.

N=200 N=500 N=1000

0.05

0.1

0.15

0.2

0.25

Fig. 1. Case r = 4. Decomposition errors ‖Σ̂N − L∗ −D∗‖/‖Σ̂N‖
with N = 200, N = 500 and N = 1000.

Figures 3 and 4 display the following quantities:

• the relative decomposition error on L+D: ‖Σ− L∗ −D∗‖/‖Σ‖;

• the relative error on L: ‖L− L∗‖/‖L‖;

• the relative error on D: ‖D −D∗‖/‖D‖.

The obtained results appear extremely promising.
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N=200 N=500 N=1000
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0.12

0.14

Fig. 2. Case r = 10. Decomposition errors ‖Σ̂N − L∗ −D∗‖/‖Σ̂N‖
with N = 200, N = 500 and N = 1000.

Applications to real data. We now investigate the performance of the proposed
method on three real world datasets which are popular benchmark in factor analysis:

• the bfi dataset, from the R library psych, which consists of 2800 observations on
28 variables: 25 variables represent personality self-reported items and while 3 are
demographic variables;

• the neo dataset, also from the R library psych, which consists of a correlation
matrix of size 30× 30 estimated from 1000 observations;

• the Harman dataset, from the R library datasets, which consists of a correlation
matrix of size 24×24 estimated from 145 observations: the cross-section represents
psychological tests carried out to seventh- and eighth-grade children.

These datasets have been used in [5, Section 5.3] to compare the performance of their
approach, which minimizes the q-norm of the residue (with q = 1), against different
factor analysis methods. This approach can be considered as the state of the art as it
outperforms the other available methods. In this section we take it as benchmark for
comparisons and we repeat the analysis in [5, Section 5.3].
The adopted measure of performance is the explained variance, defined as

r∑
i=1

λi(L
∗)/

n∑
i=1

|λi(Σ−D∗)|,

where λi(·) denotes the ith largest eigenvalue. For each dataset Problem (4) is solved
for the values of r considered in [5]. The results are depicted in Figure 5. The proposed
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N=200 N=500 N=1000
0

0.2

0.4

N=200 N=500 N=1000
0

0.2

0.4

0.6
+ 2

N=200 N=500 N=1000
0

0.2

0.4
+ 2

Fig. 3. Case r = 4. The displayed quantities are:

‖Σ−L∗−D∗‖/‖Σ‖, ‖L−L∗‖/‖L‖ and ‖D−D∗‖/‖D‖, where L∗ and

D∗ represent the estimates with N = 200, N = 500 and N = 1000.

method provides a higher amount of explained variance with respect to [5]. Similarly to
[5], our method shows a flexibility in delivering different models with varying r.

5. CONVERGENCE ANALYSIS

We now discuss the convergence of the proposed algorithm to a local minimum. First,
we observe that the iterative minimization in (5) produces a sequence of values for the
objective function that is monotonically non-increasing. Since the objective function is
bounded from below, we have the following obvious result.

Lemma 5.1. For h ∈ N, define the sequence Fh by Fh := ‖Σ− Lk −Dk‖2F for h = 2k
(even), and Fh := ‖Σ−Lk+1−Dk‖2F , for h = 2k+1 (odd), where Lk, Dk is the sequence
produced by Algorithm 1. Then the sequence Fh is monotonically non-increasing and
has limit as h→∞.
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N=200 N=500 N=1000
0

0.2

0.4
+ 12 + 5

N=200 N=500 N=1000
0

0.2

0.4

0.6

0.8

1 + 7 + 1

N=200 N=500 N=1000
0

0.2

0.4

0.6

+ 12 + 5

Fig. 4. Case r = 10. The displayed quantities are:

‖Σ−L∗−D∗‖/‖Σ‖, ‖L−L∗‖/‖L‖ and ‖D−D∗‖/‖D‖, where L∗ and

D∗ represent the estimates with N = 200, N = 500 and N = 1000.

Establishing the convergence for Lk and Dk is less trivial. We start with Dk. To this
aim we observe that as a consequence of Lemma 5.1, we have that εk := F2k−1 − F2k

not only converges to zero but it converges sufficiently fast.

Lemma 5.2. Assume that εk := F2k−1−F2k tends to zero faster than 1/k2q with q > 1
and let Dk be the sequence of diagonal matrices produced by Algorithm 1. Then the
sequence Dk converges to a certain diagonal matrix D∗ ∈ Dn.

P r o o f . We have

F2k = ‖Σ− Lk −Dk‖2F = F2k−1 − εk = ‖Σ− Lk −Dk−1‖2F − εk.

Let sk(i) := [Σ− Lk]ii be the ith element in the diagonal of Σ− Lk and dk(i) := [Dk]ii
be the ith element in the diagonal of Dk. Since in (7) for each i, dk(i) is chosen
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Fig. 5. Proportion of variance explained by our method (blue circles)

and by the benchmark method (red stars).

independently of the others in order to minimize ‖Σ− Lk −Dk‖2F , we have that

−εk = ‖Σ− Lk −Dk‖2F − ‖Σ− Lk −Dk−1‖2F

=

n∑
i=1

{[sk(i)− dk(i)]2 − [sk(i)− dk−1(i)]2} ≤ [sk(i)− dk(i)]2 − [sk(i)− dk−1(i)]2

which yields
εk ≥ [dk−1(i)− dk(i)][dk(i) + dk−1(i)− 2sk(i)].

Now, we can consider two cases: if sk(i) ≥ 0, then the minimizer dk(i) is equal to sk(i),
so that we have

εk ≥ [dk−1(i)− dk(i)]2.

If sk(i) < 0, then dk(i) = 0 so that we have again

εk ≥ dk−1(i)[dk−1(i)− 2sk(i)] ≥ [dk−1(i)− dk(i)]2.

In conclusion, in both cases, we have

|dk(i)− dk−1(i)| ≤ αk :=
√
εk.

As a consequence, we have

|dk+m(i)− dk(i)| ≤ |dk+m(i)− dk+m−1(i)|+ |dk+m−1(i)− dk+m−2(i)|+ . . .

+|dk+1(i)− dk(i)|

≤ αk+m + · · ·+ αk+1 ≤
m∑
l=1

M

(k + l)q
≤
∞∑
l=1

M

(k + l)q

=

∞∑
h=k+1

M

hq
=

[ ∞∑
h=1

M

hq
−

k∑
h=1

M

hq

]
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where M is a constant and q > 1 so that all the infinite sums converge to a finite value.
Since we have

lim
k→∞

[ ∞∑
h=1

M

hq
−

k∑
h=1

M

hq

]
=

∞∑
h=1

M

hq
− lim
k→∞

k∑
h=1

M

hq
= 0,

we can conclude that liml,k→∞ |dl(i)−dk(i)| = 0, so that dk(i) is a Cauchy sequence and
hence it converges. Since this holds for each i = 1, . . . , n, we have that the sequence Dk

converges to a certain diagonal matrix D∗. Finally, since Dn is closed, clearly D∗ ∈ Dn.
�

For the convergence of the sequence Lk we need to rule out a pathological situation.

Lemma 5.3. Under the assumptions of Lemma 5.2, let S := Σ − D∗ with D∗ being
the limit of the sequence of diagonal matrices Dk produced by Algorithm 1. If S has n
distinct eigenvalues then the sequence of rank r matrices Lk produced by Algorithm 1
converges to a rank r matrix L∗.

P r o o f . Let s1 > s2 > . . . > sn be the eigenvalues of S arranged in decreasing order.
By continuity of the eigenvalues, for a sufficiently large k, Sk := Σ−Dk has n distinct
eigenvalues sk,1 > sk,2 > · · · > sk,n and limk→∞ sk,i = si. According to [18, Chapter 9,
Theorem 8], for each i = 1, . . . , n, we can select an eigenvector (and hence a normalized
eigenvector) vk,i of Sk associated with the eigenvalue sk,i in such a way that vk,i converges
to a normalized eigenvector of S associated with the eigenvalue si. Now recall that

Lk+1 = PLn,r
(Sk) = Uk diag(fl(sk,1), . . . , fl(sk,n))U>k

where the ith column of Uk is a normalized eigenvector of Sk associated with the eigen-
value sk,i. As a normalized eigenvector is unique up to its sign, we have Uk = Vk∆k

with Vk := [vk,1 | vk,2 | · · · | vk,n] and ∆k is a diagonal matrix whose diagonal entries
can only be ±1. We easily see that the contribution of the ∆k cancels and we have

Lk+1 = Vk diag(fl(sk,1), . . . , fl(sk,n))V >k

so that Lk+1 is the product of three matrices each one of which converges as k tends to
infinity. �

Proposition 5.1. Assume that the hypothesis of Lemma 5.3 holds and let L∗ be the
matrix defined in the same lemma and r be its rank. Assume also that the tangent
space of Ln,r at L∗ does not contain diagonal matrices.1 Then the sequence (Dk, Lk)
produced by Algorithm 1 converges to a point corresponding to a local minimum of the
cost function.

1This assumption is reasonable as the dimension of Ln,r, and hence of its tangent space at L∗, is
rn − r(r − 1)/2, [17]. Therefore, whenever r is not too close to n (which is the interesting case) the
number n(n − 1)/2 of the constraints needed to impose that an element of the tangent space at L∗

is diagonal is larger than the number rn − r(r − 1)/2 of available parameters. Hence, except for very
special cases, the assumption indeed holds.
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P r o o f . By the previous results, we know that Dk converges to D∗ and Lk converges to
L∗. Assume by contradiction that (D∗, L∗) is not a minimum. Then, for any ε > 0, there
exists δD and δL such that ‖δD‖F < ε, ‖δL‖F < ε, (L + δL) ∈ Ln,r, (D + δD) ∈ Dn
and

‖Σ− L∗ −D∗‖2F > ‖Σ− L∗ −D∗ − δL− δD‖2F .

Now let δT be the projection of δL on the tangent space of Ln,r at L∗. For a sufficiently
small ε we have

‖Σ− L∗ −D∗‖2F ≥ ‖Σ− L∗ −D∗ − δT − δD‖2F .

By setting R := Σ − L∗ − D∗ and computing the Frobenius norms in the previous
formula, we get

2(tr[RδT ] + tr[RδD])− ‖δT + δD‖2F ≥ 0.

By assumption δT + δD 6= 0 so that at least one of the two quantities 2 tr[RδL] and
2 tr[RδD] is positive. In the case of tr[RδD] > 0 we have that for all κ sufficiently small,

min
D∈Dn

‖Σ−L∗−D‖2F ≤ ‖Σ−L∗−D∗−κδD‖2F = ‖R‖2F +κ2‖δD‖2F −2κ tr[RδD] < ‖R‖2F

which is contradiction because the algorithm converges so that minD∈Dn
‖Σ−L∗−D‖2F =

‖R‖2F .
In the case of tr[RδT ] > 0 we have that

min
L∈Ln,r

‖Σ− L−D∗‖2F ≤ ‖Σ−D∗ − PLn,r
(L∗ + κδT )‖2F (9)

where PLn,r (·) is the projection onto Ln,r. Thus we have PLn,r (L∗+κδT ) = L∗+κδT+E
where limκ→0 ‖E‖F /κ = 0.

Thus, for κ > 0 sufficiently small, we have

q := ‖Σ−D∗ − PLn,r (L∗ + κδT )‖2F = ‖Σ−D∗ − L∗ − κδT − E‖2F
= ‖R‖2F + κ2‖δT‖2F + ‖E‖2F − 2κ tr(RδT )− 2 tr(RE) + 2κ tr(δTE) < ‖R‖2F .

In conclusion, we have
min
L∈Ln,r

‖Σ− L−D∗‖2F < ‖R‖2F , (10)

that, as in the previous case leads to a contradiction. �

Remark 1. It is quite intuitive that the conditions of Proposition 5.1 are not very
stringent: in fact in all the practical situations that we have studied in simulations those
conditions are satisfied.

Remark 2. Since Problem (4) is non-convex and may have, in general, many local min-
ima, we cannot make any claim on the global optimality. However, we have performed
massive simulations for the case when Σ is synthetically produced as the sum of a posi-
tive definite diagonal matrix D and a positive semi-definite matrix L. In this case, if we
select r = rank(L), the (globally) optimal solution clearly corresponds to a zero residual
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error and we can therefore evaluate the performance of our algorithm. The empirical
evidence shows that the number of cases in which our algorithm does not produce a zero
residual error is negligible. Even in these cases the residual error norm was never larger
than 1% of the norm of Σ and a numerically zero residual error was always obtained by
repeating a few times the minimization with perturbed initial conditions.

6. AN ALTERNATING PROJECTION TYPE ALGORITHM

In this section we present our algorithm under a different perspective that may be useful
in addressing questions on the properties of the proposed method. In fact, by suitably
translating Dn, we easily see that this method can be viewed as an alternating projection
type algorithm for which a very rich literature has been developed. To this aim, define

D̃n := Σ−Dn = {X ∈ Qn : Xij = Σij ,∀i 6= j, Xii ≤ Σii, i = 1, . . . , n} (11)

and notice that the projection in this affine set is easily obtained as:

PD̃n
(X) :=

{
Xij = Xij for i = j ∧Xii < Σii

Xij = Σij for (i = j ∧Xii ≥ Σii) ∨ i 6= j.
(12)

We consider now the sequences Lk and Dk produced by our algorithm. We recall that
our Dk is given by Dk = PDn

(Σ − Lk). By taking this formula into account, a direct
computation shows that the matrix D̃k := PD̃n

(Lk) may be written as Σ−Dk so that,
in view of the formula Lk = PLn,r

(Σ−Dk−1), we immediately get that

Lk+1 = PLn,r
(PD̃n

(Lk))

which shows that the iteration for Lk is the result of an alternating projection algorithm.
These kind of algorithms burst a long tradition which dates back to Von Neumann in
the ’30s. While for alternating projection onto convex sets the convergence results are
well established, for the non-convex case much less is known. In our case D̃n is a convex
set of dimension n, but the set Ln,r is a non-convex embedded manifold of Rn×n with
dimension nr− r(r− 1)/2 and it is smooth at those points for which the rank is exactly
r. In [19] a proof of local convergence (at a linear rate) for alternating projection onto
smooth manifolds is provided under the assumption of transversal intersection. In our
case, transversal intersection cannot hold when r is small with respect to n but it may
be possible to generalise that approach to provide a further analysis of the algorithm
properties and, in particular, of its convergence rate.

Finally, the set D̃n is particularly interesting because of the following interpretation
that is particularly evident when r is such that Σ can be decomposed exactly as L∗+D∗

so that (L∗, D∗) is clearly an optimal solution of (4). In this case, D∗ = Σ−L∗ and thus
Σ−L∗ ∈ Dn. The latter condition is equivalent to the condition L∗ ∈ D̃n Therefore the
problem (4) can reformulated only in terms of L as follows:

L∗ := arg min
L∈Ln,r∩D̃n,

‖Σ− L‖2F . (13)
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7. CONCLUSIONS

We have proposed an alternating minimization algorithm for decomposing a covariance
matrix as sum of a low rank matrix L, whose maximal rank is a priori fixed, plus
a diagonal matrix D. This algorithm minimizes the norm of the residual difference
between the covariance matrix and the sum L+D. Simulation results showed that the
algorithm performs extremely well and converges very rapidly to the solution. Finally,
we have proved that, under reasonable assumptions, this algorithm converges to a local
minimum.

(Received March 6, 2019)
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