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Abstract. Solvability of the rational contact with limited interpenetration of different
kind of viscolastic plates is proved. The biharmonic plates, von Kármán plates, Reissner-
Mindlin plates, and full von Kármán systems are treated. The viscoelasticity can have the
classical (“short memory”) form or the form of a certain singular memory. For all models
some convergence of the solutions to the solutions of the Signorini contact is proved provided
the thickness of the interpenetration tends to zero.
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1. Introduction and notation

Despite a great amount of actual and/or possible applications, the theory of con-

tact problems remains still underdeveloped. The study of contact problems started

by Signorini [12], [13]. His model describing a contact of a deformable body with

a rigid foundation respects the impenetrability of mass. It was extended to dynamic

problems by Amerio, Prouse, Schatzman and further authors in late seventies and

early eighties of the last century. The monograph [6] summed up the development

in this field till its publication. The highly nonlinear Signorini model is complex.

Therefore, a bit later the so-called normal compliance approach was introduced. This

approach is nothing else than replacement of the original Signorini contact model by

some kind of its penalization. Although such kind of approximation is a suitable

auxiliary tool in the numerical investigation of contact problems, this approach has

brought no deep results to their theory. It is usually easy to derive properties of
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solutions of such approximate problems and the real hard work starts by the limit

process to the original problem.

However, the normal compliance approach has drawn the attention to the fact that

the complete impenetrability of mass need not be completely physically realistic, be-

cause from the microscopical point of view no material is flat or smooth enough. Just

in the medium advanced microscopes the seemingly perfectly flat or smoothly curved

surfaces are seen as a huge collections of asperities and small holes or cavities. The

asperities may be deformed or may fill the holes of the counterpart partially or com-

pletely. Hence, it has some good sense to study models where some interpenetration

between body and the foundation is allowed to describe macroscopically those phe-

nomena. However, to remain physically realistic, this interpenetration model must

include a certain bound after which the further penetration is not possible. And, as

well, it is realistic to assume that such a bound cannot be reached.

These are the premises of the rational contact model with a limited interpenetra-

tion which was introduced by [7] and [8], where the solvability of its static version

has been proved (it was then still called the normal compliance model with a limited

interpenetration). The first such dynamic (frictionless) rational contact has been in-

vestigated in [9]. It concerns a boundary contact of a body with a rigid foundation.

I am convinced that this contact model is obviously physically well based, i.e. ratio-

nal, if some interpenetration between the body and the foundation is admitted.

Since 2006 a series of papers about the solvability of dynamic Signorini contact

problems for different models of plates [1]–[4] has been published. The purpose of this

paper is to extend these results to the rational contact with limited interpenetration.

Unlike [9] we face here a domain contact.

Since we have no knowledge that anybody else has studied the presented rational

contact model or anything similar, there are no other relevant references to be cited

than those listed at the end of this paper.

In the sequel by W k
p (Ω) the (Sobolev-Slobodetskii if k is not entire) spaces of

functions on a domain Ω having their (possibly fractional) derivatives up to order k

integrable in the pth power are denoted. The symbol W̊ k
p denotes the spaces of

functions from W k
p (Ω) which have zero traces. If p = 2 those spaces are denoted by

Hk(Ω), H̊k(Ω). Vectors are denoted by bold symbols; the same rule is used for spaces

of vectors. The symbol →֒ denotes an embedding, while →֒→֒ an embedding which

is compact. For a function u : Ω → R we denote by u+ = max{u, 0} its “positive

part” and u− = max{−u, 0} its “negative part”.
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2. Tools of function spaces theory

Here we collect the results from the theory of function spaces needed in the sequel.

Here and in the sequel I = [0, T ] is a nonempty time interval. The standard tool,

Lemma 1 (Aubin). Let B0 →֒→֒ B →֒ B1 be Banach spaces, the first reflexive

and separable. Let 1 < p < ∞, 1 6 q < ∞. Then

W ≡ {v; v ∈ Lp(I;B0), v̇ ∈ Lq(I;B1)} →֒→֒ Lp(I;B),

is not sufficient for our purpose. Hence, we will use the following facts, the proofs of

which follow from Chapter 2 of the monograph [6]:

Theorem 2 (Embedding theorem). Let M ⊂ RN be a bounded domain with

Lipschitz boundary. Let p, q ∈ (1,∞), γ ∈ [0, 1], and α ∈ (γ, 1] be numbers such

that the inequality

(0)
1

α

(N
p

−
N

q
+ γ

)
6 1

holds. Then the Sobolev-Slobodetskii space Wα
p (M) is continuously embedded into

W γ
q (M). If the above inequality is strict, then the embedding is compact for any

real q > 1. For q = ∞ this is true under the convention 1/q = 0.

Corollary 3. Let M and I be as above. Let pi, qi belong to (1,∞), αi belong to

(0, 1] and γi to [0, αi), i = 1, 2. Assume that (0) holds with i = 1 and N replaced by 1

and that it simultaneously holds for i = 2. Then Wα1

p1
(I;Wα2

p2
(M)) can be imbedded

into W γ1

q1 (I;W
γ2

q2 (M)). If both the inequalities are strict, the imbedding is compact.

The last assertion still holds if qi is infinite, provided we use the convention 1/qi = 0,

i = 1, 2.

Theorem 4 (Interpolation theorem). Let M be as above, let k1, k2 belong to

[0, 1], let p1, p2 belong to (1,∞) and Θλ to [0, 1]. Then there exists a constant c such

that for all u ∈ W k1

p1
(M) ∩W k2

p2
(M) the following estimate holds:

‖u‖Wk
p (M) 6 c‖u‖Θλ

W
k1
p1

(M)
‖u‖1−Θλ

W
k2
p2

(M)

with k = Θλk1 +(1−Θλ)k2 and 1/p = Θλ/p1+(1−Θλ)/p2. The assertion remains

true if k1 = k2 = 0 and p1, p2 belong to [1,∞].
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Corollary 5 (Generalization). Let M , k1, k2, p1, p2 be as above. Let I be

a bounded interval in R, let κ1, κ2 belong to [0, 1], let q1, q2 belong to (1,∞) and Θλ

to [0, 1]. Then there exists a constant c such that for all u ∈ Wκ1

q1 (I;W
k1

p1
(M)) ∩

Wκ2

q2 (I;W
k2

p2
(M)) we have

‖u‖Wκ
q (I;Wk

p (M)) 6 c‖u‖Θλ

W
κ1
q1

(I;W
k1
p1

(M))
‖u‖1−Θλ

W
κ2
q2

(I;W
k2
p2

(M))
,

where k = Θλk1 + (1 −Θλ)k2, κ = Θλκ1 + (1− Θλ)κ2, 1/q = Θλ/q1 + (1−Θλ)/q2
and 1/p = Θλ/p1 + (1 −Θλ)/p2. If κ1 = κ2 = 0 and q1, q2 belong to [1,∞], the

assertion still holds.

3. Abstract formulation of the problem for the clamped or simply

supported viscoelastic plate and the scheme of its solution

Let Ω ⊂ R2 be a bounded domain with sufficiently smooth boundary Γ. Let X be

a Sobolev-type Hilbert space defined on Ω, let Y be the space of traces of elements

from X on Γ. Let A,B : X → X∗ be two linear symmetric strongly elliptic opera-

tors in the form D∗aD , D∗bD , respectively, where D is a differential operator and

a, b are positively definite matrices or tensors of time constant but possibly space-

dependent elements. Here the dual spaceX∗ is defined via the suitable generalization

of the L2(Ω) scalar product. Let X ≡ L2(I;X). We introduce the bilinear forms

A : {u, v} 7→ 〈aDu, Dv〉Q, B : {u, v} 7→ 〈bDu,Dv〉Q, where 〈·, ·〉Q is the L2(Q)

scalar product and Q ≡ I × Ω. Let S ≡ I × Γ. Let E(t) : X2 → X∗ be another

operator E(t) ≡ E(t)(u, u̇), u, u̇ ∈ X , let E (u, u̇) : v 7→ 〈E(·)(u, u̇), v〉Q, u, u̇, v ∈ X .

We will call the elements of v ∈ X or v : I → X such that v ∈ X displacements,

and their first time derivatives (denoted by dots) velocities. Let γ be a negative real

number. Let p : R → R ≡ R∪{∞} be a continuous and nonincreasing function such

that p(x) = 0 for x > 0, p(x) ∈ R for x > γ, and lim
xցγ

p(x) = ∞, where γ ∈ R

is a given bound of the interpenetration. Our problem is to find u ∈ X such that

u̇ ∈ X for which the following set of relations holds:

(1) ü = Au̇+Bu− E(u.u̇) + p(u+ g) + f in L2(Ω) on I,

D(u) = 0 ∈ Y,

u(0) = u0 ∈ X, u̇(0) = u1 ∈ X.

Here D is a general differential operator of a Dirichlet or somewhat combined type.

If X = H2(Ω), the space of square integrable functions having the first and second

generalized derivatives square integrable as well and A, B are differential operators
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of the fourth order then D(u) ≡ {D1(u), D2(u)}, D1(u) = u − u0 for both cases,

D2(u) = ∂ñ(u− u0) (the outer co-normal derivative) or D2(u) = M(u) a Neumann-

type operator, which ensures that after the integration by parts in the space variable

in the variational formulation of the problem no additional boundary term occurs.

The first couple describes a clamped plate while the second a simply supported plate.

Let us mention that p(u + g) stands there for the contact force, where g > 0 is the

time-independent and bounded gap function.

We will define a sequence of auxiliary approximate problems to (1) by adding

the following additional assumption on p: We assume the existence of a sequence

{δk} ⊂ R+ such that δk ց 0 and for each k ∈ N there is a left derivative ∂lp

at the points γ + δk, k ∈ N such that ∂lp(γ + δk) > ∂lp(γ + δk+1), k ∈ N, and

lim
k→∞

∂lp(γ + δk) = −∞. Then we define pk : y 7→ min{p, p(γ + δk) + ∂lp(γ + δk)×

(y − γ − δk)} for y 6 γ + δk, pk = p elsewhere and the auxiliary problem is defined

by the replacement of p by pk in (1).

Let us denote by 〈·, ·〉Ω the duality pairing between X and X∗ derived from the

L2(Ω) scalar product and by 〈·, ·〉Q the duality pairing between X and X ∗ derived

from the L2(Q) scalar product. Let X0 be a subspace of elements of X satisfying

the appropriate homogeneous Dirichlet boundary condition in (1). Moreover, let

X1 ≡ {v ∈ X0; v̇ ∈ L2(Q)}.

Multiplying the first row of (1) by a test function v ∈ X0 and performing the

integration by parts both in space variables and in time, we get the variational

formulation of the problem (1): Find u ∈ u0 + X0 such that u̇ ∈ X , the initial

condition for u from (1) holds and for every v ∈ X1 the equation

(2) −〈u̇, v̇〉Q + A (u̇, v) + B(u, v) + 〈E (u, u̇), v〉Q − 〈p(u+ g), v〉Q

+ 〈u̇(T, ·), v(T, ·)〉Ω = 〈f, v〉Q + 〈u1, v(0, ·)〉Ω

holds. For an approximate problem p is replaced by pk and the integration by parts

in time for the acceleration term is omitted:

(3) 〈ü, v〉Q + A (u̇, v) + B(u, v) + 〈E (u, u̇), v〉Q − 〈pk(u+ g), v〉Q = 〈f, v〉Q,

hence, it is sufficient to take the test functions from X0 here. Of course, we have to

require additionally that the initial condition for the velocity in (1) is satisfied.

In the sequel, we will assume that the operator E (v.v̇) ≡ {E(t)(v, v̇); t ∈ I} :

X 2 → X ∗ is completely continuous, or such that v 7→ 〈E (v.v̇), v〉Q is weakly lower

semicontinuous on X . Moreover, we assume that the initial conditions in (1) are

satisfied. Denoting It ≡ [0, t], Qt ≡ It×Ω, t ∈ (0, T ], we assume that 〈E (v, v̇), v̇〉Qt >

−const. (u0, u1) − k1‖v̇‖X − k0|v|L∞(It,X) for v ∈ X such that v̇ ∈ X and t ∈ I
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with all constants nonnegative (observe that an easy inequality g1g2 6 g21/ε + εg22
for gi ∈ R, i = 1, 2, and ε > 0 arbitrarily small as well as the Gronwall lemma are

needed here to derive an a priori estimate if the constants are not zero). Further,

we assume that

(4) u0 ∈ H2(Q) such that u0 > c0 on Q.

Here c0 is a positive constant.

The proof of solvability of the auxiliary problem (3) under the assumption (4) does

not differ from the proof of a penalized problem to the appropriate Signorini contact.

It is solved via the Galerkin approximation using just identical arguments, because in

this case the auxiliary contact term represents a completely continuous perturbation

of the appropriate problem without contact. By putting v = (u̇k − u̇0)χQt in (2)

with pk, where χM is the characteristic function of a set M (equal 1 on M and

vanishing elsewhere), t ∈ (0, T ], we get (after a certain small and obvious calculation)

the a priori estimate of the respective solutions uk to the approximate problems

with pk

(5) ‖u̇k‖
2
L∞(I;L2(Ω)) + ‖uk‖

2
L∞(I;X) + ‖u̇k‖

2
X + ‖Pk(uk + g)‖L∞(I;L1Ω) 6 const.,

where Pk : s 7→
∫∞

s pk(z) dz, s ∈ R. Let us take in mind that L1(Ω) ⊂ L∞(Ω)∗ →֒X∗,

because for the primal spaces the compact reverse embeddings hold. Since

‖pk(uk + g)‖L1(Q) 6 c−1
0 〈pk(uk + g), u0 − uk〉Q

(observe that xpk(x) 6 0, x ∈ R), the use of (2) for p = pk and v = u0 − uk and

the estimate (5) yield that the sequence {‖pk(uk + g)‖L1(Q)} is bounded. Then we

derive from this and (1) the dual estimate

(6) ‖ük‖L1(I;X∗) 6 const.

with the constant independent of k. Hence {u̇k} is bounded inW
1−ε1
1+ε2

(I;H−2−ε3(Ω))

for any ε2 > 0, ε3 > 0 and for ε1 ≡ ε1(ε2) ց 0 if ε2 ց 0. Interpolating this space

with the space Lq(I;L2(Ω)) for q = 1 + 1/ε2, we get that

(7) ‖u̇k‖H1/2(I;H−1−θ(Ω)) 6 C, i.e. ‖uk‖H3/2(I;H−1−θ(Ω)) 6 C

with 0 < θ arbitrarily small.

Interpolating this result with the third term in (5), we get

(8) {u̇k} is bounded in Hθ(I;L2(Ω)) for any θ ∈ (0, 1/3),
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i.e. {uk} is bounded in the anisotropic space H
1+θ,2(Q), and with help of the exten-

sion of the functions from Ω to R2, the Fourier transform, and the Hölder inequality

we can find for any θ ∈ (0, 1
3 ) an index θ0 > 0 such that

(9) {uk} is bounded in H(1+θ)/2(I;H1+θ0(Ω)) →֒→֒ C0(Q).

By virtue of (5), (6), (8), and (9) we get certain u and ϑ such that the convergences

(10) uk ⇀∗ u in L∞(I;X), u̇k ⇀∗ u̇ in L∞(I;L2(Ω)),

u̇k → u̇ in L2(Q), uk → u in C0(Q),

〈E (uk, u̇k), uk〉Q → 〈E (u, u̇), u〉Q or

lim inf
k→∞

〈E (uk, u̇k), uk〉Q > 〈E (u, u̇), u〉Q,

pk(uk + g) ⇀∗ ϑ in L∗
∞(Q)

hold for a possible subsequence. Observe that if v is a function such that p(v+ g) ∈

L1(Q) then
∫
Q pk(v + g)w dxdt → p(v+ g)w dxdt e.g. for any function w ∈ L∞(Q).

Indeed, if w > 0 this follows from the monotone convergence theorem. For a generalw

we use its decomposition to the positive and negative parts.

Performing the integration by parts in time for the acceleration term and putting

v = uk − u0 in (2) with pk and v = u − u0 in the original (2), using the weak lower

semicontinuity of the elliptic operators and the strong convergence of the others, we

get 〈ϑ, u〉Q > lim sup
k→∞

〈pk(uk + g), uk〉Q. In the sequel, we will denote the last fact

as the upper semicontinuity of the contact term 〈pk(uk + g), uk〉Q (i.e. with respect

to k) and we will see it is common for all problems treated in this paper.

Since pk are monotone, k ∈ N, this yields 〈ϑ − p(v + g), u − v〉Q > 0 for every

v ∈ X0 such that p(v) ∈ L1(Q). Hence {ϑ, u} may be added to the graph of p so

that the extended graph remains monotone. Observe that u + g > u0 on S, hence

its continuity ensures the existence of some neighbourhood U of S, where u + g is

bounded away from γ and the Fatou Lemma ensures 〈ϑ, v〉Q > 〈p(u+g), v〉Q for every

nonnegative v ∈ X0. Since it is surely possible to construct such nonnegative v ∈ X0

that v = 1 on Q\U , it is evident that p(u+g) ∈ L1(Q). Moreover, the superposition

operator p is the derivative of the superposition operator P which is convex and lower

semicontinuous. Since every Hilbert space satisfies the corresponding requirements,

Theorem 5.1.7 of the monograph [5] ensures its maximal monotonicity taken as an

operator from X1 into X ∗
1 . This yields that ϑ = p(u + g), hence u is a solution of

the variational equation (2) and we are done. We have proved:

Theorem 6. Under the above mentioned assumptions for the employed operators

and the function p there exists a solution to the problem (2).
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E x am p l e 1. A biharmonic plate. Here D = ∆, a, b are positive constants and

E = 0.

E x am p l e 2. A von Kármán plate without rotation inertia. First we introduce

for two functions u, v

(11) [u, v] = ∂11∂22v + ∂22u∂11v − 2∂12u∂12v,

where here and in the sequel ∂i ≡ ∂/∂xi, i = 1, 2, ∂t ≡ ∂/∂t and ∂ij ≡ ∂i∂j ,

i, j = 1, 2. Then we define the bilinear operator Φ : H2(Ω)2 → H̊2(Ω) by means of

the variational equation

(12)

∫

Ω

∆Φ(u, v)∆ϕdx =

∫

Ω

[u, v]ϕdx, u, v, ϕ ∈ H̊2(Ω).

The equation (12) has a unique solution, because [u, v] ∈ L1(Ω) →֒ H2(Ω)∗. The

well-defined operator Φ is compact and symmetric. Let us recall Lemma 1 from [10]

due to which Φ : H2(Ω)2 → W 2
p (Ω) for any p ∈ (2,∞), and

(13) ‖Φ(u, v)‖W 2
p (Ω) 6 c‖u‖H2(Ω)‖v‖W 1

p (Ω) ∀u, v ∈ H2(Ω)2,

i.e. w 7→ Φ(w,w) is completely continuous from Hδ(Q) ∩ X to X for any δ > 0.

To avoid the introduction of the Airy stress function, we introduce directly the

variational formulation. For this we introduce

(14) A0 : {u, y} 7→ b0(∂llu∂lly + ν(∂11u∂22y + ∂22u∂11y)

+ 2(1− ν)∂12u∂12y), b0 = const. > 0,

where ν ∈ (− 1
2 , 1) is a material constant (the Poisson ratio) and the standard sum-

mation convention for the repeating index l is applied. Then we define 〈A u̇, v〉Q as

e1
∫
Q A0(u̇, v) dxdt, 〈Bu, v〉Q as e0

∫
Q A0(u, v) dxdt, E : u 7→ b([u, e1∂t∆Φ(u, u) +

e0∆Φ(u, u)]), where e1, e0 are other material constants (the Young moduli) which

are positive. With such defined mappings the variational formulation of the problem

has exactly the form of (2). It is easy to derive that

(15) 〈E (uk, u̇k), uk〉Q =
1

2

∫

Q

(e1/2 ∂t(∆Φ(uk, uk))
2 + e0(∆Φ(uk, uk))

2) dxdt

(cf. [1]). Hence it satisfies the corresponding requirements and the quadratic forms

generated by so defined A , B, 〈E ·, ·〉Q are weakly lower semicontinuous and we are

done. We remark that M(u) = b(e1m(u̇) + e0m(u)), where m(u) = ∆u + (1 − ν)

(2n1n2∂12u− n2
1∂22u− n2

2∂11u).
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E x am p l e 3. A simply supported von Kármán plate with the rotation iner-

tia. Here the original structure (1) is enriched by the additional term Gu = g0∆ü

on the right-hand side of the first row of (1). If g0 is just a positive constant,

then this term contributes (after the obvious integration by parts) to the exten-

sion of the a priori estimate (5) by the term ‖∇u̇k‖
2
L2(I;L2(Ω)). The dual estimate

‖g0∆ük − ük‖L2(I,X∗) 6 const. is here k-dependent. After integration by parts

this gives sup
v∈L2(I;X), ‖v‖61

〈ü, g0∆v − v〉Q 6 const. The operator g0∆ − I, where I

is the identity, is an isometry between the space X = H2(Ω) ∩ H̊1(Ω) and L2(Q),

hence the dual estimate yields ük ∈ L2(Q). In further treatment an additional

lower semicontinuous term 〈g0∇u̇,∇u̇〉Q occurs, which does not change the treat-

ment of the limit process from the approximate to the original problem. In fact,

from the k-independent L1(Q) estimate of the approximate contact term we get (us-

ing again the properties of the operator g0∆ − I) the k-independent dual estimate

‖ük‖L1(I;L2(Ω)) 6 const. The strong convergences of uk and u̇k from (10) hold as well

as the upper semicontinuity of the contact term with respect to k. Hence, we are

in the same situation as above, and via the maximal monotonicity argument we are

done.

4. Von Kármán model with a singular memory

Let us introduce the kernel K of the singular memory term which is assumed to

be integrable over R+ and to have the form

(16) K : t 7→ t−2αq(t) + r(t), t ∈ R+ ≡ (0,∞) with α ∈ (0, 1
2 ),

K : t 7→ 0, t 6 0.

Both q and r belong to C1(R+), they are nonnegative and nonincreasing functions.

Moreover, we assume that q(t) > 0 for t on an nonempty interval [0, t0]. Let us

denote dm : v 7→
∫ t

0 K(t− s)(v(t, ·) − v(s, ·)) ds for a function v on Q. Let us point

out that

(17) 〈dmv, v̇〉Q =

∫

Q

∫ T

s

1

2
(∂t(K(t− s)(v(t)− v(s))2)

− (v(t) − v(s))2∂tK(t− s)) dxdt ds

=

∫

Q

1

2
K(T − s)(v(T )− v(s))2 dxds

−

∫

Q

∫ t

0

1

2
K ′(t− s)(v(t)− v(s))2 dxdt ds
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holds and the second term in this formula leads to the fractional time-derivative

norm of v. We recall that such a norm used in the sequel is for a Banach space X

defined as follows:

‖v‖2Hα(I;X) ≡

∫

I

‖v‖2X dt+

∫

I

∫

I

‖v(t)− v(s)‖2X
|t− s|1+2α

ds dt.

We solve the problem

ü− e1dmAu − e0Au+ E0u = f + p(u+ g) on Q,(18)

u = 0, M(u) = 0 on S, u = u0, u̇ = u1 on Ω.

Here A is the fourth order elliptic operator of the form similar to that of A0 defined

in (14), i.e.

(19) b0(∂ll∂ll + ν(∂11∂22 + ∂22∂11) + 2(1− ν)∂12∂12)

and

E0 : u 7→ [u, e1dm∆Φ(u, u) + e0∆Φ(u, u)],

M(u) = e0dmm(u) + e1m(u),

where m(u) = ∆u+ (1 − ν)(2n1n2∂1,2u− n2
1∂2,2u− n2

2∂1,1u)

for a simply supported plate,

M(u) = ∂u/∂n for the clamped plate.

To be able to handle the singular memory term it is necessary to assume its

smallness as follows

(20)

∫ ∞

0

K(s) ds <
e0
2e1

,

which ensures that the quadratic form

(21) Z : V 7→

∫

Q

(e1dmV + e0V )V dxdt, V ∈ L2(Q),

is strongly monotone.

We introduce the variational formulation of the problem. Let X = H2(Ω) ∩

H̊1(Ω) for the simply supported plate and X = H̊2(Ω) for the clamped plate. The
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formulation reads: Find u ∈ L2(I;X)∩H1(I;L2(Ω)) such that u(0, ·) = u0 is satisfied

and for every y ∈ L2(I;X0) ∩H1(I;L2(Ω)) the equation

(22)

∫

Q

(e1dmA0(u, y) + e0A0(u, y)− u̇ẏ + E0uy − p(u+ g)y − fy) dxdt

+

∫

Ω

(−(u̇y)(T, ·) + u1(y(0, ·))) dx = 0

holds with A0 from (14). We will solve this problem assuming that (4) holds.

We formulate the approximate problem again by replacing p by pk, but unlike (22)

no integration by parts in time for the acceleration term is applied, hence the test

function may be taken just from X0. However, the initial condition for u̇ from (18)

must be added, cf. the difference between (2) and (3). It is solved again by the

standard Galerkin procedure, for details cf. [2]. To get the k-independent a priori

estimate for their solution, y = u̇k − u̇0 must be taken. After some calculation we

finally obtain

(23) ‖uk‖
2
Hα(I;H2(Ω)) + ‖u̇k‖

2
L∞(I;L2(Ω)) + ‖uk‖

2
L∞(I;H2(Ω))

+ ‖Φ(uk, uk)‖
2
Hα(I;H2(Ω))

+ ‖Pk(u+ g)‖L∞(I;L1(Ω)) 6 c ≡ c(f, u0, u1).

The assumed smallness of the memory term yields again the uniform estimate of

{‖pk(u + g)‖L1(Q)} which leads to the dual estimate ‖ük‖L1(I;X∗) 6 const. Hence,

the estimate (7) is valid also for this problem. Interpolating it with the fact that

{uk} is bounded in H
α(I;H2(Ω)), we get that {u̇k} is bounded in H

θ1(I;L2(Ω)) for

θ1 ∈ (0, α/3). Interpolation of this space with the time-fractional derivative space

from (23) gives the space L2(I;H
θ2(Ω)) with θ2 ∈ (0, 2α/(3 − 2α)), hence {u̇k} is

bounded in the anisotropic space Hθ1,θ2(Q). This space is compactly imbedded into

L2(Q), which ensures that 〈u̇k, u̇k〉Q tends strongly to the limit 〈u̇, u̇〉Q even for the

weak convergence of uk in the employed spaces. Moreover, we are able to prove the

relation (9) for θ ∈ (0, α/3), hence uk → u in C0(Q). Similarly to (15) we can derive

that

〈E0uk, uk〉Q =

∫

Q

(e1∆dmΦ(uk, uk)∆Φ(uk, uk) + e0(∆Φ(uk, uk))
2) dxdt.

The compactness of Φ based on (13) and the fractional time-derivative norm in (23)

yield the needed strong convergence of this term. Hence, we are ready for the limit

procedure k → ∞ to prove again the upper semicontinuity of 〈pk(uk + g), uk〉Q and

with the maximal monotonicity argument to prove pk(uk + g) ⇀ p(u + g). Thus u
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is a solution of (22) and with the additional assumption (20) the existence theorem

is proved also for this problem.

5. The problem for more complex viscoelastic plate models

In this section we will treat the Reissner-Mindlin plate model as well as the full von

Kármán system. The plates are again in contact with the limited interpenetration

with the foundation.

5.1. Contact of Reissner-Mindlin plates. This 2nd order model besides the

vertical deflection u involves the 2D-vector ϕ of angles of rotations of the cross

sections of the plate. We denote by S the set of symmetric 2 × 2 tensors with the

product κ ⊙ λ = κijλij , where the Einstein summation convention (summing over

repeated indices) is employed. Moreover, for ω ≡ {ωij , i, j = 1, 2} ∈ S we denote

Divω ≡ (∂iω1i, ∂iω2i) and trω = ω11 + ω22.

With the notation

(24) J(u,ϕ) = e1(∇u̇+ ϕ̇) + e0(∇u+ϕ),

Ci(ω) =
c̃

1− ν2i
(νi(trω)IS + (1− νi)ω), ω ∈ S, i = 0, 1,

where IS is the unit matrix in S, c̃, e0, e1 are given positive constants, and the

Poisson ratio νi ∈ (−1, 1/2), i = 0, 1, the classical formulation of the viscoelastic

(“short memory”) problem is as follows: We look for (u,ϕ) such that the system

(25)
ü− div J(u,ϕ) = f + p(u+ g),

ϕ̈−Div(C1(ε0(ϕ̇)) + C0(ε0(ϕ))) + J(u,ϕ) =M

}
on Q,

the boundary value conditions

(26)
u = u0, ϕ = 0 for a clamped plate,

u = u0, (C1(ε0(ϕ̇)) + C0ε0(ϕ))·n = 0 for a simply supported one

}
on S,

and the initial conditions

(27)
u(0, ·) = u0, u̇(0, ·) = u1,

ϕ(0, ·) = ϕ(0), ϕ̇(0, ·) = ϕ(1)

}
on Ω

are satisfied. Here ε0 is the standard 2D linearized strain tensor and n is the unit

outer normal vector. We assume that the function p satisfies all the assumptions

listed at the beginning of Section 3, we assume that (4) still holds, in particular
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the positive function u0 is again bounded away from 0. Moreover, we assume that

ϕ(1) ∈ L2(Ω), ϕ
(0) ∈H1(Ω) andM ∈ L2(Q).

The variational formulation of the problem based on appropriate integrations by

parts has the following form: Look for {u,ϕ} ∈ (u0 + L2(I; H̊
1(Ω)) ×X(Q) such

that u̇ ∈ L2(I;H
1(Ω)), ϕ̇ ∈ L2(I;X(Ω)), ϕ̈ ∈ L2(Q), the first condition in the first

row and the second row of the initial conditions (27) are satisfied and the system

(28)

∫

Q

(J(u,ϕ) · ∇y − u̇ẏ − p(u+ g)y) dxdt

=

∫

Ω

(u1y(0, ·)− u̇(T, ·)y(T, ·)) dx+

∫

Q

fy dxdt,

∫

Q

(ϕ̈ ·ψ + (C1(ε0(ϕ̇)) + C0(ε0(ϕ))) ⊙ ε0(ψ) + J(u,ϕ) ·ψ) dxdt

=

∫

Q

M · ψ dxdt

holds for any {y,ψ} ∈ H̊1(Q) × L2(I,X(Ω)). Here X stands for H̊1 and H1 for

clamped and simply supported plates, respectively.

As in the previous cases we introduce the approximate problems by replacing the

original function p by the approximate function pk, by omitting the integration by

parts in time for the acceleration term in the first row of (28) and by adding the

initial conditions for u̇ from (27). Hence, it has the form

(29)

∫

Q

(J(uk,ϕk) · ∇y + üky) dxdt =

∫

Q

(f + pk(uk + g))y dxdt.

We put {y,ψ} = {u̇k − u̇0, ϕ̇k} as the test function of the approximate system and

integrate on the interval [0, s], s 6 T . Adding both lines of (28) and using the

standard integration by parts, we get

(30)

∫

Qs

(1
2
∂t(u̇

2
k + e0|∇uk +ϕk|

2 + |ϕ̇k|
2 + C0(ε0(ϕk))⊙ ε0(ϕk) + Pk(uk + g))

+ e1|∇u̇k + ϕ̇k|
2 + C1(ε0(ϕ̇k))⊙ ε0(ϕ̇k)

)
dxdt

=

∫

Qs

(fu̇k +Mϕ̇k) dxdt+

∫

Qs

R(u̇0) dxdt,

where in R(u0) we sum up all the terms containing u̇0, or its derivatives. From

the positive definiteness of the tensors Ci and the last identity we derive after some
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calculation the a priori estimate

(31) ‖u̇k‖
2
L∞(I;L2(Ω)) + ‖ϕ̇k‖L∞(I;L2(Ω)) + ‖u̇k‖

2
L2(I;H1(Ω))

+ ‖ϕ̇k‖
2
L2(I;H1(Ω)) + ‖uk‖

2
C(I;H1(Ω))

+ ‖ϕk‖
2
C(I;H1(Ω))

+ ‖Pk(uk + g)‖L∞(I;L1(Ω))

6 c ≡ c(f,M , u0, u1,ϕ
(0),ϕ(1)).

Observe that this estimate is k-independent.

We continue with the estimates of the acceleration terms. After using {ük−ü0, ϕ̈k}

as the test function, we obtain

‖ϕ̈k‖
2
L2(Q) 6 c,(32)

‖ük‖
2
L2(Q) 6 ck, k ∈ N.(33)

From (31) it is easy to see that (32) is again k-independent. However, (33) depends

on k and for the limit process k → ∞ it has to be replaced by the dual estimate of

ük based on the uniform estimate of ‖pk(uk+g)‖L1(Q) which is obtained in the same

way as in Section 3.

These approximate problems are solved by means of the Galerkin approximation.

Since they do not structurally differ from the penalized problems for the Signorini

contact (in both described cases the approximate contact term represents a compact

perturbation of the noncontact problems) and we are focused here on the difference

between the rational contact with limited interpenetration and the Signorini contact,

we omit details of this well-known process here and refer the readers to [4] for them.

To derive the crucial dual estimate of ük we can use the general abstract approach

of Section 2. However, the space H1(Ω) is not imbedded into L∞(Ω), hence we must

use X = H1(Ω)∩L∞(Ω) here. The resulting estimate (6) yields the required strong

convergence of u̇k in L2(Q) in the process k → ∞ via the Aubin Lemma. We put

{y,ψ} = {uk − u0,ϕk} in (28) and add both equations. We get

(34)∫

QT

(−u̇2
k + e0|∇uk +ϕk|

2 + |ϕ̇k|
2 +C0(ε0(ϕk))⊙ ε0(ϕk) + pk(uk + g)(uk − u0))

+ ∂t(e1|∇uk +ϕk|
2 +C1(ε0(ϕk))⊙ ε0(ϕk)) dxdt

=

∫

QT

(fu̇k +Mϕ̇k) dxdt+

∫

QT

R1(u0, u1) dxdt,

where R1 contains all the remaining terms. Obviously they contain u0 or u1 or

their derivatives. This identity shows again that it belongs to the abstract structure

described in Section 3. Besides weakly lower semicontinuous elliptic terms and weakly
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continuous terms as u̇2
k and R1 the only remaining term, the contact one, must be

upper semicontinuous. Let {u,ϕ} be the weak limit of {uk,ϕk} such that all their

derivatives mentioned in (31) tend weakly or weakly∗ to the derivatives of u in their

respective spaces.

We have not the strong convergence of uk in C0(Q), but we can reiterate from the

form of (28) with no integration by parts in time performed and with test functions

from H ≡ {v ∈ H1(Q);u|S = 0} so that the sequence {p(uk + g)} is bounded

in H ∗ and we can assume that p(uk + g) ⇀ ϑ in H ∗. We take v ∈ H such that

p(v + g) ∈ L1(Q). Since uk ⇀ u in H , uk → u in L2(Q). Simultaneously, both

sequences of their respective positive and negative parts are bounded inH and they

have some accumulation points. However, their strong L2(Q) convergence shows

that the only accumulation points can be u±. We have 0 6 〈pk(v+g), (uk−u)±〉Q 6

〈p(v+g), (uk−u)±〉Q → 0, hence 〈pk(v+g), (uk−u)〉Q → 0. and 〈pk(v+g), uk〉Q →

〈p(v + g), u〉Q. Moreover, p(u + g) ∈ H ∗, because for a nonnegative v ∈ H the

inequality 〈ϑ, v〉Q > 〈p(u+ g), v〉Q > 0 follows from the Fatou Lemma, therefore the

last duality is finite for every v ∈ H . So we can use again the maximal monotonicity

argument on H to prove that ϑ = p(u+ g). and u satisfies (28) and we are done.

In the classical formulation of the Reissner-Mindlin plate with singular memory

we replace all the “short memory” terms in J and C1 (i.e. the terms containing

the time derivatives) by the corresponding singular memory terms (the dm versions

of the elastic terms), where we use again the kernel K defined in (16). There-

fore, J(u,ϕ) ≡ e0(∇u+ϕ) + e1dm(∇u +ϕ). With this modification the structure

of (25), (26), and (27) remains preserved. We assume again the sufficient smallness

of the memory. To get it exactly in the form (20) we assume ν1 = ν0.

We present explicitly its variational formulation which reads: Look for {u,ϕ} ∈

(u0+ H̊1(Q))×L2(I;X(Ω)) such that ϕ̈ ∈ L2(Q), the first condition in the first row

and the second row of (27) are satisfied and the system

(35)

∫

Q

(J(u,ϕ) · ∇y − u̇ẏ) dxdt

=

∫

Ω

(u1y(0, ·)− u̇(T, ·)y(T, ·)) dx+

∫

Q

(f + p(u+ g))y dxdt,

∫

Q

(ϕ̈ · ψ + (C1(dmϕ) + C0(ϕ)) ⊙ ε0(ψ) + J(u,ϕ) · ψ) dxdt

=

∫

Q

M · ψ dxdt

holds for any {y,ψ} ∈ L2(I;H
1(Ω)) × L2(I,X(Ω)). Here again X stands for H̊1

and H1 for clamped and simply supported plates, respectively.
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We formulate again the approximate problems by replacing the function p by pk,

by omitting the integration by parts at the acceleration term and by adding the

initial conditions for u̇ from (27). We solve this problem via the Galerkin method

as usual. We again omit here the details referring the readers to the paper [4].

Since it is not clear at the beginning whether the velocity u̇k possesses the required

qualities of the test function, the a priori estimates have been derived there for the

finite-dimensional space approximations and then the limit process to the original

infinite-dimensional space has been performed. However, the result is the same as if

we put formally {u̇k − u̇0, ϕ̇k} as the test function.

Summing up the two equations and limiting the integration to the cylinder Qs for

s 6 T , we obtain using the properties of the kernel function K the identity

(36)

∫

Qs

(1
2
∂t(u̇

2
k + e0|∇uk +ϕk|

2 + |ϕ̇k|
2 + C (ε0(ϕk))⊙ ε0(ϕk) + Pk(uk + g))

+
e1
2
K(s− t)|∇(uk(s)− uk(t)) +ϕk(s)−ϕk(t)|

2

+
1

2
K(s− t)C (ε0(ϕk(s)−ϕk(t)))⊙ ε0(ϕk(s)−ϕk(t))

)
dxdt

−
e1
2

∫

Qs

∫ t

0

K ′
t(t− τ)|∇(uk(t)− uk(τ)) +ϕk(t)−ϕk(τ)|

2 dτ dxdt

−
1

2

∫

Qs

∫ t

0

K ′
t(t− τ)C (ε0(ϕk(t)−ϕk(τ)) ⊙ ε0(ϕk(t)−ϕk(τ)) dτ dxdt

=

∫

Qs

(fu̇k +Mϕ̇k) dxdt.

By virtue of (16), (20) the identity (36) leads to the a priori estimates independent

of k ∈ N:

(37) ‖u̇k‖
2
L∞(I;L2(Ω)) + ‖ϕ̇k‖

2
L∞(I;L2(Ω)) + ‖uk‖

2
Hα(I;H1(Ω))

+ ‖ϕk‖
2
Hα(I;H1(Ω)) + ‖uk‖

2
L∞(I;H1(Ω))

+ ‖ϕk‖
2
L∞(I;H1(Ω)) + ‖Pk(uk + g)‖L∞(I;L1(Ω))

6 c ≡ c(f,M , u(0), u(1),ϕ(0),ϕ(1)).

The estimate of the accelerations is a straightforward consequence of the a priori

estimate (37) and the approximate system to (35) and has the form:

‖ϕ̈k‖
2
L2(I;(H1(Ω))∗) 6 c,(38)

‖ük‖
2
L2(I;(H1(Ω))∗) 6 ck(39)

(the first of them is again k-independent).
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For the limit process k → ∞ we can get the dual estimate ‖ük‖L1(I;H−1−ε̃(Ω)) 6

const. via the L1 estimate of the approximate contact term (cf. (6)) if we employ

the dual embedding H1+ε̃(Ω) →֒ L∞(Ω) for any ε̃ > 0. Then the sequence {u̇k} is

bounded in W 1−ε1
1+ε2

(I;H−1−ε̃(Ω)) for any ε2 > 0 and ε1 ≡ ε1(ε2) ց 0 if ε2 ց 0.

Simultaneously it is bounded in Lq(I;L2(Ω)) for any q > 2. After interpolating the

spaces W 1−ε1
1+ε2

(I;H−1−ε0(Ω)) and Lq(I;L2(Ω)) for q > 1 + 1/ε2 we have

‖u̇k‖H1/2(I;H−1/2−ε3 (Ω)) 6 const., i.e. ‖uk‖H3/2(I;H−1/2−ε3 (Ω)) 6 const., k ∈ N,

where ε3 > 0 is arbitrarily small. Interpolating this result with the fact that {uk} is

bounded in Hα(I;H1(Ω)) for the given α ∈ (0, 1
2 ), we obtain that {uk} is bounded in

the spaceH1+θ(I;L2(Ω)) for any θ ∈ (0, α/3). Interpolating this result with the same

space, we get the boundedness of {uk} in H1(I;Hδ(Ω)) for any δ ∈ (0, α/(3− 2α)).

The intersection of both resulting spaces is obviously compactly imbedded into

H1(I;L2(Ω)), hence the strong convergence of the velocities is proved. As earlier, the

resulting upper semicontinuity of the contact term and the maximal monotonicity

argument for p on the space H leads to the fact that pk(uk + g) ⇀ p(u+ g) and the

existence of a solution to the system (35) is thus ensured.

5.2. Contact of viscoelastic plates described by full von Kármán system.

This model of plates describes the vertical deflection u as well as the horizontal ones

denoted by u ≡ {u1, u2}. We assume that the potential contact is both with the

foundation of the plate and on the boundary Γ. We preserve the notation of Ci

from (24), but the physical meaning of some terms may differ here from the previous

parts. Denoting

(40) C0 = e0C0(ε(u) + Ψ(∇u)),

C1 = e1C1(ε(u̇) + ∂tΨ(∇u)), Ψ(a) =
1

2
a⊗ a, a ∈ R2,

we state the classical formulation of the problem:

We look for {u, u} such that the system

(41)
ü−Div(C1 + C0) = F ,

ü− a∆ü+ b(e1∆
2u̇+ e0∆

2u)− div((C1 + C0)∇u) = f + p(u+ g)

}
on Q

holds, the boundary value conditions

(42)
(C1 + C0)n · n = q̃(ũn), (C1 + C0)n · τ = 0, u = u(0)

e1(∆u̇+ (1 − ν1)Bu̇) + e0(∆u + (1− ν0)Bu) = 0

}
on S
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with

ũn ≡ u · n, Bw = 2n1n2∂12w − n2
1∂22w − n2

2∂11w

are satisfied, and the initial conditions

(43) u(0, ·) = u(0), u̇(0, ·) = u(1), u(0, ·) = u(0), u̇(0, ·) = u(1) on Ω

are valid. Both functions p and q̃(−·) are assumed to satisfy all the conditions

for p in Section 2. We note that we assume our plate to be simply supported,

because it does not seem physically reasonable to consider the clamped plate with

the possible limited interpenetration on the boundary. The constants a, b, e0, e1 are

positive, the nonnegative function g is again the gap function. Of course, we can

introduce another gap function to the boundary contact, but it seems to have little

use in practical applications. Let us point out that the problem defined in this way

describes the behaviour of a cover of a fully recessed stack.

For z, y ∈ L2(I;H
2(Ω)) we define the following bilinear forms:

(44) Ai : (z, y) 7→ bei(∂kkz∂kky + νi(∂11z∂22y + ∂22z∂11y)

+ 2(1− νi)∂12z∂12y), i = 0, 1.

Then our problem has the following variational formulation:

Look for {u, u} ∈H1(Q)× (L2(I;H
2(Ω)) ∩ (u(0) + L2(I; H̊

1(Ω)))) such that u̇ ∈

L2(I;H
1(Ω)), u̇ ∈ L2(I;H

2(Ω)), the initial condition (43) holds for u and u and

the system

(45)

∫

Q

((C1 + C0)ε(y)− u̇ · ẏ) dxdt+

∫

Ω

((u̇ · y)(T, ·)− u1 · y(0, ·)) dx

=

∫

Q

F · y dxdt−

∫

S

q(ũn)yn dxs dt,

∫

Q

(A1(u̇, z) +A0(u, z) + [(C1 + C0)∇u] · ∇z)− u̇ż − a∇u̇ · ∇ż) dxdt

+

∫

Ω

((u̇z + a∇u̇ · ∇z)(T, ·)− u(1)z(0, ·)− a∇u(1) · ∇z(0, ·)) dx

=

∫

Q

(f + p(u+ g))z dxdt

is satisfied for every {y, z} ∈ Y with

(46) Y ≡ Y0 ∩ Yd with Y0 ≡ {L2(I;H
1(Ω))× (L2(I; H̊

1(Ω)) ∩ L2(I;H
2(Ω)))},

Yd ≡ {z ∈ Y0 ; ż ∈ L2(Q;R3)}.
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The approximate problems are defined as usual by replacing p, q by pk, qk, respec-

tively, and keeping acceleration terms in such modified system (45) in their original

form. Since this problem is remarkably more complex that all the previous ones and

leads to more complex formulae, we will denote the solution of this problem also by

{u, u}. Similarly to the previous problems this approximate problem is again solved

with help of the Galerkin approximation. Since there is no substantial difference

between it and the penalized problem treated in [3], we refer the readers to that

paper for details. To derive a priori estimates for the solutions of the approximate

problem we put χQs{u̇, u̇− u̇(0)} for s ∈ (0, T ] as a test function of the appropriate

variant of (45). We obtain after integration and summation

(47)∫

Qs

(1
2
∂t(u̇

2 + a|∇u̇|2 + |u̇|2 +C0(ε(u) +Ψ(∇u)) · (ε(u) +Ψ(∇u)) +A0(u, u))

+A1(u̇, u̇) +C1(ε(u̇) + ∂tΨ(∇u)) · (ε(u̇) + ∂tΨ(∇u)) + ∂tPk(u+ g)
)
dxdt

+

∫

S

∂tQ̃k(ũn) dxs dt =

∫

Qs

(F · u̇+ fẇ) dxdt+R(u(0)),

where Q̃ : r 7→
∫ r

−∞
q(ζ) dζ and R(u(0)) sums up all the terms containing u(0) or its

derivatives. Using the coercivity of the form Ai and the form of the operators Ci,

we obtain the estimate

(48) ‖u̇(s)‖2H1(Ω) + ‖u(s)‖2H2(Ω) + ‖u̇(s)‖2
L2(Ω) + ‖ε(u)(s) + Ψ(∇u)(s)‖2L2(Ω;S)

+ ‖u̇‖2L2(Is;H2(Ω)) + ‖ε(u̇) + ∂tΨ(∇u)‖2L2(Qs;S)

+ ‖Pk(u(s) + g)‖L1(Q) + ‖Q̃k(ũn(s))‖L1(S)

6 C(u(0),u(1), u(0), u(1),F , f) ∀ s ∈ (0, T ].

Applying the continuous imbedding H2(Ω) →֒ W 1
4 (Ω), we obtain the estimate

‖Ψ(∇u)(s)‖L2(Ω;S) + ‖∂tΨ(∇u)‖L2(Is;L2(Ω;S))

6 C(u(0),u(1), u(0), u(1),F , f) ∀ s ∈ (0, T ]

which implies

‖ε(u)(s)‖L2(Ω;S) + ‖ε̇(u)‖L2(Is;L2(Ω;S)) 6 C(u(0),u(1), u(0), u(1),F , f) ∀ s ∈ (0, T ].

Using the coerciveness of strains (see e.g. [6], Theorem 1.2.3) we obtain

‖u(s)‖H1(Ω) + ‖u̇‖L2(Is;H1(Ω)) 6 C(u(0),u(1), u(0), u(1),F , f)) ∀ s ∈ (0, T ],
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which together with (48) implies the a priori estimate

(49) ‖u̇‖L∞(I;L2(Ω)) + ‖u̇‖L2(I;H1(Ω)) + ‖u‖L∞(I;H1(Ω)) + ‖u̇‖L∞(I;L2(Ω))

+ ‖u̇‖L2(I;H2(Ω)) + ‖u‖L∞(I;H2(Ω))

+ ‖Pk(u + g)‖L∞(I;L1(Q)) + ‖Q̃k(ũn)‖L∞(I;L1(S)]

6 C(u(0),u(1), u(0), u(1),F , f).

Since there is no substantial difference between the proof of the solvability of our

approximate problem and that of the penalized problem treated in [3], we refer the

readers to that paper for details. Via the standard method it is proved that such

a solution is unique.

As in all previous problems the main task is to perform the limit process k → ∞ for

which the k-independent estimates of the acceleration terms are needed. To estimate

ük ∈ L2(I;H
−1(Ω)) we put an arbitrary w ∈ L2(I; H̊

1(Ω)) in the approximate

variant of (45) and use (49). To get the estimate ü ∈ L1(I;H
2(Ω)∗) we have to

assume (4) which yields the uniform estimate for ‖pk(uk + g)‖L1(Q) as in Section 3.

Then we are in the same situation as in Example 3, the Aubin Lemma gives us the

crucial strong L2(Q)-convergence of all components of velocities.

We take the space X0 ≡ L2(I;H
2(Ω)) ∩ L2(I; H̊

1(Ω)) for the operator p and the

trace space Y ≡ H1/4,1/2(S) for the operator q. Let ϑ be the weak limit of pk(uk+g)

both in X ∗
0 and in L∗

∞(Q) and ω the weak limit of qk((̃uk)n) both in Y ∗ and in

L∗
∞(S). As earlier the upper semicontinuity of 〈pk(uk)uk〉Q and 〈qk((̃uk)n)(̃uk)n〉S

has been proved with ϑ and ω, respectively. Using the same consideration as in

Section 3, we prove the maximal monotonicity of p onX0. The operator q is evidently

maximal monotone, too, cf. [9]. This yields that in fact ϑ = p(u+ g) and ω = q(ũn).

The existence of solutions to (45) is proved.

Similarly to the previous sections we can formulate the full von Kármán system

with the singular memory replacing all “short memory” terms in (41) and (45) by

the corresponding singular memory ones. As in the previous cases under the as-

sumption (20) it is possible to pass from the appropriate approximate problem to

the original one in such a way that the crucial strong convergence of velocities holds,

which leads to the same conclusion as mentioned in the previous paragraph. We take

the liberty of leaving this case to kind readers as an exercise.
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6. Relation to the Signorini contact

In this section we will prove that for a sequence of the problems with the thickness

of the interpenetration

(50) γl ր 0, l ∈ N,

there is a subsequence of their solutions called ul tending to a limit u which is

a solution of a problem without interpenetration, i.e. of the appropriate Signorini

version of the problem. Since there is the well-known generic nonuniqueness of

the solutions to the dynamic contact of the Signorini type related to the lack of

information about the amount of the energy conservation in the contact and thus

about the development of the solution after the contact, probably nothing more can

be proved in general.

The common feature of the problems treated in the previous sections is that the

estimates performed there as k-independent are also γ independent. Hence, if we

have a sequence ul tending weakly or weakly
∗ to u in the spaces for which the

a priori and dual estimates have been derived, we have the strong L2 convergence

u̇l → u̇. Obviously, for the full von Kámán system u̇l → u̇ in L2(Q) holds as well

(cf. [7]). Since ul + g > γl a.e. in Q, we have u+ g > 0 a.e. there. Moreover, for the

full von Kármán system we get similarly ũn 6 0. We define

(51) K ≡ {v ∈ X0; v > −g a.e. in Q} for problems in Sections 2, 3,

K ≡ {{v,ω} ∈ (u0 + H̊1(Q))×X(Q); v > −g a.e. in Q}

for Reissner-Mindlin plates,

K ≡ {{w, v} ∈ Y0; wn 6 0 a.e. in S, v > −g a.e. in Q}

for the full von Kármán system,

whereX(Q) = L2(I;X(Ω)), cf. (2), (28), and (46). Obviously in all cases p(v+g) = 0

if v is (possibly a component) from K and, moreover, q(wn) = 0 in the last case.

Denoting Θ ≡ lim
l→∞

〈pl(ul + g), ul〉Q and ϑ ≡ lim
l→∞

pl(ul + g), the monotonicity of pl

used for the couple {ul, u} yields Θ > ϑu. On the other hand, we can derive from (2)

(the solution there has to be denoted by ul) with v = ul − y, y ∈ K the opposite

inequality, because in general for y ∈ K the lower semicontinuity of A and B in

the limit process l → ∞ yields

(52) −〈u̇, ẏ − u̇〉Q + 〈A u, y − u〉Q + 〈Bu, y − u〉Q + 〈E u, y − u〉Q + 〈ϑ, y〉Q −Θ

+ 〈u̇(T, ·), (y − u)(T, ·)〉Ω > 〈f, y − u〉Q + 〈u1, y(0, ·)− u1〉Ω,
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and putting y = u we are done. Hence, (52) holds just without the terms with ϑ

and Θ and this is the exact formulation of the corresponding Signorini problem

with u being its solution. This pattern can be exactly followed also in all the other

cases, because their variational formulations contain only some lower semicontinuous

parts, strongly converging terms and linear terms for which the weak convergence is

sufficient. Hence, we prove everytimes Θ = 〈ϑ, u〉Q and then we can see that the re-

sulting limit variational inequality is the variational formulation of the corresponding

Signorini problem indeed. Of course, for Reissner-Mindlin plates we keep the second

equation of (28) in the original form observing that the convergences, which remain

weak there, are sufficient.

We only mention the full von Kármán system more in detail. We denote

Λ ≡ lim
l→∞

〈q((̃ul)n), (̃ul)n〉S and λ ≡ lim
l→∞

q((̃ul)n).

and derive immediately that Λ > 〈λ, ũn〉S . Denoting the solution of (45) by {ul, ul},

we put {v − ul, w − ul} as a test function in (45) for an arbitrary {v, w} ∈ K .

Then we perform the limit process l → ∞, denote by {u, u} the limit of {ul, ul} and

put {w, v} = {u, u} as a test function into the resulting inequality. Thus we find

Λ = 〈λ, ũn〉S from the first row of it while Θ = 〈ϑ, u〉Q. From this we get that the

resulting inequality is in fact the variational formulation of the Signorini contact for

the full von Kármán system and {u, u} is its solution.

7. Conclusion

The existence of solutions has been proved for the dynamic contact problems with

limited interpenetration for viscoelastic variants of several classical models of plates.

These results are now available for technical practice. Probably the most challenging

task for the application is the determination of the function p which describes the

interpenetration. Performing some sensitivity analysis with respect to its choice may

help here.

References

[1] I. Bock, J. Jarušek: Unilateral dynamic contact of viscoelastic von Kármán plates. Adv.
Math. Sci. Appl. 16 (2006), 175–187. zbl MR

[2] I. Bock, J. Jarušek: Unilateral dynamic contact of von Kármán plates with singular
memory. Appl. Math., Praha 52 (2007), 515–527. zbl MR doi

[3] I. Bock, J. Jarušek: Dynamic contact problem for a bridge modeled by a viscoelastic full
von Kármán system. Z. Angew. Math. Phys. 61 (2010), 865–876. zbl MR doi

[4] I. Bock, J. Jarušek: Unilateral dynamic contact problem for viscoelastic Reissner-
Mindlin plates. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods
74 (2011), 4192–4202. zbl MR doi

64

https://zbmath.org/?q=an:1110.35049
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2253231
https://zbmath.org/?q=an:1164.35447
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2357578
http://dx.doi.org/10.1007/s10492-007-0030-5
https://zbmath.org/?q=an:1273.74352
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2726632
http://dx.doi.org/10.1007/s00033-010-0066-3
https://zbmath.org/?q=an:1402.74068
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2803022
http://dx.doi.org/10.1016/j.na.2011.03.054


[5] J.M.Borwein, Q. J. Zhu: Techniques of Variational Analysis. CMS Books in Mathemat-
ics/Ouvrages de Mathématiques de la SMC 20, Springer, New York, 2005. zbl MR doi

[6] C.Eck, J. Jarušek, M.Krbec: Unilateral Contact Problems. Variational Methods and
Existence Theorems. Pure and Applied Mathematics (Boca Raton) 270, Chapman &
Hall/CRC, Boca Raton, 2005. zbl MR doi

[7] C.Eck, J. Jarušek, J. Stará: Normal compliance contact models with finite interpene-
tration. Arch. Ration. Mech. Anal. 208 (2013), 25–57. zbl MR doi

[8] J. Jarušek: Static semicoercive normal compliance contact problem with limited inter-
penetration. Z. Angew. Math. Phys. 66 (2015), 2161–2172. zbl MR doi

[9] J. Jarušek, J. Stará: Solvability of a rational contact model with limited interpenetration
in viscoelastodynamics. Math. Mech. Solids 23 (2018), 1040–1048. zbl MR doi

[10] H.Koch, A. Stachel: Global existence of classical solutions to the dynamical von Kármán
equations. Math. Methods Appl. Sci. 16 (1993), 581–586. zbl MR doi

[11] J.E. Lagnese: Boundary Stabilization of Thin Plates. SIAM Studies in Applied Mathe-
matics 10, Society for Industrial and Applied Mathematics, Philadelphia, 1989. zbl MR doi

[12] A.Signorini: Sopra alcune questioni di statica dei sistemi continui. Ann. Sc. Norm.
Super. Pisa, II. Ser. 2 (1933), 231–251. (In Italian.) zbl MR

[13] A.Signorini: Questioni di elasticità non linearizzata e semilinearizzata. Rend. Mat.
Appl., V. Ser. 18 (1959), 95–139. (In Italian.) zbl MR

Author’s address: Jiří Jarušek, Institute of Mathematics, Czech Academy of Sciences,
Žitná 25, 115 67 Praha 1, Czech Republic, e-mail: jarusek@math.cas.cz.

65

https://zbmath.org/?q=an:1076.49001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2144010
http://dx.doi.org/10.1007/0-387-28271-8
https://zbmath.org/?q=an:1079.74003
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2128865
http://dx.doi.org/10.1201/9781420027365
https://zbmath.org/?q=an:1320.74083
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3021543
http://dx.doi.org/10.1007/s00205-012-0602-8
https://zbmath.org/?q=an:1327.35364
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3412294
http://dx.doi.org/10.1007/s00033-015-0539-5
https://zbmath.org/?q=an:1401.74218
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3825900
http://dx.doi.org/10.1177/1081286517703262
https://zbmath.org/?q=an:0778.73029
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1233041
http://dx.doi.org/10.1002/mma.1670160806
https://zbmath.org/?q=an:0696.73034
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1061153
http://dx.doi.org/10.1137/1.9781611970821
http://www.emis.de/cgi-bin/JFM-item?59.0738.01
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1556704
https://zbmath.org/?q=an:0091.38006
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0118021

		webmaster@dml.cz
	2020-08-14T08:38:00+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




