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Axiom Tp and the Simmons sublocale theorem

JORGE Picapo, ALES PULTR

Dedicated to the memory of Véra Trnkovd

Abstract. More precisely, we are analyzing some of H. Simmons, S. B. Niefield and
K.I. Rosenthal results concerning sublocales induced by subspaces. H. Simmons
was concerned with the question when the coframe of sublocales is Boolean;
he recognized the role of the axiom Tp for the relation of certain degrees of
scatteredness but did not emphasize its role in the relation between sublocales
and subspaces. S.B. Niefield and K.I. Rosenthal just mention this axiom in
a remark about Simmons’ result. In this paper we show that the role of Tp
in this question is crucial. Concentration on the properties of Tp-spaces and
technique of sublocales in this context allows us to present a simple, transparent
and choice-free proof of the scatteredness theorem.

Keywords: frame; locale; sublocale; coframe of sublocales; spatial sublocale; in-
duced sublocale; Tp-separation; covered prime element; scattered space; weakly
scattered space
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Introduction

A topological space X, more precisely its associated frame Q(X) of open sets,
has typically more natural subobjects (sublocales) than subspaces. The first result
concerning the question when every sublocale is (induced by) a subspace was
presented by H. Simmons in [11]. More precisely, H. Simmons proved a necessary
and sufficient condition for the lattice of sublocales being Boolean which is slightly
different: if sublocales are in a one-to-one correspondence with subspaces (subsets)
they do form a Boolean algebra, while the other implication does not hold. Later,
S.B. Niefield and K.I. Rosenthal in [7] treated more directly the question of
every sublocale being spatial and gave a characterization of the respective frames.
In both cases, however, the question of the one-to-one correspondence between
subspaces and sublocales is somehow circumvented. While, as we have already
pointed out, typically one has more sublocales than subspaces, there are already
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cases where there are fewer sublocales than subspaces. Namely, it turns out that
unless the space in question satisfies a certain very weak separation condition Tp,
representation of subspaces of X by sublocales of Q(X) is imperfect: distinct
subspaces can induce the same sublocale (it should be noted that in [11], Tp does
appear—under the name of Tp—in the discussion of “degrees of scatteredness”;
in [7] it is mentioned in page 267, in a remark about Simmons’ paper).

In this paper we present a proof of the fact that for a Tp-space X, the sublocales
are in a one-to-one correspondence with subspaces if and only if X is scattered
(without Tp it cannot be). Consequent use of properties of Tp-spaces and the
sublocale technique makes the proof simpler, and we think more transparent, than
those in [11], [7]. Also, since we do not need the concept of a minimal prime (and
that of an essential one) we can do it without a choice principle.

1. Preliminaries

1.1 Notation. A join (supremum) of a subset A C (X, <), if it exists, will be
denoted by \/ A, and we write a Vb for \/{a,b}; similarly we write \ A and a Ab
for meets (infima).

The smallest element of a poset (the supremum \/ 0), if it exists, will be denoted
by 0, and the largest one (the infimum A @) will be denoted by 1.

An element p € X is prime if aAb = p implies a = p or b = p (in a distributive
lattice this is equivalent with a A b < p implying a < p or b < p).

1.1.1 Adjoint maps. If X,Y are posets we say that monotone maps f: X — Y
and g: Y — X are adjoint, f to the left and g to the right, if

fl) <y & z<g(y).

Recall that this is characterized by the pair of inequalities fg(y) < y and
x < gf(z), and that f or g preserves all the existing suprema or infima, re-
spectively. Furthermore, if X and Y are complete lattices then a monotone map
f: X — Y preserves all suprema if and only if it is a left adjoint, and a monotone
map g: Y — X preserves all infima if and only if it is a right adjoint.

1.2 The category of frames. Recall that a frame is a complete lattice L sat-
isfying the distributivity rule

(frm) (\/A)/\b:\/{a/\b:aeA}

for all A C L and b € L, and that a frame homomorphism h: L — M preserves
all joins and all finite meets. The resulting category is denoted by Frm.
A coframe satisfies (frm) with the roles of joins and meets reversed.

1.2.1 The equality (frm) states, in other words, that for every b € L the mapping
—Ab=(x+— xAb): L — L preserves all joins (suprema). Hence every — A b has
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a right Galois adjoint resulting in a Heyting operation “ — 7 with
aANb<c¢c & a<b—ec

Thus, each frame is a Heyting algebra (note that, however, the frame homo-
morphisms do not coincide with the Heyting ones so that Frm differs from the
category of complete Heyting algebras). The operation “ —” and some of its
basic properties (e.g. a—a =1, a—b=11if and only if a < b, 1 > a = a, and
a— (b — ¢) = (aAb)—c) will be used in the sequel, see [8, Appendix 1] for more
information.

1.3 The concrete category Loc. The functor 2: Top — Frm from the cate-
gory of topological spaces and continuous maps into that of frames (Q(f) sending
an open set U C Y to f~1[U] for a continuous map f: X — Y in Top) is a full
embedding on an important and substantial part of Top, the subcategory of sober
spaces. This justifies to regard frames as a natural generalization of spaces. Since
) is contravariant, one introduces the category of locales Loc as the dual of the
category of frames. Often one just considers the formal Frm°® but it is of ad-
vantage to represent it as a concrete category with specific maps as morphisms.
For this purpose one defines a localic map f: L — M as the (unique) right Galois
adjoint of a frame homomorphism h = f*: M — L. This can be done since frame
homomorphisms preserve suprema; but of course not every mapping preserving
infima is a localic one. We refer to [8] for more information about the category of
locales.

1.4 Sublocales. A sublocale of a frame L is a subset S C L such that

(1) M C S implies AM € S, and
(2) if ae Land s€ Sthena —seS.

The system S(L) of all sublocales of L is a co-frame, with the lattice operations
ASi=()S  and \/Si{/\A:AgUSZ}.
i€J ieJ ieJ icJ
The top element of S(L) is L and the bottom is the least sublocale O = {1}.
1.4.1 Sublocales just defined are a natural representation of subobjects in the
category of locales (indeed S is a sublocale of L if and only if the imbedding
map j: S C L is an extremal monomorphism in the category Loc). Equivalently
we can represent subobjects of frames (locales) as frame congruences E on L

(the sublocale as above is then the adjoint to the quotient frame homomorphism
L — L/E); yet another representation is that by nuclei, see e.g. [5], [8].

1.4.2 Important special sublocales. For any a € L we have a sublocale

b(a)={z—a:z € L}
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From the standard properties of the Heyting operation we immediately see that it
is really a sublocale; and obviously it is the smallest sublocale containing a. One
has that, see e.g. [8, II1.10],

the b(a)’s are precisely the Boolean sublocales of L.

Other sublocales we will work with are the points

p=1{p 1}

with p prime elements of L. These are precisely the sublocales with exactly two
elements (with exactly one nontrivial element).

Remark. Typical points of a frame Q(X) are the X ~ {z}. Note that there
may be others (a space is sober if there are only these), but they suffice for the
representations in Section 2.

Proposition 1.5. Let L be a distributive lattice and let a € L be complemented.
Then, for any supremum \/ z;, we have aA\/ ; = \/(a Ax;), and for any infimum
N xz; we have aV \z; = N(a V ;).

In particular, in any co-frame we have for any complemented a,

a/\\/xi :\/(a/\xi)

although this (frame) distributivity does not generally hold.

PROOF: If ¢’ is the complement of a we easily check that a Az < b if and only
if # < a Vb Thus for any complemented a, (z — a A z) is a left adjoint and
(x — aV x) is a right adjoint. Use Subsection 1.1.1. O

1.6 The axiom Tp. In [1] the authors studied separation axioms between Ty
and T7. Among them, particular importance gained the axiom
Tp: for every x € X there is an open set U > x such that U ~ {x} is still open

(and hence U~ {z} = U~{z}). This is equivalent to saying that points are locally
closed, that is for every # € X there is an open set U 3 z such that {z} = Un{z}.
We will need the following two facts from [3].

Lemma 1.6.1. Let X satisfy Tp. Then every (X ~ m) U {z} is open.
PROOF: Choose an open U 3 z such that {z} = U N {x}. Then, clearly,
(X~ TT) U e} = (X~ ) U
(I

Proposition 1.6.2. Let X satisfy Tp. Then the primes p = X\m are covered,
that is, if p = A\,c; U; then p = Uy for some k € J, not only for finite J but for
arbitrary ones, cf. [4].
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PROOF: Let p = X~ {z} C U for an open U. Then thereisay € U~ (X\m),
hence y € U and y € {z} so that 2 € U and (X~ m) U{z} C U. Hence either
X ~ {z} = U; for some i or all the U; contain the open (X~ m) U {z} and
hence A\;c; Us = int((;c, Us) is not p. O

Concerning terminology, it should be pointed out that the elements p such that

p = N\;cy®i implies p = z; for some i € J were referred to in [3] as completely
prime. That term, however, is generally taken to mean that p > A, ; x; implies

p > x; for some ¢ € J. Note that in an arbitrary space X, a prime X \ {z} is of
the latter type if and only if z € A{U: U € Q(X), = € U}. In particular, if z is
isolated (that is, {z} is open) then X . {z} is always completely prime.

Regarding the relationship between these two notions, any completely prime p
is clearly a covered prime, but not conversely: in the topology of a T}-space X,
any X \ {z}, © € X, is obviously a covered prime but the complete primes are
only the X ~\ {z} with isolated z € X, see [4, Remark 1].

1.7 Scattered and weakly scattered spaces. A space X is said to be scattered
if for every nonempty closed set A there is an isolated point a € A, that is, there
is an a € A and an open U > a such that

UNA={a}.

It is weakly scattered (or corrupted, see [11]), if for every nonempty closed set A
there is an a € A and an open U 3 a such that

UNAC{a}.
Observation 1.7.1. A Tp-space is scattered if and only if it is weakly scattered.

Proor: Consider an a € A and an open U 3 a such that U N AQ_@. By Tp,
{a} =V n{a} for some open V. Then {a} CVN(UNA) CVn{a}={a}. O

2. Induced sublocales

2.1 Consider a space X and a subspace Y C X. Then the embedding j: Y C X
is represented by the frame homomorphism

QHN=U—UNY): UX) = QY)
and hence the frame congruence associated with Y is given by
Oy ={(U,V): UNY =VnNY}
It is easy to see that the localic map adjoint to £(j) is given by

k(V) = int((X < Y)UV)
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(since UNY CVifand only if U C (X \Y) NV and U is open). Hence the
sublocale induced by Y is

Sy = k[QY)] ={int((X \Y)UV): V openin Y} =
={it(X\Y)u(UnY)): U e QX)}.

The sublocale Sy is said to be induced by Y.

2.2 One thinks of frames (locales) as of generalized spaces and this view is ba-
sically right; at least for the so called sober spaces the frame Q(X) contains all
the information about X. One can surmise that this concerns also the structure
of induced sublocales as above, that is, that when thinking of the locale Q(X)
as (a representation) of X, the induced sublocales can be thought of as (a rep-
resentation of) the subspaces (we are not speaking of the fact that there may be
also new entities, the non-induced sublocales; they enrich the theory and are very
useful). But it is not in general so. Take, e.g., a non-Tp space X and an z € X
such that no U \ {z} with U 3 z is open. Then U N (X ~{z}) =V N (X ~{z})
only if U =V and hence Sx. {;) = Sx-

We say that the representation Y — Sy of subspaces is precise if it constitutes
a one-to-one correspondence between subspaces and induced sublocales. One has
the following, see e.g. [8], [2], [6]:

Proposition 2.2.1. Induced sublocales constitute a precise representation of
subspaces of X if and only if X is Tp.

Note. A mechanism of this fact useful for our purposes will be apparent in
Proposition 3.2.1 below.

2.3 Representations of points. Denote by px , (briefly p;) the prime X \m
in Q(X).

Lemma 2.3.1. Let Y be a subspace of X. We have k(py,y) = px,y-
PRrROOF: We immediately see that for @Y, the closure in Y,
R Ve _ R
Y~ {y} =Y~({ynY)=Y{y}

Obviously (X \Y)U (Y ~ {y}) 2 X ~ {y} and if for an open U, U C (X \Y)U
(Y ~ @) then U C X \ @ (otherwise there were a z € U with z € @, but
then y € U and y is neither in X \Y nor in ¥ \ @) (]

Proposition 2.4. Let Y be a subspace of X. Then

Sy = \/{ﬁx,y: yeY}
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PROOF: Recall the formula for the joins of sublocales from Subsection 1.4. The
elements of the right hand side are the meets

U= A\{X~{y}:iyed ACY} =it (X~ {y}:yeAd ACY}

Now if U is the interior as above we have, first, for every y € A alsoU C X \@,
which is the same as y ¢ U, and, hence, whatever the A was, U is also the interior
of ({X ~{y}: y ¢ U}. Now we have

(X~ {utye U S X~ {y}:y g U}
but for an open V we have V C X ~ {y} if and only if V C X ~ {y} and hence

intﬂ{X\m:er\U}:intm{X\{y}:yEY\U}:
=int(X N (Y\U)) =it((X \Y)U (Y NnD)).

Compare this with the formula for k£ in Subsection 2.1. (I

2.5 Now from Subsection 2.3 and Proposition 2.4 we can conclude that
A sublocale S of Q(X) is induced if and only if S = \/{Px.z: px € S}

3. The main theorem

3.1 Recall the notation p, = X ~ m from Subsection 2.3 (the X in py , will
be always the same and hence we can use the shorter notation), and p from
Subsection 1.4.2. Also recall from Proposition 1.6.2 that if X is Tp then every p,
is a covered prime element.

Definition 3.2. A prime p in a frame L is a-regular if p = (p—a) —a.

Proposition 3.2.1. The following are equivalent for L = Q(X) with X a Tp-

space:

(1) S(L) is Boolean.

(2) Each Boolean (that is, minimal) sublocale is complemented.

(3) For every a # 1, there is an a-regular element of the form p,.

(4) All sublocales S are induced, i.e., S = \/{p.: p. € S}, and precisely represent
subspaces of X.

(5) The map p: S(L) — P(X), given by u(S) = {x: p, € S}, is a poset isomor-
phism, with inverse y: P(X) — S(L) given by v(Y) = \/{p,: y € Y}.

PrOOF: (1) = (2) and (5) = (1) are clear.

(2) = (3): Each b(a) (recall Subsection 1.4.2) is complemented hence, by Propo-
sition 1.5,

b(a) = b(a) N \/{Br: pa € L} = \/{Pa: p» € b(a)}.
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Since a € b(a), we conclude that a is a meet of a-regular elements, and since
a # 1, this meet is non-void.

(3) = (4): Let S C L be an arbitrary sublocale. For an a € S set

a':/\{plz a<p, €S}

We have to prove that a = o’ (then S = \/{p,: p, € S} holds).

If not, we have a < @’ and b = @’ —a # 1, and there exists a b-regular element p.
Since a € b(a), b =a' —a € b(a) and as p € b(b) C b(a) we have a < p and by
the definition of a/, @’ < p. Thus,

p—=b=p—(ad—a)=(prd)=a=d—=a=0b,

and p = (p—b)—b=>b—b =1, a contradiction.
Finally, the fact that the representation is precise follows from Proposition 2.2.1.

(4) = (5): First, v(pu(S)) = S is in the equality S = \/{pz: p» € S}. Next,
obviously Y C pu(v(Y)); on the other hand, if p, € ¥(Y) = \/{py: vy € Y} then
Pr = /\yeApy for some A C Y and therefore there is an y € A C Y such that
Pz = Py- U

Lemma 3.2.2. The following are equivalent for a space X :

(1) Space X is weakly scattered.
(2) ForU # X in Q(X) and A = X \ U, there is an x € A such that

reX AN {z}.

(3) For U # X in Q(X), there is a U-regular element X ~ {z}.

PROOF: (1) = (2): Let X be weakly scattered and let §) # A C X. Choose an
open V such that z € VN A C {z}. Then we have

h=VNnAn(X~{z}) =Vn(A~{z}),

and hence z € (X ~ A~ {z}) N A.

2)=01);Ifze (X\A_\m)ﬁA for a nonempty closed A set V= X\ A~ {z}
to obtain z € VN A C {z}.
(2) = (3): Let U # X in Q(X) and A = X \U. We need an z such that

UC X~ {z} and (X ~{z})>U)=UC X~ {a}
(the latter is the essential inclusion from the equality). In other words,

(%) x ¢ Uthatis,z € A and r¢ (X ~{z})=U)=U.
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We have V — U = int((X \ V) UU), hence (X ~ {z}) = U = int({z} U D)
and

(X~ {z})-U)=U {z}uU)—=U

X ~int({z}UU)UD)

int (
(

- mt(X <[z ul)U U)
(¢

= int

int (X ~ {z})n X\U)UU)
= mt(A ~{zPU (X~ A))
Thus, (*) transforms to stating that there is an z € A such that

T ¢ int(A\mU(X\A)>7
that is,

ze(XNAN m) NnA
which is guaranteed by the hypothesis.

(3) = (2): By the proof of the previous implication, we know that there is an
x € A such that

T € (X\A\m)ﬂA.
We will show now that the x is in fact in the set under closure. First, observe

that _ L
(X~ A Te})nachel,

Indeed, if a € (X N AN m) then a ¢ A~ {z} and hence a ¢ (A~ {z}), that is,
a € {z} (and A is closed). Now denote for a moment V = X ~ A~ {z}. We have

VN A # 0 (since it has a nonempty closure); and hence = ¢ V makes {z}nV =10
and a contradiction § # ANV C{z} C X\ V. O

Theorem 3.3. The following are equivalent for a Tp-space X :
(1) S(Q(X)) is Boolean.
(2) All sublocales of Q(X) are induced and precisely represent subspaces of X.

)
(3) Space X is scattered.
(4) Each Boolean (that is, minimal) sublocale is complemented.

PRrROOF: This follows directly from Observation 1.7.1, Proposition 3.2.1 and Lem-
ma 3.2.2. (I

Note 3.3.1. Since T is a necessary condition for the precise representation, the
preceding theorem can be reformulated to a (perhaps more elegant) statement:

All sublocales of QUX) are induced and precisely represent sub-
spaces of X if and only if X is Tp and scattered.
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The results of [11] and [7] concern the booleanness even for the non-Tp case and
the not necessarily precise representation of subspaces by sublocales. Thus, the
scope is broader while, on the other hand, the nature of the representation of
subspaces by sublocales is not quite specified. If we wish to have this precise,
Tp is a condition sine qua non. Furthermore, however, having to assume this
axiom makes the situation much simpler because of the covered primeness of the
X~ m

Let us point out that the importance of the axiom Tp in point-free topology,
in particular in fitting together spatial and point-free facts, is sometimes under-
estimated. It appeared, first, in [1], in a technical context. But in the same year,
in [12], one of the authors proved that under this condition the lattice of open
sets determined the space (one of the first results of this kind). It can be claimed
that the importance of Tp is in the rank of that of sobriety. The two properties
are closely related, in fact they are, in a sense, dual to each other, see [3], [6] and
also the exercise in [5, I1.1.7]: while sobriety states that one cannot add a point
without changing the topology, Tp asserts that one cannot subtract a point. And
the fact crucial in this paper, namely that Tp is equivalent with precise represen-
tation of subspaces by sublocales can be viewed in the general setting as similarly
important as the sobriety standing for precise representation of continuous maps
by localic ones, see [5], [9].

Note. While working on the present paper we learned the sad news that Harold
Simmons, the author of the fundamental theorem discussed here, passed away.
He was a great and resourceful mathematician, and a very nice person. Since we
are working, mostly, in point-free topology, we would like to mention, besides the
scatteredness theorems, and among his many other achievements, also his role
in the development of separation theory, notably in subfitness (“conjunctivity”,
see [10]). He will be missed.

Acknowledgement. We are most grateful to the referee for all valuable com-
ments and suggestions that have helped improve the presentation of the paper.
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