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Abstract. We determine the distribution over square-free integers n of the pair

(dimF2
SelΦ(En/Q),dimF2

SelΦ̂(E′
n/Q)), where En is a curve in the congruent number

curve family, E′
n : y

2 = x3 + 4n2x is the image of isogeny Φ: En → E′
n, Φ(x, y) =

(y2/x2, y(n2 − x2)/x2), and Φ̂ is the isogeny dual to Φ.

Keywords: elliptic curve; congruent number problem; Selmer group

MSC 2010 : 11G05, 14H52, 11N45

1. Introduction

The elliptic curve E, described by the equation

E : y2 = x3 − x,

along with the family of its quadratic twists

En : y2 = x3 − n2x

(where n is an integer), is interesting, because the square-free integer n is a congruent

number if and only if the rank r(n) of En over Q is nonzero (see [8]). However, it is

difficult to determine the rank of an elliptic curve.

Instead of considering r(n), we may consider the Selmer group associated to iso-

genies on this curve. LetM2 be the multiplication by 2 map, let

Φ: En → E′
n
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be the degree 2 map whose codomain is

E′
n : y2 = x3 + 4n2x

defined by

Φ(x, y) =
( y2
x2

,
y(n2 − x2)

x2

)
,

and Φ̂ its dual isogeny (that is Φ ◦ Φ̂ = M2). Let us denote by Sel
M2(En), Sel

Φ(En)

and SelΦ̂(En) the 2-Selmer groups for these isogenies.

From [10] we see that for an odd square-free integer n = p1, . . . , pt (where pi are

prime factors), we may identify

SelΦ
(En

Q

)
∼= {d ∈ M : C1,d(Qv) 6= ∅ for all v ∈ S},

SelΦ̂
(E′

n

Q

)
∼= {d ∈ M : C′

1,d(Qv) 6= ∅ for all v ∈ S},

where M is a subgroup of the multiplicative group Q∗/(Q∗)2 generated by −1, 2,

p1, . . . , pt, S = {∞, 2, p1, . . . , pt}, and for each d ∈ M , sets C1,d and C′
1,d are the

homogeneous spaces corresponding to isogenies Φ and Φ̂. The problem of finding

|SelΦ(En/Q)| and |SelΦ̂(E′
n/Q)| is equivalent to determining how many homogeneous

spaces C1,d and C′
1,d, respectively, have nontrivial solutions over certain local fields.

Then, a graph G1(n) = (V1, E1) was constructed in [10] such that d = p1, . . . , pr

was in SelΦ(En/Q) (where V1 = {p1, . . . , pt}) if and only if the partition

{p1, . . . , pr} ∪ {pr+1, . . . , pt}

was even (as defined in Definition 2.2). Thus, SelΦ(En/Q) has cardinality equal

to the number of these partitions of graph G1(n). Similarly, a graph G2(n) can

be constructed such that SelΦ̂(E′
n/Q) has cardinality equal to the number of even

partitions of G2(n).

Remark 1.1. Cardinalities of these Selmer groups can thus be expressed as

22+s(n), 2s
Φ(n) and 22+sΦ̂(n) (as seen in [10]).

An important inequality related to our problem is

r(n) 6 s(n),

which gives a little information as to how likely it is that n is a congruent number.

This method has been applied many times (for instance, [2], [3], [4], [5], [6], [10], etc.).
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Another approach is to use the fact that r(n) 6 sΦ(n) + sΦ̂(n). Since sΦ(n)

and sΦ̂(n) are related to the problem of congruent numbers in this way, it is natural

to study their joint distribution (sΦ(n), sΦ̂(n)).

Rhoades determined the probability that a square-free integer n withm prime fac-

tors has (sΦ(n), sΦ̂(n)) = (0, 0) in [9]. He utilized a form of representing elements of

Selmer groups by even partitions of certain graphs similar to [10]. If n ≡ ±3 (mod 8),

then (sΦ(n), sΦ̂(n)) = (0, 0) if and only if the following three conditions are satisfied:

(1) n ≡ 3 (mod 8),

(2) n = p1, . . . , pm ≡ 3 (mod 4), where p1 ≡ 3 (mod 4) and pj ≡ 1 (mod 4) for

2 6 j 6 m,

(3) G(n) is an odd graph,

where G(n) is constructed as in Proposition 2.3. First, the density of integers satisfy-

ing necessary congruence conditions was calculated, and then amongst those integers

the density of integers such that G1(n) was an odd graph was determined.

In [7], Kane and Klagsbrun determine the distribution of dimF2
SelΦ(En/Q) when

dimF2
SelΦ(En/Q)− dimF2

SelΦ̂(E′
n/Q) = u for a fixed integer u, where En are the

quadratic twists of E (where E is an elliptic curve with E(Q)[M2] ∼= Z/2Z that has

no cyclic 4-isogeny defined over Q(E[M2]), and n ranges over square-free integers

such that |d| 6 X), and Φ and Φ̂ are dual, degree two isogenies on E.

Heath-Brown has found the number of square-free integers n 6 X such that

s(n) = r in [5] and [6], where r is an integer. Heath-Brown remarked in [6], page 336

that the problem of determining the density of integers n such that s(n) = r should

be regarded also for integers with a fixed number of prime factors.

In this paper we calculate the joint distribution for (sΦ(n), sΦ̂(n)) over odd, square-

free integers n as in [7], with the added condition that the integers n have a fixed

number of prime factors. This is why we use the description of the Selmer groups

from [10]. Then, in Section 3, we will give the distribution in the case when n ≡ ±3

(mod 8) (Theorem 1.2), and in Section 4 when n ≡ ±1 (mod 8) (Theorem 1.3).

Theorem 1.2. For m ∈ N, p and q nonnegative integers, and X > 0 a real num-

ber, let α(X ; p, q,m) be the probability that a square-free integer n 6 X congruent

to ±3 (mod 8), with m prime factors has (sΦ(n), sΦ̂(n)) = (p, q). When X → ∞, we

have:

(1) If q > p+ 1, we have

α(X ; p, q,m) =
∑

t1+t2=m−q+p−1
s1+s2=q−p+1

t2+s1≡1 (mod 2)

(1 + o(1))
m!

t1! t2! s1! s2!

1

4m

m−q−1∑

k=0

sym(m− q + p− 1, k)

× Em−q+p−1−k,q−p(m− q − 1− k),

where sym is as in Definition 2.11, and E is as in Proposition 2.9.
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(2) If q = p, we have

α(X ; q, q,m) =
∑

t1+t2=m−1
s1+s2=1

t2+s1≡1 (mod 2)

(1 + o(1))
m!

4mt1! t2!
sym(m− 1,m− 1− q).

(3) If p = q + 1, we have

α(X ; q + 1, q,m) =
∑

t1+t2=m
t2≡1 (mod 2)

(1 + o(1))
m!

4mt1! t2!
par(m, q),

where par(m, q) is as in Proposition 2.4.

(4) If q < p− 1, q > m+ p− 1 or m < q + 1, then

α(X ; p, q,m) = 0.

Theorem 1.3. For m ∈ N, p and q nonnegative integers, and X > 0 a real num-

ber, let β(X ; p, q,m) be the probability that a square-free integer n 6 X congruent

to ±1 (mod 8), with m prime factors has (sΦ(n), sΦ̂(n)) = (p, q). When X → ∞, we

have:

(1) If q > p, we have

β(X ; p, q,m) =
∑

t1+t2=m−q+p−2
t2 6=0

s1+s2=q−p+2
t2+s1≡0 (mod 2)

(1 + o(1))
m!

t1! t2! s1! s2!

1

4m

×

{m−q−2∑

k=0

sym(m− q + p− 2, k)Em−q+p−2−k,q−p(m− q − 2− k)2−q

+

m−q−3∑

k=0

sym(m− q + p− 2, k)Em−q+p−2−k,q−p

× (m− q − k − 3)(1 − 2−q)

}

+
∑

s1+s2=q−p+2
s1 6=0

s1≡0 (mod 2)

(1 + o(1))
m!

(m − q + p− 2)! s1! s2!

1

4m

×

m−q−2∑

k=0

sym(m− q + p− 2, k)Em−q+p−1−k,q−p(m− q − k − 2)
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+ (1 + o(1))
m!

(m − q + p− 2)! (q − p+ 2)!

1

4m

×

m−q−1∑

k=0

sym(m− q + p− 2, k)Em−q+p−k−2,q−p+1(m− q − k − 1).

(2) If q = p− 1, then

β(X ; q + 1, q,m) =
∑

t1+t2=m−1
t2 6=0

s1+s2=1
t2+s1≡0 (mod 2)

(1 + o(1))
m!

t1! t2!

1

4m
(sym(m− 2,m− q − 2)2−q

+ sym(m− 2,m− q − 3)(1− 2−q))

+ (1 + o(1))
m

4m
sym(m− 1,m− q − 1).

(3) If q = p− 2, then

β(X ; q + 2, q,m) =
∑

t1+t2=m
t2 6=0

t2≡0 (mod 2)

(1 + o(1))
m!

t1! t2!

1

4m
(sym(m− 2,m− q − 2)2−q

+ sym(m− 2,m− q − 3)(1− 2−q)) + (1 + o(1))
1

4m
par(m, q).

(4) If q < p− 2, q > m− p+ 2 or m < q + 1, then

β(X ; p, q,m) = 0.

2. Preliminaries

In this section we provide the tools necessary for our work.

Definition 2.1. For a directed graph G = (V,E) (where V = {v1, . . . , vn}), we

denote by A(G) = [aij ] its adjacency matrix, where for i 6= j, we have aij = 1 if
−−→vivj ∈ E, and aij = 0 if −−→vivj /∈ E, and for i = j we have aii = 0. The degree of

a vertex vi ∈ V is di =
n∑

j=1

aij .

The Laplace matrix of the graph G is the matrixM(G) = A(G)+diag(d1, . . . , dn).

Definition 2.2. If G = (V,E) is a graph, a partition of G is a pair (S, T ) of

subsets of V such that S ∩ T = ∅ and S ∪ T = V . A partition (S, T ) is even if all

v ∈ S have an even number of edges directed from v to T and all v ∈ T have an even

number of edges directed from v to S. A graph G is odd if it only has two trivial

even partitions.
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Proposition 2.3 ([10], Theorem 3). Let n = p1 . . . ptq1 . . . qs be an odd, square-

free integer, pi odd prime factors of n congruent to 1 (mod 4), and qj odd prime

factors congruent to 3 (mod 4).

(1) If n ≡ ±3 (mod 8), let G1(n) = (V1, E1) be the graph

V1 = {p1, . . . , pt, q1, . . . qs},

E1 =
{
pipj :

(pj
pi

)
= −1, 1 6 i 6= j 6 t

}

∪
{
−−→piqr :

(qr
pi

)
= −1, 1 6 i 6 t, 1 6 r 6 s

}
.

If M1(n) is the Laplace matrix of G1(n), then sΦ(n) = t − rankF2
M1(n) and

sΦ̂(n) = s− 1+ t− rankF2
M1(n), where s

Φ(n) and sΦ̂(n) are as in Remark 1.1.

(2) If n ≡ ±1 (mod 8), let G2(n) = (V2, E2) be the graph

V2 = {p1, . . . , pt, q1, . . . qs,−1},

E2 =
{
pipj :

(pj
pi

)
= −1, 1 6 i 6= j 6 t

}

∪
{
−−→piqr :

(qr
pi

)
= −1, 1 6 i 6 t, 1 6 r 6 s

}

∪
{−−−→
(−1)p : p ≡ ±3 (mod 8), p ∈ V2

}
.

If M2(n) is the Laplace matrix of G2(n), then s
Φ(n) = t+1− rankF2

M2(n) and

sΦ̂(n) = s− 1 + t− rankF2
M2(n).

We will need the next lemmas at the very end of Section 3.

Lemma 2.4 ([9], Theorem 2.7). Denote the probability that an undirected graph

on t vertices has 2e+1 even partitions by par(t, e) for 0 6 e 6 t− 1. Then

par(t, e) = 2(
t−e

2 )−(t2)d(t− 1, e)

⌊t−e/2⌋∏

j=1

(
1−

(1
2

)2j−1)
,

where d(m, j) =
j−1∏
i=0

(2m − 2i)/(2j − 2i), and d(m, 0) = 1.

Lemma 2.5 ([9], Lemma 2.6). Let G be an undirected graph on t vertices, and

denote by ̺ the rank of its Laplace matrix. Then the number of even partitions of

graph G is 2t−̺.
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Remark 2.6. Since we will be working over the finite field F2, we also have the

following property for Laplace matrices: any column can be represented as the sum

of all the others. This will be useful, as removing the last column will not change

the rank of the matrix.

The following proposition tells us what is the density of integers with prime factors

that satisfy certain congruence conditions.

Proposition 2.7 ([9], Theorem 3.1). Let k and m be fixed positive integers with

m > 1, X a positive real number, 0 6 a1, . . . , aϕ(m) 6 k integers such that a1+ . . .+

aϕ(m) = k, and πk(X ;m; a1, . . . , aϕ(m)) the number of square-free integers n 6 X

with k prime factors with exactly aj prime factors congruent to rj modulo m, where

1 = r1 < . . . < rϕ(m) < m are the ϕ(m) standard representatives for (Z/mZ)×.

(1) When m = 4, t = a1, s = a2 and X → ∞, we have

πk(X ; 4; t, s) = (1 + o(1))
k!

t! s!

1

2k(k − 1)!

X(log logX)k−1

logX
.

(2) When m = 8, t1 = a1, s1 = a2, t2 = a3, s2 = a4, and X → ∞, we have

πk(X ; 8; t1, t2, s1, s2) = (1 + o(1))
k!

t1! s1! t2! s2!

1

4k(k − 1)!

X(log logX)k−1

logX
.

The next proposition tells us that if we wish to add further conditions on the

Legendre symbols between prime factors, then the distribution of integers satisfying

them will be uniform.

Proposition 2.8 ([9], Theorem 4.1). Let k > 1 be a positive integer. Fix εij ∈

{−1, 1} and δj ∈ {1, 3, 5, 7} for 1 6 j 6 k and 1 6 i < j 6 k. Let Ck(X, δ) be the set

of k-tuples (p1, . . . , pk) of primes with 2 < p1 < . . . < pk 6 X , p1 . . . pk 6 X , pj ≡ δj

(mod 8). Then the number of elements of Ck(X, δ) with (pi/pj) = εij for i < j is

2−(
k

2)(1 + o(1))|Ck(X, δ)|,

when X → ∞.

Denote by Et,s(̺) the probability that a t×s matrix over F2 has rank ̺. A simple

application of [1], Theorem 1.1 gives us this proposition:

Proposition 2.9 ([1], Theorem 1.1). Let t, s, ̺ > 0 be integers, Πn(q) =

(1− q)(1 − q2) . . . (1− qn), Π0(q) = 1, and let
[
n

k

]
(q) =

Πn(q)

Πk(q)Πn−k(q)

be the Gaussian coefficients. Then we have
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(1) If s = 0, t = 0, or ̺ > min{t, s}, then

Et,s(̺) = 0.

(2) If t > s, then

Et,s(̺) = 2(−s+̺)(t−̺)

[
s

s− ̺

](1
2

) Πt(
1
2 )

Πt−̺(
1
2 )

.

(3) If s > t, then

Et,s(̺) = 2(−t+̺)(s−̺)

[
t

t− ̺

](1
2

) Πs(
1
2 )

Πs−̺(
1
2 )

.

(4) In the case of a random t× (t+ s) matrix over F2, we have

Et,t+s(̺) = 2(̺−t)(t−̺+s)

[
t

t− ̺

](1
2

) Πt+s(
1
2 )

Πt−̺+s(
1
2 )

.

And finally, we have the probability that a random n × n symmetric matrix has

rank r over the field F2:

Proposition 2.10. The number of symmetric n× n matrices of rank r over the

field F2 is [
n

n− r

]
(2) ·

⌈r/2⌉∏

j=1

(
1−

(1
2

)2j−1)
2r(r+1)/2.

We have been unable to give an adequate reference to this claim, but we will give

a sketch for the proof:

First one shows that if e1, . . . , er are the first r canonical base vectors for F
n
2 , then

the number of symmetric matrices over F2 with dimension n × n and rank n − r

which sends e1, . . . , er to 0 is equal to the number of invertible matrices over F2

with dimension (n − r) × (n − r), which can be seen (through recursion) to be

2(n−r+1)(n−r)/2
⌈n−r/2⌉∏

j=1

(1− (12 )
2j−1).

Next, one proves that the number of matrices with rank n−r which send e1, . . . , er
to 0 is equal to the number of matrices with rank n−r which send any set of linearly

independent vectors v1, . . . , vr to 0.

Finally, one notes that the number of matrices over F2 of rank n− r and dimen-

sion n × n can be written as a product of the number of r dimensional subspaces

of Fn
2 (which can be seen to be equal to the Gaussian coefficient

[
n
r

]
) and the number

of invertible symmetric matrices over F2 with dimension (n− r) × (n− r).

It will be useful to introduce:
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Definition 2.11. The probability that a symmetric matrix of dimension n× n

over the field F2 has rank r is

sym(n, r) =

[
n

n− r

]
(2) ·

⌈r/2⌉∏

j=1

(
1−

(1
2

)2j−1)
2r(r+1)/2−n(n+1)/2.

3. Proof of Theorem 1.2

Let n be an integer congruent to ±3 (mod 8), let G1(n) be the graph from Proposi-

tion 2.3, and letM1(n) be its Laplace matrix. In order to have (s
Φ(n), sΦ̂(n)) = (p, q),

we need to have sΦ(n) = t−rankF2
M1(n) = p and sΦ̂(n) = s−1+t−rankF2

M1(n) = q.

Thus we have s = q − p + 1, t = m − s = m − q + p − 1 and rankF2
M1(n) =

t−p = m− q− 1. Therefore, the problem is reduced to finding the probabilities that

s = q− p+1, t = m− q+ p− 1, and the probability that the matrixM1(n) will have

rank ̺ = m− q − 1.

Remark 3.1. If we look at Proposition 2.3, the above conditions correspond to

integers congruent to ±3 (mod 8). However, these conditions will be different for

integers congruent to ±1 (mod 8), which is why we have to separate these cases.

If we look at vertices pi in the graph described in Proposition 2.3, all edges going

between them are undirected, all edges between pi and qj are directed towards qj ,

there are no edges going from qj . So, the Laplace matrixM1(n) of dimension (t+s)×

(t+ s) has the form

M1(n) =

[
A B

0 0

]
,

where A is a symmetric matrix of dimension t × t, and B is a matrix of dimension

t× s. This matrix has uniformly and independently distributed entries in F2, up to

quadratic reciprocity (Theorem 2.8). So, what we are interested in is the probability

that a matrix of the form [A|B] has a certain rank. By Remark 2.6 the last column

is the sum of all the others, so we may remove it, and the rank will remain the same.

Lemma 3.2. The probability that a matrix over F2 of the form [AB] (with di-

mension t×(t+s), and A being a symmetric matrix with dimension t×t) has a given

rank ̺ is
∑̺

k=0

(sym(t, k)Et−k,s(̺− k)).
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P r o o f. Let A have rank k. Then we can use elementary row and column oper-

ations to transform A into A0 (canonical matrix for A), which turns [AB] into
[

Ek×k 0k×(t−k)

0(t−k)×k 0(t−k)×(t−k)

B′
t×s

]
,

where E is the identity matrix, and 0 is the zero matrix. We observe that entries

in B being independent and uniformly distributed in F2 will not change after using

these elementary row operations. We can then use elementary column operations to

make every coefficient in B′ that is in the same row as a 1 in A0 into zero, which

gives us [
Ek×k 0k×(t−k) 0k×s

0(t−k)×k 0(t−k)×(t−k) B′′
(t−k)×s

]
.

Therefore, the matrix [AB] having rank ̺ is the same as A having rank k, and B′′

having rank ̺− k.

Thus the probability that [AB] has rank ̺ is

P (rankAB = ̺) =
∑̺

k=0

(P (rankA = k)P (rankB′′ = ̺− k))

=
∑̺

k=0

sym(t, k)Et−k,s(̺− k).

�

We now have to deal with the special cases of s = 1 and s = 0:

(1) When s = 1 and when we remove the last column, we will have just the sym-

metric matrix A, so the probability that M1(n) has rank̺ is

sym(t, ̺).

(2) When s = 0 (therefore, m = t), M1(n) will be the Laplace matrix of an undi-

rected graph, so by Lemma 2.5, the number of even partitions, 2e+1, will be

equal to 2t−̺, and thus ̺ = t− e− 1. Therefore, M1(n) will have rank ̺ if and

only if the graph G1(n) has 2
t−̺ even partitions, probability for which is

par(m, t− ̺− 1).

Remark 3.3. We now have the probability that M1(n) has rank ̺. When we

multiply this with the probability that n has t prime factors congruent to 1 (mod 4)

and s prime factors congruent to 3 (mod 4), we will have the probability that an

integer n 6 X with m prime factors corresponds to the matrix M1(n) of dimension

t × (t + s) with rank ̺. However, we have not separated the cases when n ≡ ±3

(mod 8) and when n ≡ ±1 (mod 8).
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To obtain α(X ; p, q,m), we need to represent the probability that n has t prime

factors congruent to 1 (mod 4) and s prime factors congruent to 3 (mod 4) as the

sum of probabilities that n has:

⊲ t1 prime factors congruent to 1 (mod 8),

⊲ t2 prime factors congruent to 5 (mod 8),

⊲ s1 prime factors congruent to 3 (mod 8),

⊲ s2 prime factors congruent to 7 (mod 8).

Clearly, for fixed k, s and t, we have

πk(X ; 4; t, s) =
∑

t1+t2=t
s1+s2=s

πk(X ; 8; t1, s1, t2, s2).

However, probabilities where t2 + s1 is even correspond to integers congruent to

±1 (mod 8), and probabilities where t2 + s1 is odd correspond to integers congruent

to ±3, so we only need to factor in those that have t2 + s1 odd.

We have thus proved Theorem 1.2. �

4. Proof of Theorem 1.3

In this case, the Laplace matrix looks like this:

M2(n) =



A B 0

0 0 0

b1 b2 ∗


 ,

where the vector b1b2 is determined by Proposition 2.3 (edges going from −1 to prime

factors congruent to ±3). Since n ≡ ±1 (mod 8), we have ∗ = 0.

As in the case when n ≡ ±3 (mod 8), in order to have (sΦ(n), sΦ̂(n)) = (p, q), we

need to have sΦ(n) = t+1−rankF2
M2(n) = p and sΦ̂(n) = s−1+t−rankF2

M2(n) = q.

Thus we have s = q−p+2, t = m−s = m−q+p−2, and rankF2
M1(n) = t+1−p =

m− q− 1. In addition to this, let t1, t2, s1 and s2 be as in Remark 3.3. We are thus

left with determining the rank of M2(n):

M2(n) =




A1 A2 B1 B2

A3 A4 B3 B4

01×t1 11×t2 11×s1 01×s2


 ,

where A1 and A4 are symmetric matrices of dimensions t1× t1 and t2× t2, A2 = AT
3

and A2 is a matrix of dimension t1 × t2, and B1, B2, B3 and B4 are matrices of
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dimensions t1×s1, t1×s2, t2×s1 and t2×s2. We will be determining the rank in the

same fashion as we did in the case when n ≡ ±3 (mod 8), except we have 3 cases now:

(1) If we have t2 = s1 = 0, then the last row only has zeroes, so the probability is

calculated in the same way as in Lemma 3.2:

∑̺

k=0

(sym(t, k)Et−k,s(̺− k)).

(2) If t2 = 0 and s1 6= 0, then M2(n) becomes:

[
A1 B1 B2

01×t1 11×s1 01×s2

]
.

We can use elementary column operations to add the first column which ends

with 1 to the others that end with 1, after which we can exchange the last

column of the matrix with the first. This will give us

[
A1 B1 B2

01×t 01×s1 0 . . . 01

]
.

If matrix A has rank ̺1, we can use elementary operations to turn it into the

canonical matrix, after which we can use column operations to zero out the top

part of the B matrices. We get




E̺1×̺1
0 0 0

0(t−̺1)×̺1
0 B′

1 B′
2

01×̺1
01×(t−̺1) 01×s1 0 . . . 01


 .

We can rewrite the previous matrix as




E̺1×̺1
0 0 0

0(t−̺1)×̺1
0 B′′

1 B′′
2

01×̺1
01×(t−̺1) 01×(s−1) 1


 ,

where B′′
1 is a (t − ̺1) × (s − 1) matrix and B′′

2 is a (t − ̺1) × 1 matrix.

Transforming B′′
1 into its canonical matrix (of rank ̺2, say), we have




E̺1×̺1
0 0 0 0

0̺2×̺1
0 E 0 0

0(t−̺1−̺2)×̺1
0 0 0 u

01×̺1
01×(t−̺1) 01×̺2

01×(s−1−̺2) 1


 .
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Therefore, the rank of M2(n) is ̺1 + ̺2 + 1, regardless of the column u. The

probability that M2(n) has rank ̺ is thus

∑

̺1+̺2=̺−1

sym(t, ̺1)Et−̺1,s−1(̺2).

(3) If t2 6= 0, we can use column operations to zero out all the ones in the matrix

using the last column in A. Every time we add that column to another column

in A, we do the same thing with rows, to keep the matrix A symmetric. We have




A1 A2 B1 B2

A3 A4 B3 B4

01×t1 0 . . . 01 01×s1 01×s2


 .

As previously, this can be written down as




A′
1 A′

2 B′
1 B′

2

A′
3 A′

4 B′
3 B′

4

01×(t−1) 1 01×s1 01×s2


 ,

where A′
1 is a (t−1)×(t−1) symmetric matrix, A′

2 is a column of length t−1 such

that A′
2 = A′T

3 , and A
′
4 is an entry. Transforming A

′
1 into canonical shape (while

keeping A symmetric), and zeroing out the top part of the matrix B, gives us




E̺1×̺1
0 0 0 0

0(t−1−̺1)×̺1
0 A′′

2 B′′
1 B′′

2

01×̺1
A′′

3 A′
4 B′

3 B′
4

01×̺1
01×(t−1−̺1) 1 01×s1 01×s2


 .

Doing the same thing with B′′
1 , we get




E̺1×̺1
0 0 0 0 0

0̺2×̺1
0 0 0 E 0

0(t−1−̺1−̺2)×̺1
0 0 u 0 0

01×̺1
v uT A′

4 0 w

01×̺1
01×̺2

01×(t−1−̺1−̺2) 1 01×̺2
01×(s−̺2)



.

Therefore,M2(n) has rank ̺1+̺2+1 if all the vectors u, v and w are zero vectors.

Otherwise,M2(n) has rank ̺1+̺2+2. The probability thatM2(n) has rank ̺ is

∑

̺1+̺2=̺−1

sym(t, ̺1)Et−̺1,s−1(̺2)2
̺−m

+
∑

̺1+̺2=̺−2

sym(t, ̺1)Et−̺1,s−1(̺2)(1 − 2̺−m).

117



We are left with special cases when s = 1 or s = 0. The case when s = 1 splits off

into two cases, when t2 + s1 > 0 and when t2 + s1 = 0. Because n ≡ ±1 (mod 8), if

t2+ s1 > 0, when we remove the last column, the final row will still be nonzero. Our

matrix (with the final column removed and after elementary operations) will look

like 


A1 A2

A3 A4

01×(t−1) 1


 ,

where A1 is a symmetric matrix with dimension (t − 1) × (t − 1), and A2 = AT
3 .

Turning A1 into its canonical matrix while preserving the symmetric nature of A,

we get 


E 0 0

0 0 A′
2

0 A′T
2 A4

01×̺1
01×(t−1−̺1) 1


 ,

where ̺1 is the rank of A1. If column A
′
2 has nonzero entries, then the rank ofM2(n)

is ̺1 + 2. Otherwise the rank is ̺1 + 1. Thus, M2(n) has rank ̺ with probability

sym(t− 1, ̺− 1)2̺−t + sym(t− 1, ̺− 2)(1− 2̺−t).

If t2 + s1 = 0, then our matrix will be the symmetric matrix A after removing the

last column. The probability that M2(n) has rank̺ is

sym(t, ̺).

When s = 0, we have that t = m, and M2(n) is a symmetric matrix with a row

beneath it, which looks like [
A1 A2

01×t1 11×t2

]

If t2 = 0, then M2(n) is a Laplace matrix of an undirected graph with m vertices.

The probability that M2(n) has rank ̺ is (from Lemma 2.5)

par(m,m− ̺− 1).

If t2 6= 0, due to the matrix A = [A1A2] being symmetric, the last row is the sum

of all the others in addition to the last column of A being the sum of all the other

columns. We shall therefore remove the last row of A and the last column of M2(n).

Performing the usual operations, we get




E 0 0

0 0 A′
2

0 A′T
2 A4

01×̺1
01×(m−2−̺1) 1


 .
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The probability that M2(n) has rank ̺ is

sym(m− 2, ̺− 1)2̺−m+1 + sym(m− 2, ̺− 2)(1− 2̺−m+1).

Combining this with Proposition 2.7, and keeping in mind Remark 3.3 (except

now we will demand that t2 + s1 is even), the proof of Theorem 1.3 is complete. �
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