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Abstract. We construct derived equivalences between generalized matrix algebras. We
record several corollaries. In particular, we show that the n-replicated algebras of two
derived equivalent, finite-dimensional algebras are also derived equivalent.
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1. Introduction

Derived equivalence as Morita theory for derived categories provides a new method

and tool for the classification of algebras. By a fundamental result of Rickard, for two

algebrasA andB, the derived categories of modules D(A) and D(B) are equivalent as

triangulated categories if and only if there exists a tilting complex T • for A such that

the endomorphism algebra EndD(A)(T
•) = B. But in practice there are usually two

obstacles when one constructs derived equivalences between algebras. One is finding

the tilting complexes and the other is determining their endomorphism algebras. In

order to construct new derived equivalence from the old one, Rickard in [17], [19]

used tensor product and trivial extension to produce derived equivalences. These

results were generalized by Ladkani, see [12] and Miyachi, see [16], respectively. For

a list of more constructions of derived equivalences see [20] and the references therein.

In this short note we consider derived equivalences between generalized n-by-nma-

trix algebras. An n-by-n generalized matrix algebra Λ is defined by Λ = (Mij)(ϕijk),
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where Mii = Ai is an algebra, Mij is an Ai-Aj-bimodule, and the multiplication

in Λ is given by the bimodule map ϕijk : Mij ⊗ Mjk → Mik that satisfies the ob-

vious associativity condition for any 1 6 i, j, k 6 n. A generalized matrix algebra

is also called a formal matrix algebra. Some important classes of generalized ma-

trix algebras consist of Morita context when n = 2 and triangular matrix algebras.

These algebras are important and fundamental objects in the representation theory

of algebras (e.g. see [5], [6], [7], [8]). Motivated by [8], we construct the functors TAt

from the module categorymodAt to the module categorymodΛ and its right adjoint

functor UAt
for any t. It is well known that the adjoint functor pair (TAt

,UAt
) of

module categories can be lifted to the homotopy categories of complexes, which are

still denoted by (TAt
,UAt

). Furthermore, for any tilting complex P •
t for At we pro-

vide a sufficient and necessary condition such that
n⊕

t=1
TAt

(P •
t ) is a tilting complex

for Λ in this paper. Meanwhile, we determine its endomorphism algebra. Then we

establish various important derived equivalences between generalized matrix alge-

bras, unifying a few results described in [1], [12]. In particular, we point out that the

n-replicated algebras of two derived equivalent, finite-dimensional but not necessary

Gorenstein algebras are also derived equivalent, compared with Corollary 1.4 in [12].

We include some notation here. By an algebra we mean a finite-dimensional al-

gebra over a field K. We denote by modA the category of all finitely generated

right A-modules. We denote by PA the subcategory of modA consisting of pro-

jective modules. We denote by C(A) (or K(A)) the category of complexes (or the

homotopy category) of finitely generated right A-modules, and denote by Kb(PA) the

subcategory of K(A) consisting of bounded complexes over PA. For two morphisms

f : X → Y and g : Y → Z we write gf for their composition. We denote by D the

standard duality HomK(−,K).

2. The representation over the generalized matrix algebra

We recall the construction of the generalized matrix algebra in [4]. Let (Ai)16i6n

be a family of K-algebras and (Mij)16i,j6n be a family of Ai-Aj-bimodules such

that Mii = Ai for any 1 6 i 6 n. Moreover, assume that for any 1 6 i, j, k 6 n such

that i 6= j, j 6= k, there is an Ai-Aj-bimodule homomorphism

ϕijk : Mij ⊗Aj
Mjk → Mik.

For subscripts i = j and j = k, the bimodule homomorphisms

ϕiik : Ai ⊗Ai
Mik → Mik, ϕijj : Mij ⊗Aj

Aj → Mij
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are canonical isomorphisms. The bimodule homomorphisms mentioned above satisfy

the associativity law

(2.1) ϕijt(1Mij
⊗ ϕjkt) = ϕikt(ϕijk ⊗ 1Mkt

)

for any 1 6 i, j, k, t 6 n, that is, the the following diagram

Mij ⊗Aj
Mjk ⊗Ak

Mkt

ϕijk⊗1Mkt
//

1Mij
⊗ϕjkt

��

Mik ⊗Ak
Mkt

ϕijt

��

Mij ⊗Aj
Mjt

ϕikt
// Mit

commutes. For any Xi, Yi ∈ modAi and ai : Xi → Yi, the diagram

Xi ⊗Ai
Mij ⊗Aj

Mjk

1Xi
⊗ϕijk

//

ai⊗1Mij
⊗1Mjk

��

Xi ⊗Ai
Mik

ai⊗1Mik

��

Yi ⊗Ai
Mij ⊗Aj

Mjk

1Yi
⊗ϕijk

// Yi ⊗Ai
Mik

commutes for any 1 6 i, j, k 6 n. Hence, the bimodule map ϕijk determines a natural

transformation from the functor −⊗Mij ⊗Aj
Mjk to the functor −⊗Mik, denoted

by Φijk. And we denote the morphism 1Xi
⊗ ϕijk by ΦXi

ijk in the sequel. Then the

n-by-n generalized matrix algebra is defined by

Λ =




M11 M12 . . . M1n

M21 M22 . . . M2n
...

...
. . .

...

Mn1 Mn2 . . . Mnn




with the bimodule map ϕijk , and we denote it by Λ = (Mij)(ϕijk) for short. The

addition of elements is componentwise and multiplication is given by (AB)ij =∑
16k6n

ϕikj(aik ⊗ bkj) for A = (aij)n×n, B = (bij)n×n ∈ Λ, where (AB)ij means

the (i, j)-entry of AB.

When n = 2, the generalized matrix algebra is just the Morita ring in the sense

of [7]. For any integer n > 2, we introduce the definition of the representation

category of Λ, which is similar to the one when n = 2 in [7]. Denote the represen-

tation category of Λ by repΛ, whose objects are tuples X = (X1, . . . , Xn), where
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Xi ∈ modAi and for any 1 6 i, j 6 n, X has the structure map of (i, j)-position

fij ∈ HomAj
(Xi ⊗Ai

Mij , Xj) (fii = 1) such that the diagram

Xi ⊗Ai
Mij ⊗Aj

Mjk

Φ
Xi
ijk

//

fij⊗1Mjk

��

Xi ⊗Ai
Mik

fik

��

Xj ⊗Aj
Mjk

fjk
// Xk

commutes. We also denote X by (X1, . . . , Xn)(fij). Let X = (X1, . . . , Xn)(fij) and

Y = (Y1, . . . , Yn)(gij) be objects of repΛ. Then a morphism X → Y in repΛ is an

n-tuples of homomorphisms (a1, . . . , an), where ai : Xi → Yi is an Ai-morphism such

that the diagram

Xi ⊗Ai
Mij

fij
//

ai⊗1Mij

��

Xj

aj

��

Yi ⊗Ai
Mij

gij
// Yj

commutes for 1 6 i, j 6 n. The composition is in the natural way. Moreover,

a sequence of repΛ

(X1, . . . , Xn)(fij) → (Y1, . . . , Yn)(gij) → (Z1, . . . , Zn)(hij)

is exact if and only if for any t the sequence Xt → Yt → Zt of At-modules is exact.

We call a category C a K-linear category if the class of the objects of C forms a set,

the set of morphisms between two arbitrary objects of C is K-vector space and the

composition of morphisms is K-bilinear. Then an n-by-n generalized matrix algebra

Λ = (Mij)(ϕijk) defined as above can be viewed as a K-linear category CΛ with n

objects x1, x2, . . . , xn such that the set of morphisms from xj to xi is Mij . Thus,

a representation of Λ is nothing but a right CΛ-module, i.e. a covariant K-linear

functor from the category CΛ to the category of K-modules. For example, one can

get the explicit definition of a module over a K-linear category from [10]. And the

category of right CΛ-modules is equivalent to the category of finitely generated right

Λ-modules (see [13]). Hence we have the following proposition.

Proposition 2.1. The module category modΛ and the representation category

repΛ are equivalent.
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We will identify the modules in modΛ with the objects of repΛ from now on. For

describing the derived equivalence among the generalized matrix algebras, motivated

by [6] and [8], we define two kinds of functors as follows.

(1) For any t = 1, 2, . . . , n, and Xt ∈ modAt, the functor TAt
: modAt → modΛ

is defined by

TAt
(Xt) = (Xt ⊗Mt1, . . . , Xt ⊗Mtt = Xt, . . . , Xt ⊗Mtn)(fij),

where the structure map of (i, j)-position fij = ΦXt

tij and for morphism at ∈

HomAt
(Xt, Yt)

TAt
(at) = (at ⊗ 1Mt1

, . . . , at, . . . , at ⊗ 1Mtn
) = (at ⊗ 1Mti

)ni=1.

The associativity law of bimodule homomorphisms in (2.1) induce the following com-

mutative diagram.

Xt ⊗Mti ⊗Mij ⊗Mjk

Φ
Xt⊗Mti
ijk

//

Φ
Xt
tij

⊗1Mjk

��

Xt ⊗Mti ⊗Mik

Φ
Xt
tik

��

Xt ⊗Mtj ⊗Mjk

Φ
Xt
tjk

// Xt ⊗Mtk.

Hence, TAt
(Xt) ∈ mod(Λ) and the functor TAt

is well defined.

(2) For any t = 1, 2, . . . , n and (X1, . . . , Xn)(fij) ∈ modΛ, the functor UAt
:

modΛ → modAt is defined by UAt
(X1, . . . , Xn)(fij) = Xt and for Λ-morphism

(ai)
n
i=1, UAt

((ai)
n
i=1) = at.

According to the construction of a representation over Λ, TAt
is really the tensor

functor −⊗At
etΛ: modAt → modΛ, and UAt

is the restriction functor from modΛ

to mod etΛet = modAt, where et is the matrix with 1 in (t, t)-entry and 0 elsewhere.

Naturally, we have the following analogs of [8], Proposition 2.4.

Lemma 2.2.

(1) The above pair (TAt
,UAt

) is an adjoint pair of functors for any t = 1, 2, . . . , n.

(2) The composed functor UAt
TAt

is equal to 1modAt
for any t = 1, 2, . . . , n.

P r o o f. (1) Let Xt ∈ modAt and Y = (Y1, . . . , Yn)(gij) ∈ modΛ. Claim that

a = (ai)
n
i=1 : TAt

(Xt) → Y is a morphism in modΛ if and only if ai = gti ◦at⊗ 1Mit

for 1 6 i 6= t 6 n, that is, ai is uniquely determined by at for any i 6= t. In fact, on
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one hand the morphism a in modΛ gives the commutative diagram

Xt ⊗At
Mti

1
//

at⊗1Mti

��

Xt ⊗Mti

ai

��

Yt ⊗Mti

gti
// Yi,

which implies ai = gti ◦ at ⊗ 1Mit
. On the other hand, assume gti ◦ at ⊗ 1Mit

for

1 6 i 6= t 6 n. Since Y is an object of modΛ, the structure maps of Y satisfy

(2.2) gij ◦ gti ⊗ 1Mij
= gtj ◦ Φ

Yt

tij .

And applying the natural transformation Φtij : − ⊗ Mti ⊗ Mij → − ⊗ Mtj to the

morphism at : Xt → Yt, we have

(2.3) ΦYt

tij ◦ at ⊗ 1Mti
⊗ 1Mij

= at ⊗ 1Mtj
◦ ΦXt

tij .

Combining the two equations (2.2) and (2.3) above imply

gij ◦ ai ⊗ 1Mij
= gij ◦ (gti ◦ at ⊗ 1Mit

)⊗ 1Mij
= gij ◦ gti ⊗ 1Mij

◦ at ⊗ 1Mit
⊗ 1Mij

= gtj ◦ Φ
Yt

tij ◦ at ⊗ 1Mit
⊗ 1Mij

= gtj ◦ at ⊗ 1Mtj
◦ ΦXt

tij = aj ◦ Φ
Xt

tij .

Hence (ai)
n
i=1 is a morphism in modΛ from TAt

(Xt) to Y , and the claim follows.

Consequently, there is an abelian group isomorphism H : HomΛ(TAt
(Xt), Y ) →

HomAt
(Xt, Yt) by (ai)

n
i=1 7→ at. And it is not difficult to check that H is natural.

(2) Simple verification. �

By taking advantage of the functors TA1
, . . . ,TAn

, we can get all the indecompos-

able projective Λ-modules by the following lemma.

Lemma 2.3. Let Pt be an indecomposable projective At-module for any t. Then

TAt
(Pt) = (Pt ⊗Mt1, . . . , Pt ⊗Mtn)

with the structure map of (i, j)-position ΦPt

tij is indecomposable projective Λ-module.

Moreover, all the indecomposable projective Λ-modules are of this form.

P r o o f. See [8], Proposition 3.1. �
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3. Main theorem and some corollaries

Let A be a finite-dimensional K-algebra. Following [18], an object T • ∈ D(A) is

called a tilting complex provided the following conditions are satisfied:

(1) T • ∈ Kb(PA),

(2) HomK(A)(T
•, T •[i]) = 0 for all i 6= 0, and

(3) tria(T •) = Kb(PA), where tria(T
•) is the smallest triangulated category con-

taining T •.

For later use, we recall here concepts of two kinds of total complexes. Given

two complexes of right A-modules X• = (Xm, dmX) and Y • = (Y m, dmY ), the total

complex Hom•(X•, Y •) is defined by

Hom•(X•, Y •)

:= . . . −→
∏

p∈Z

HomA(X
p, Y m+p)

dm
Hom

−→
∏

p∈Z

HomA(X
p, Y m+p+1) −→ . . . ,

where dmHom : (αp)p∈Z 7→ (dm+p
Y ◦αp−(−1)mαp+1◦dpX)p∈Z for α

p ∈ HomA(X
p, Y m+p).

According to [11], we have the key formulaHr(Hom•(X•, Y •))=HomK(A)(X
•, Y •[r])

for any r ∈ Z. If P • = (Pm, dmP ) and Q• = (Qm, dmQ ) are complexes of K-modules,

then the other total complex P • ⊗Q• is defined by

P • ⊗Q• := . . . −→
⊕

p∈Z

P p ⊗Qm−p
dm
⊗

−→
⊕

p∈Z

P p ⊗Qm−p+1 −→ . . . ,

where dm⊗ : (x⊗ y)p∈Z 7→ (dpX(x)⊗ y+(−1)px⊗ dm−p
Y (y))p∈Z for x ∈ P p, y ∈ Qm−p.

If P • is a complex of right A-modules and Q• is a complex of A-B-bimodules, then

P • ⊗ Q• is a complex of right B-modules. Note that we view modules as stalk

complexes concentrated in degree zero. Then for a complex X• = (Xp) ∈ C(A) and

an A-B-bimodule M we have the total complex X• ⊗M with the form

X• ⊗M := . . . −→ Xp ⊗M
d
p

X
⊗1M
−→ Xp+1 ⊗M −→ . . .

Let Λ = (Mij)ϕijk
be a generalized matrix algebra, where Mii = Ai is an algebra,

Mij is an Ai-Aj-bimodule and the bimodule map ϕijk corresponds to the natural

transformation Φijk. For any t = 1, 2, . . . , n and complex X•
t = (Xm

t , dmXt
) in C(At),

the morphism Φ
Xm

t

tij : Xm
t ⊗Mti⊗Mij → Xm

t ⊗Mtj induces the morphism of complex

Φ
X•

t

tij = (Φ
Xm

t

tij ) : X•
t ⊗ Mti ⊗ Mij → X•

t ⊗ Mtj. Let (TAt
,UAt

) be the adjoint pair

defined in Section 2. Denote the induced adjoint pair of complex categories by

(C(TAt
), C(UAt

)). Then we have

C(TAt
)(X•

t ) = (X•
t ⊗Mt1, . . . , X

•
t ⊗Mtn)

(Φ
X•

t
tij

)
,
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where the homogeneous component of degree m is (Xm
t ⊗Mt1, . . . , X

m
t ⊗Mtn) with

the structure map Φ
Xm

t

tij , and the mth differential is (dmXt
⊗ Mti)

n
i=1. And for Λ

complex (Y •
1 , . . . , Y

•
n )(g•

ij
) with the homogeneous component of degree m being

(Y m
1 , Y m

2 , . . . , Y m
n )(gm

ij
), we have

C(UAt
)(Y •

1 , . . . , Y
•
n )(g•

ij
) = Y •

t .

Moreover, if (a•1, . . . , a
•
n) : TAt

(X•
t ) → (Y •

1 , . . . , Y
•
n ) is a chain map of complex, then

by the proof of Lemma 2.2, a•i is determined by a
•
t and a•i = g•ti ◦ a

•
t ⊗ 1Mit

for any

i 6= t.

We can continue to lift the adjoint pair (C(TAt
), C(UAt

)) to homotopy categories

with a standard proof, see for instance [15], Chapter 5, Proposition 1.1.3. We still

denote the induced adjoint pair between the homotopy categories by (TAt
,UAt

).

Under the assumption above, we will state and prove our main result as follows.

Theorem 3.1. Let Λ be a generalized matrix algebra as above and P •
t ∈ D(At)

a tilting complex for any t = 1, 2, . . . , n. Then
n⊕

t=1
TAt

(P •
t ) ∈ D(Λ) is a tilting

complex if and only if HomD(Ai)(P
•
i , (P

•
j ⊗ Mji)[r]) = 0 for any 1 6 i 6= j 6 n

and r 6= 0. In this case, Λ is derived equivalent to the following generalized matrix

algebra

Γ =




N11 N12 . . . N1n

N21 N22 . . . N2n
...

...
. . .

...

Nn1 Nn2 . . . Nnn


 ,

where Nij = HomD(Aj)(P
•
j , P

•
i ⊗Mij) and the multiplication map Nij ⊗Njk → Nik

is given by

a•ij ∗ a
•
jk = Φ

P•
i

ijk ◦ a•ij ⊗ 1Mjk
◦ a•jk

for any 1 6 i, j, k 6 n, and a•ij ∈ Nij .

P r o o f. By Lemma 2.3, the functor TAt
gives the bijection between the iso-

morphism classes of indecomposable summands of At and the isomorphism classes

of indecomposable summands of ettΛ, where ett is the unit in At. Therefore TAt

provides a triangulated equivalence between Kb(At
P ) and tria(ettΛ), which implies

tria(TAt
(P •

t )) = tria(ettΛ). In particular, ettΛ ∈ tria(TAt
(P •

t )). Consequently,

Λ =
n⊕

t=1
ettΛ ∈ tria

( n⊕
t=1

(TAt
(P •

t ))
)
. Hence

n⊕
i=t

TAt
(P •

t ) generates K
b(PΛ) as a trian-

gulated category.
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By the definitions of TAt
and UAt

and their adjointness, we have

HomK(Λ)

( n⊕

i=t

TAt
(P •

t ),

n⊕

i=t

TAt
(P •

t )[r]

)
∼= HrHomΛ

( n⊕

i=1

TAi
(P •

i ),

n⊕

j=1

TAj
(P •

j )

)

∼=
⊕

i,j

HrHomΛ(TAi
(P •

i ),TAj
(P •

j ))
∼=

⊕

i,j

HrHomAi
(P •

i ,UAi
TAj

(P •
j ))

∼=
⊕

i,j

HrHomAi
(P •

i , P
•
j ⊗Mji) ∼=

⊕

i,j

HomK(Ai)(P
•
i , (P

•
j ⊗Mji)[r])

∼=
⊕

i,j

HomD(Ai)(P
•
i , (P

•
j ⊗Mji)[r])

as vector space. Therefore
n⊕

t=1
TAt

(P •
t ) is a tilting complex if and only if

HomD(Ai)(P
•
i , (P

•
j ⊗Mji)[r]) = 0

for any 1 6 i, j 6 n and r 6= 0. This observation establishes the first statement.

For any 1 6 i, j 6 n, the vector spaceNij = HomD(Aj)(P
•
j , P

•
i ⊗Mij) has a natural

structure of End(P •
i )-End(P

•
j )-bimodule under the action

EndAi
(P •

i )×HomD(Aj)(P
•
j , P

•
i ⊗Mij)

× EndAj
(P •

j ) −→ HomD(Aj)(P
•
j , P

•
i ⊗Mij)(a

•
ii, a

•
ij , a

•
jj)

7−→ a•ii ⊗ 1Mij
◦ a•ij ◦ a

•
jj ,

where a•ij ∈ Nij . Moreover, by Lemma 2.2, there exist isomorphisms

HomD(Aj)(P
•
j , P

•
i ⊗Mij) −→ HomD(Λ)(TAj

(P •
j ),TAi

(P •
i ))a

•
ij 7−→ α•

= (Φ
P•

i

ij1 ◦ a
•
ij ⊗ 1Mj1

, . . . , a•ij
(j)

, . . . ,Φ
P•

i

ijn ◦ a•ij ⊗ 1Mjn
)

and

HomD(Ak)(P
•
k , P

•
j ⊗Mjk) −→ HomD(Λ)(TAk

(P •
k ),TAj

(P •
j ))a

•
jk 7−→ β•

= (Φ
P•

j

jk1 ◦ a
•
jk ⊗ 1Mk1

, . . . , a•jk
(k)

, . . . ,Φ
P•

j

jkn ◦ a•jk ⊗ 1Mkn
).

Hence, the kth term of the morphism composition α•β• is Φ
P•

i

ijk ◦ a•ij ⊗ 1Mjk
◦ a•jk,

which determines the following bimodule map in the generalized matrix algebra Γ:

HomD(Aj)(P
•
j , P

•
i ⊗Mij)⊗HomD(Ak)(P

•
k , P

•
j ⊗Mjk)

−→ HomD(Ak)(P
•
k , P

•
i ⊗Mik)a

•
ij ⊗ a•jk 7−→ Φ

P•
i

ijk ◦ a•ij ⊗ 1Mjk
◦ a•jk.

This finishes the proof. �
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Let A be an algebra. We denote by Tn(A) the n-by-n lower triangular matrix

algebra with all entries in A. In order to get the derived equivalences among line-

likely algebras (algebra with a linear quiver), rectangle-likely algebras and triangle-

likely algebras, Ladkani in [12] constructed interesting derived equivalences between

tensor algebras and generalized matrix algebras using componentwise tensor product.

We give a new method to prove the main results in [12] by applying Theorem 3.1.

Corollary 3.2 ([12], Theorem B). Let A be an algebra and let T •
1 , . . . , T

•
n be

tilting complexes in D(A) satisfying HomD(A)(T
•
i , T

•
i+1[r]) = 0 for all 1 6 i < n and

r 6= 0. Then the matrix algebra




EndT •
1 0 0 . . . 0

Hom(T •
1 , T

•
2 ) EndT •

2 0 . . .
...

0 Hom(T •
2 , T

•
3 ) EndT •

3

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0 Hom(T •
n−1, T

•
n) EndT •

n




is derived equivalent to Tn(A).

P r o o f. Consider the n-by-n matrix

Γ =




A11 A12 A13 . . . A1n

A21 A22 A23 . . . A2n

A31 A32 A33 . . . A3n
...

...
...

. . .
...

An1 An2 An3 . . . Ann




,

where Aij satisfies A21 = A32 = . . . = An,n−1 = A, Aii = A for all i and 0 elsewhere.

View T •
i as a tilting complex for Aii. One has

HomD(Aii)(T
•
i , (T

•
j ⊗Aji)[r]) = 0

for all 1 6 i 6= j 6 n and r 6= 0. Then by Theorem 3.1, Γ is derived equivalent to

the given one in the assertion. Therefore, the conclusion follows by observing that Γ

and Tn(A) are derived equivalent for a well-known result, e.g. see [9]. �

Corollary 3.3 ([12], Theorem C). Let A be an algebra and let T •
1 , . . . , T

•
n be

tilting complexes in D(A) satisfying HomD(A)(T
•
i , T

•
j [r]) = 0 for all 1 6 i < j 6 n
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and r 6= 0. Then the matrix algebra




EndT •
1 0 0 . . . 0

Hom(T •
1 , T

•
2 ) EndT •

2 0 . . . 0

Hom(T •
1 , T

•
3 ) Hom(T •

2 , T
•
3 ) EndT •

3 . . . 0
...

...
...

. . .
...

Hom(T •
1 , T

•
n) Hom(T •

2 , T
•
n) Hom(T •

3 , T
•
n) . . . EndT •

n




is derived equivalent to Tn(A).

P r o o f. Tn(A) is equal to

Γ =




A11 A12 A13 . . . A1n

A21 A22 A23 . . . A2n

A31 A32 A33 . . . A3n
...

...
...

. . .
...

An1 An2 An3 . . . Ann




,

where Aij satisfies Aij = A for all 1 6 j 6 i 6 n and 0 elsewhere. View T •
i as

a tilting complex for Aii. One has

HomD(Aii)(T
•
i , (T

•
j ⊗Aji)[r]) = 0

for all 1 6 i 6= j 6 n and r 6= 0. Then by Theorem 3.1, Γ is derived equivalent to

the given one in the assertion. �

The n-replicated algebra of A is defined as the following (n+1)-by-(n+1) matrix

algebra

A(n) =




A 0 0 . . . 0

DA A 0 . . .
...

0 DA A
. . .

...
...

. . .
. . .

. . . 0

0 . . . 0 DA A




,

where the multiplication is induced from the canonical isomorphisms A ⊗ DA ∼=

DA ∼= DA ⊗ A and the zero map DA ⊗ DA → 0. If n = 1, then A(1) is the

duplicated algebra of A (see [2]). When A is hereditary, n-replicated algebra A(n)

of A has a close relation to n-cluster categories (see [3]), and Zhang in [21] studied

the partial tilting modules over A(n). If A is a finite-dimensional algebra over K,

then DA is an injective co-generator. When DAA has finite projective dimension

and AA has finite injective dimension, the algebra A is called Gorenstein. Ladkani
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proved in [12] that derived equivalent, Gorenstein algebras are derived equivalent.

Here, we have the following corollary.

Corollary 3.4. Let A and B be algebras. If A and B are derived equivalent,

then A(n) and B(n) are also derived equivalent for any n > 1.

P r o o f. Assume that A and B are derived equivalent. Then there exists a tilting

complex T • in D(A) such that End(T •) = B. Since the Nakayama functor −⊗ADA :

D(A) → D(A) gives a Serre functor, there exists an isomorphism

HomD(A)(T
•, T • ⊗A DA) ∼= DHomD(A)(T

•, T •) = DB.

Then the claim follows from Theorem 3.1. �

The n-fold trivial extension algebra of A is defined as Tn(A) = Â/νn, where ν is

the Nakayama functor of the repetitive algebra Â and n > 1. In particular, T1(A) is

the usual trivial extension algebra A ⋉DA. For n > 2, Tn(A) is isomorphic to the

n-by-n matrix algebra

Tn(A) =




A DA

DA A

DA A
. . .

. . .

DA A




,

where the multiplication is induced from the canonical isomorphisms A ⊗ DA ∼=

DA ∼= DA⊗A and the zero map DA⊗DA → 0. Then Tn(A) is a finite-dimensional,

self-injective K-algebra.

Corollary 3.5 ([1], Theorem 4.1). Let A and B be algebras. If A and B are

derived equivalent, then Tn(A) and Tn(B) are also derived equivalent for any n > 1.

P r o o f. In [17], Rickard showed that trivial extension algebras of two derived

equivalent finite-dimensional algebras are also derived equivalent. And the proof is

similar to the proof of Corollary 3.4 when n > 2. �

The following corollary is the special case of [14], Theorem 4.3.

Corollary 3.6. Let R, S be algebras and TS a tilting right S-module. Let RMS

be a R-S-bimodule such that as R-module, ExtnS(TS ,MS) = 0 for all n > 0. Then

the 2-by-2 triangular matrix algebras

Γ1 =

(
R M

0 S

)
and Γ2 =

(
R HomS(T,M)

0 EndS(T )

)

are derived equivalent.
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P r o o f. The relation

HomD(S)(T, S ⊗S M [n]) ∼= HomD(S)(T,M [n]) ∼= ExtnS(T,M)

infers the assertion by Theorem 3.1. �
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