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One Erdős style inequality

Tomáš J. Kepka, Petr C. Němec

Dedicated to the memory of Věra Trnková

Abstract. One unusual inequality is examined.
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In 1951, P. Erdős in [1] investigated the diophantine equation

(1)

(

n

k

)

= xl, k ≥ 2, n ≥ 2k, x > 1, l > 1

and he showed that this equation has no solution for k > 3 (there are infinitely
many solutions if k = l = 2, and for k = 3, l = 2, equation (1) has only one
solution n = 50, x = 140). The remaining cases k = 2, 3 and l > 2 were settled by
K. Győry in [2]. The proof in [1] is making use of some quite unusual inequalities
and one of them, namely the inequality (h − g)3 > h, is carefully examined and
generalized in this ultrashort note. Needless to say that our approach is fully
calculus-free.

First of all, let a, b, c be positive integers such that a < c and ac = b2. Then
a < b < c and the well-known relation of arithmetic and geometric means yields
a+c > 2b. Put m = c−b, n = b−a and p = m−n = a+c−2b. Then m,n, p ≥ 1,
m ≥ n+ 1 and bm = b(c− b) = bc− b2 = bc− ac = (b− a)c = nc. Hence

(2) bp = b(m− n) = bm− bn = nc− bn = nm.

Since m ≥ n+1 and p ≥ 1, (2) implies m2 ≥ (n+1)m = nm+m = bp+m ≥ b+m,
and consequently m2 −m ≥ b. From this,

(3) m2 − (m+ n) = m2 −m− n ≥ b− n = a.

As m+ n = c− a, we have m2 − (m+ n) = (c− b)2 − c+ a. By (3), (c− b)2 ≥ c,
and hence

(4) (c− a)2 > c.
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Now, let g, h be positive integers such that g ≤ a, c ≤ h and put δ = h − c.
Using (4), we obtain (h− g)2 ≥ (h− a)2 = (c− a+ δ)2 ≥ (c− a)2 + δ > c+ δ = h.

Let a, b, c, d, e, f, g, h, t, α, β, γ be positive integers satisfying a 6= b 6= c 6= a,
g ≤ min(a, b, c), max(a, b, c) ≤ h, 5h ≤ 6g, t ≥ 3, β2 = αγ, a = αdt, b = βet,
c = γf t. We aim to show that (h− g)3 > h.

The case b2 = ac is settled down in the above-mentioned part, where we got
(h − g)2 > h. In view of this, we can restrict ourselves to the case b2 > ac (the
other case, ac > b2, being quite analogous). We can assume a < c as well. Then,
of course, g ≤ a < b ≤ h, g ≤ a < c ≤ h and

(5) g2 < ac.

Furthermore, b2 − ac = β2e2t − αγ(df)t = β2(e2t − (df)t) > 0, hence e2 ≥ df + 1
and b2 − ac ≥ β2((df + 1)t − (df)t) ≥ β2t(df)t−1. Thus

(6) df(b2 − ac) ≥ β2t(df)t = tαdtγf t = tac.

Now, 2(h − g)h = (h − g)2 + h2 − g2 > (h − g)2 + b2 − ac by (5). Using (6)
and (5), we see that 2(h− g)hdf > (h− g)2df + (b2 − ac)df ≥ (h− g)2df + tac >

(h− g)2df + tg2 > tg2. Since t ≥ 3 and 5h ≤ 6g, we have tg2 ≥ 3(h− (h− g))2 =
3h2 − 6h(h − g) + 3(h − g)2 = 2h2 + h(h − 6(h − g)) + 3(h − g)g2 > 2h2, and
therefore

(7) (h− g)df > h.

Let s be an integer such that 4 ≤ s ≤ t + 2. We have (h − g)s−2hs >

(h − g)s−2hs−2ac = β2(h − g)s−2hs−2dtf t ≥ β2(h − g)s−2hs−2ds−2f s−2 =
β2((h− g)df)s−2hs−2 > β2h2s−4 by (7), and hence

(h− g)s−2 > β2hs−4 ≥ hs−4.

For s = t + 2 we get (h − g)t > ht−2. For s = 5, we get (h − g)3 > h. If
g = min(a, b, c) and h = max(a, b, c) then 5h ≤ 6g and (h− g)3 > h.

We have shown that the inequality (h − g)3 > h holds if 5h ≤ 6g and some
unusual additional conditions are satisfied. On the other hand, 5 · 18 < 6 · 16,
but (18 − 16)3 < 18. If 5h > 6g and h ≥ 15 then 63(h − g)3 > h3 ≥ 63h and the
inequality holds.

Now, let us have a look at the inequality (h − g)3 > h from another point
of view. Let H, g, h,∆ be positive integers such that H ≥ 3 and ∆ ≥ 2. Put
GH = H− 1−

[

3
√
H

]

(here [α] denotes the integer part of α). Then H−GH ≥ 2,

(H −GH)3 > H and (H − g)3 ≤ H for g > GH . If g ≤ G, h ≥ H and δ = h−H

then (h− g)3 ≥ (h−GH)3 = (H −GH + d)3 ≥ (H −GH)3 + δ > H + δ = h.
Let (∆− 1)3 ≤ H ≤ ∆3 − 1. Then GH = H −∆ and, moreover, 5H ≤ 6GH if

and only if 6∆ ≤ H . Since 6∆ < (D − 1)3 for ∆ ≥ 4, we see that 5H ≤ 6GH if
and only if H ≥ 18. Finally, g such that g ≤ H − 2, (H − g)3 ≤ H exists if and
only if H ≥ 8. If g is so then 5H > 6g for H ≤ 11 and 5H ≤ 6g otherwise.
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