Czechoslovak Mathematical Journal

Yingcai Sun; Min Chen

Acyclic 4-choosability of planar graphs without 4-cycles

Czechoslovak Mathematical Journal, Vol. 70 (2020), No. 1, 161-178
Persistent URL: http://dml.cz/dmlcz/148047

Terms of use:

© Institute of Mathematics AS CR, 2020

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

ACYCLIC 4-CHOOSABILITY OF PLANAR GRAPHS WITHOUT 4-CYCLES

Yingcai Sun, Min Chen, Jinhua

Received April 9, 2019. Published online September 16, 2019.

Abstract. A proper vertex coloring of a graph G is acyclic if there is no bicolored cycle in G. In other words, each cycle of G must be colored with at least three colors. Given a list assignment $L=\{L(v): v \in V\}$, if there exists an acyclic coloring π of G such that $\pi(v) \in L(v)$ for all $v \in V$, then we say that G is acyclically L-colorable. If G is acyclically L-colorable for any list assignment L with $|L(v)| \geqslant k$ for all $v \in V$, then G is acyclically k-choosable. In 2006, Montassier, Raspaud and Wang conjectured that every planar graph without 4-cycles is acyclically 4 -choosable. However, this has been as yet verified only for some restricted classes of planar graphs. In this paper, we prove that every planar graph with neither 4 -cycles nor intersecting i-cycles for each $i \in\{3,5\}$ is acyclically 4 -choosable.

Keywords: planar graph; acyclic coloring; choosability; intersecting cycle
MSC 2010: 05C10, 05C15

1. InTRODUCTION

Only simple graphs are considered in this article. A plane graph is a particular drawing of a planar graph in the Euclidean plane in such a way that any pair of edges intersect only at their endpoints. Formally, for a plane graph G we use $V(G), E(G)$ and $F(G)$ to denote its vertex set, edge set and face set, respectively. Two cycles (or faces) are said to be intersecting if they share at least one boundary vertex.

A proper vertex k-coloring of a graph G is a mapping π : $V(G) \rightarrow\{1,2, \ldots, k\}$ such that $\pi(u) \neq \pi(v)$ for adjacent vertices u and v. A proper vertex k-coloring of a graph G is called an acyclic k-coloring if G does not contain any bicolored cycle. The acyclic chromatic number $\chi_{a}(G)$ of G is the smallest integer k such that G has an acyclic k-coloring.

This research is supported by NSFC (No.11471293).

The concept of acyclic coloring of graphs was introduced by Grünbaum, see [11], and was first studied by Mitchem, see [13], Albertson and Berman, see [1] and Kostochka, see [12]. In [11], Grünbaum conjectured that if G is a planar graph, then $\chi_{a}(G) \leqslant 5$. This challenging conjecture was positively confirmed by Borodin, see [2].

Given a list assignment $L=\{L(v): v \in V(G)\}$ of a graph G, we say that G is acyclically L-colorable if there is an acyclic coloring π of the vertices such that $\pi(v) \in L(v)$ for each vertex v. This coloring π is said to be an acyclic L-coloring of G. If for any list assignment L with $|L(v)| \geqslant k$ for all $v \in V(G), G$ is always acyclically L-colorable, then G is called acyclically k-choosable. The acyclic list chromatic number of G, denoted by $\chi_{a}^{l}(G)$, is the smallest integer k such that G is acyclically k-choosable.

In 2002, Borodin et al. in [3] first investigated the acyclic L-coloring of planar graphs. They proved that every planar graph is acyclically 7 -choosable. Wang and Chen in [18] showed that if a planar graph does not contain 4 -cycles, then it is acyclically 6 -choosable. This result has been further slightly improved in [19] which states that if a planar graph G does not contain 4 -cycles adjacent to 6 -cycles, then G is acyclically 6 -choosable.

The following conjecture was proposed in [3].
Conjecture 1. Every planar graph is acyclically 5-choosable.
Conjecture 1 has been verified only for some special planar graphs: those without 4 -cycles and i-cycles for some fixed $i \in\{5,6\}$, see [16]; with neither 4 -cycles nor triangles at distance less than 3 , see [10]; with neither 4 -cycles nor intersecting triangles, see [7]; and with neither 4 -cycles nor chordal 6 -cycles, see [20]. Recently, Borodin and Ivanova in [4] proved that every planar graph without 4 -cycles is acyclically 5 -choosable. This nice result covers all previous consequences.

Now we turn our attention to the acyclic 4-choosability of planar graphs. Montassier, Raspaud and Wang [15] raised the following conjecture.

Conjecture 2. Every planar graph without 4-cycles is acyclically 4-choosable.
Note that if this conjecture were true, then it would strengthen a known result that every planar graph without 4 -cycles is 4 -choosable. However, it seems to be too difficult. Montassier, Raspaud and Wang in [15] proved that every planar graph without 4 -, 5 -, and 6 -cycles, or without 4 -, 5 -, and 7 -cycles, or without 4 -, 5 -cycles and intersecting 3 -cycles is acyclically 4 -choosable. Chen and Raspaud in [6] proved that every planar graph without 4 -, 5 -, and 8 -cycles is acyclically 4 -choosable. More recently, Chen and Raspaud in [8] improved all above-mentioned results by showing that every planar graph without 4 - and 5 -cycles is acyclically 4 -choosable. Some other results regarding Conjecture 2 can be found in the references [5], [9], [14].

The purpose of this paper is to provide a new sufficient condition for planar graphs being acyclically 4 -choosable. More precisely, we prove the following:

Theorem 1. Every planar graph with neither 4-cycles nor intersecting i-cycles for each $i \in\{3,5\}$ is acyclically 4-choosable.

2. Notation

Before showing our main result, we need to introduce a few of concepts and notation. Let $G=(V, E, F)$ be a plane graph. A k-vertex $\left(k^{+}\right.$-vertex, k^{-}-vertex) is a vertex of degree k (at least k, at most k). Similar notation can be defined for faces. For $v \in V(G)$, let $N(v)$ denote the set of neighbors of v. Sometimes we use $n_{k}(v)$ to denote the number of k-vertices adjacent to v.

A vertex or edge is called triangular if it is incident with a 3 -face. A triangular 3-vertex adjacent to a non-triangular vertex is said to be a pendant triangular 3 -vertex. We usually denote by $p_{3}(v)$ the number of pendant triangular 3 -vertices of vertex v. We call a 4 -vertex v a $4^{m p}$-vertex if $p_{3}(v)=m$, and write 4^{p}-vertex instead of $4^{1 p}$-vertex when $m=1$. If $n_{2}(v)=1$, then v is called a 4^{*}-vertex. Moreover, a vertex v is said to be weak if either $d(v)=3$ or v is a 4^{*}-vertex with $n_{3}(v) \geqslant 1$.

For $f \in F(G)$, we write $f=\left[u_{1} u_{2} \ldots u_{n}\right]$ if $u_{1}, u_{2}, \ldots, u_{n}$ are the boundary vertices of f in clockwise order. For simpleness, we use $m_{i}(v)$ to denote the number of i-faces incident with a vertex v. A 3-face $f=\left[v_{1} v_{2} v_{3}\right]$ is called an $\left(a_{1}, a_{2}, a_{3}\right)$-face if it satisfies that $d\left(v_{i}\right)=a_{i}$ for $i=1,2,3$. In addition, we write $a_{i}^{*}\left(a_{i}^{m p}\right)$ instead of a_{i} if v_{i} is a 4^{*}-vertex ($4^{m p}$-vertex).

For all figures in this paper, a vertex is represented by a solid point when all of its incident edges are drawn; otherwise it is represented by a hollow point.

3. Proof of Theorem 1

Suppose that G is a counterexample to Theorem 1 with minimizing $|V(G)|$. Obviously, G is connected.
3.1. Structural properties of the minimum counterexample. The following Lemmas 1 to 4, whose proofs were given in [6], [14], [15], [17] are quite useful in the remaining argument.

Lemma 1 ([14], [15]). Each vertex v in G satisfies the following: (A1) $d(v) \neq 1$;
(A2) v cannot be triangular if $d(v)=2$;
(A3) $n_{2}(v)=n_{3}(v)=0$ if $d(v)=2$;
(A4) v is adjacent to at most one weak vertex if $d(v)=3$;
(A5) $n_{2}(v) \leqslant 1$ if $d(v)=4$;
(A6) v is not adjacent to any triangular 3-vertex if $d(v)=4$ and $n_{2}(v)=1$;
(A7) $n_{2}(v) \leqslant 3$ if $d(v)=5$;
(A8) $n_{2}(v) \leqslant 2$ if $d(v)=5$ and $m_{3}(v)=1$;
(A9) $p_{3}(v)=0$ if $d(v)=5, n_{2}(v)=2$ and v is incident with a (5, 3, 4^{+})-face;
(A10) $n_{2}(v) \leqslant 4$ if $d(v)=6$.
Lemma 2 ([15]). No face f is a $(3,3,4)$-face or a $\left(3,4,4^{2 p}\right)$-face in G.

Lemma 3 ([6]). Each 3-vertex v satisfies that $p_{3}(v)=0$.

Lemma 4 ([17]). There is no 5 -vertex incident with a (3,3,5)-face and adjacent to two 2-vertices.

In what follows, let L be a list assignment of G with $|L(v)|=4$ for all $v \in V(G)$. Suppose that π is a partial acyclic L-coloring of G. Let a and b be any two colors under π. A bicolored (a, b)-path is a path $P=v_{1} v_{2} \ldots v_{m}$ in G such that $\pi\left(v_{i}\right)=a$ if i is odd and $\pi\left(v_{j}\right)=b$ otherwise. A vertex v is said to be properly colored under π (or simply properly colored) if we may choose a color in $L(v)$ for v that is distinct from the colors of all its neighbors.

Lemma 5. There is no $\left(3,4^{p}, 4^{p}\right)$-face in G.
Proof. Suppose that $f=[u v w]$ is a 3 -face with $d(u)=3$ and $d(v)=d(w)=4$. Denote by u_{1} another neighbor of u different from v and w. Let $N(v)=\left\{v_{1}, v_{2}, u, w\right\}$ and $N(w)=\left\{w_{1}, w_{2}, u, v\right\}$. By the absence of 4 -cycles, $v_{i} \neq w_{j}$ for each $i, j \in\{1,2\}$. Suppose to the contrary that both v and w are 4^{p}-vertices. Namely, $p_{3}(v)=1$ and $p_{3}(w)=1$. Without loss of generality (w.l.o.g.), assume that v_{1} and w_{1} are pendant triangular 3-vertices. Let $v_{1}^{\prime}, v_{1}^{\prime \prime}$ and $w_{1}^{\prime}, w_{1}^{\prime \prime}$ denote the other two neighbors of v_{1} and w_{1}, respectively. Notice that $v_{1} v_{1}^{\prime} v_{1}^{\prime \prime} v_{1}$ and $w_{1} w_{1}^{\prime} w_{1}^{\prime \prime} w_{1}$ are both 3 -cycles.

Clearly, $G-u$ admits an acyclic L-coloring π by the minimality of G. If u_{1}, v and w have pairwise distinct colors, then u can be properly colored, which leads to an acyclic L-coloring of G. So, in what follows, by symmetry, assume that $\pi\left(u_{1}\right)=\pi(v)$ due to $\pi(v) \neq \pi(w)$. Assume that $L(u)=\{1,2,3,4\}$. If we are still not able to find a possible color for u, then w.l.o.g., suppose that $\pi\left(u_{1}\right)=\pi(v)=1, \pi(w)=2$, $\pi\left(v_{1}\right)=3$ and $\pi\left(v_{2}\right)=4$. Moreover, one of v_{1}^{\prime} and $v_{1}^{\prime \prime}$ is colored with 1 , say $\pi\left(v_{1}^{\prime}\right)=1$. Note that $L(v)=\{1,2,3,4\}$, for otherwise we may recolor v by a color belonging to
$L(v) \backslash\{1,2,3,4\}$ and then go back to the previous case. At this moment, it suffices to recolor v with 3 , properly recolor v_{1} and then color u with 4 . Thus, we always get an acyclic L-coloring of G, a contradiction.

Lemma 6. There is no $\left(m, 4^{*}, 4^{2 p}\right)$-face in G.
Proof. Suppose to the contrary that $f=\left[v_{1} v_{2} v_{3}\right]$ is an $\left(m, 4^{*}, 4^{2 p}\right)$-face such that $d\left(v_{1}\right)=m, v_{2}$ is a 4^{*}-vertex and v_{3} is a $4^{2 p}$-vertex. For $i=2,3$, let x_{i}, y_{i} be other two neighbors of v_{i}. By definition, both x_{3}, y_{3} are pendant triangular 3 -vertices and w.l.o.g., let x_{2} be a 2-vertex. Let $N\left(x_{2}\right)=\left\{v_{2}, x_{2}^{\prime}\right\}, N\left(x_{3}\right)=\left\{v_{3}, x_{3}^{\prime}, x_{3}^{\prime \prime}\right\}$, and $N\left(y_{3}\right)=\left\{v_{3}, y_{3}^{\prime}, y_{3}^{\prime \prime}\right\}$.

Clearly, $G-x_{2}$ admits an acyclic L-coloring π by the minimality of G. If $\pi\left(v_{2}\right) \neq \pi\left(x_{2}^{\prime}\right)$, then we are easily done by properly coloring x_{2}. So next assume that $\pi\left(v_{2}\right)=\pi\left(x_{2}^{\prime}\right)$. Let $L\left(x_{2}\right)=\{1,2,3,4\}$. If x_{2} cannot be given a color, we get an acyclic coloring, then w.l.o.g., suppose that $\pi\left(v_{2}\right)=\pi\left(x_{2}^{\prime}\right)=1, \pi\left(y_{2}\right)=2$, $\pi\left(v_{3}\right)=3$ and $\pi\left(v_{1}\right)=4$. Moreover, there is a bicolored (1,3)-path joining x_{2}^{\prime} and v_{3} in $G-\left\{x_{2}\right\}$. By symmetry, let $\pi\left(x_{3}\right)=1$ and $\pi\left(x_{3}^{\prime}\right)=3$. If $L\left(v_{2}\right) \neq\{1,2,3,4\}$, then we may recolor v_{2} by a color in $L\left(v_{2}\right) \backslash\{1,2,3,4\}$ and then further color x_{2} with 2 . The resultant coloring of G is obviously an acyclic L-coloring, a contradiction. So, in the following, assume that $L\left(v_{2}\right)=\{1,2,3,4\}$.

First consider the case when $\pi\left(y_{3}\right) \notin\{1,4\}$. If there is a color a in $L\left(v_{3}\right) \backslash$ $\left\{1,3,4, \pi\left(y_{3}\right)\right\}$, then recolor v_{3} with a, recolor v_{2} with 3 , and then color x_{2} with 2 . Now, assume that $L\left(v_{3}\right)=\left\{1,3,4, \pi\left(y_{3}\right)\right\}$. In order to extend π to G, we do like this: recolor v_{3} with 1 , properly recolor x_{3}, and then color v_{2}, x_{2} with 3 and 2 , respectively.

Now consider the case when $\pi\left(y_{3}\right)=4$. If there is a color $b \in L\left(v_{3}\right) \backslash\{3,4$, $\left.\pi\left(y_{3}^{\prime}\right), \pi\left(y_{3}^{\prime \prime}\right)\right\}$, then we recolor v_{3} with b, v_{2} with 3 , and then color x_{2} with 2 . If the obtained coloring is not acyclic, then it must be the case when $b=1$. At this moment, we only need to further properly recolor x_{3}. Now, assume that $L\left(v_{3}\right)=\left\{3,4, \pi\left(y_{3}^{\prime}\right), \pi\left(y_{3}^{\prime \prime}\right)\right\}$. We are sure that there is at least one color belonging to $\left\{\pi\left(y_{3}^{\prime}\right), \pi\left(y_{3}^{\prime \prime}\right)\right\}$ that is different from $\pi\left(x_{3}^{\prime \prime}\right)$, say $\pi\left(y_{3}^{\prime}\right)$. Then recolor v_{3} with $\pi\left(y_{3}^{\prime}\right)$ and recolor y_{3} with α in $L\left(y_{3}\right) \backslash\left\{4, \pi\left(y_{3}^{\prime}\right), \pi\left(y_{3}^{\prime \prime}\right)\right\}$. If $\pi\left(y_{3}^{\prime}\right) \notin\{1,2\}$, then it suffices to color x_{2} with 3 . If $\pi\left(y_{3}^{\prime}\right)=1$, we may first properly recolor x_{3}, then recolor v_{2} with 3 , and afterwards color x_{2} with 2 . Otherwise, $\pi\left(y_{3}^{\prime}\right)=2$. If $\alpha \neq 1$, we may similarly color x_{2} with 3 . Or else, $\alpha=1$. In this case, one can reassign color 3 to v_{2} and then assign color 2 to x_{2}.

Finally consider the case when $\pi\left(y_{3}\right)=1$. Recolor v_{3} with $c \in L\left(v_{3}\right) \backslash\left\{3,4, \pi\left(x_{3}^{\prime \prime}\right)\right\}$. If $c \notin\{1,2\}$, it suffices to color x_{2} with 3 . If $c=2$, then recolor v_{2} with 3 and further color x_{2} with 2. Otherwise, $c=1$. It remains us to properly recolor x_{3} and y_{3}, and then recolor v_{2} with 3 . Afterwards, assign color 2 to x_{2} successfully. It is not
difficult to inspect that there is no bicolored cycle produced in recoloring process, and therefore G is acyclically L-colorable, a contradiction.

Lemma 7. There is no $\left(4^{*}, 4^{*}, 4\right)$-face in G.
Proof. Suppose that $f=\left[v_{1} v_{2} v_{3}\right]$ is a (4,4,4)-face with $d\left(v_{1}\right)=d\left(v_{2}\right)=$ $d\left(v_{3}\right)=4$. For each $i \in\{1,2,3\}$, denote by x_{i} and y_{i} the other two neighbors of v_{i} that are not on the boundary of f. Suppose to the contrary that v_{1} and v_{2} are both 4^{*}-vertices, that is, each v_{i} is adjacent to exactly one 2 -vertex. W.l.o.g., assume that $d\left(x_{1}\right)=d\left(x_{2}\right)=2$. Let $N\left(x_{1}\right)=\left\{v_{1}, x_{1}^{\prime}\right\}$ and $N\left(x_{2}\right)=\left\{v_{2}, x_{2}^{\prime}\right\}$. Obviously, $x_{1} \neq x_{2}$ due to the absence of 4 -cycles in G.

Let $G^{\prime}=G-x_{1}$. By the minimality of G, G^{\prime} admits an acyclic L-coloring π. If $\pi\left(v_{1}\right) \neq \pi\left(x_{1}^{\prime}\right)$, then it is easy to extend π to the whole graph G by properly coloring x_{1}. Otherwise, $\pi\left(v_{1}\right)=\pi\left(x_{1}^{\prime}\right)$. Let $L\left(x_{1}\right)=\{1,2,3,4\}$. If we are not able to find a way to acyclically color x_{1}, then assume w.l.o.g. that $\pi\left(v_{1}\right)=\pi\left(x_{1}^{\prime}\right)=1$, $\pi\left(y_{1}\right)=2, \pi\left(v_{2}\right)=3$ and $\pi\left(v_{3}\right)=4$. Furthermore, in G^{\prime} there exist one bicolored (1,3)-path, denoted by P_{1}, joining x_{1}^{\prime} and v_{2} and one bicolored (1,4)-path, denoted by P_{2}, joining x_{1}^{\prime} and v_{3}. It follows that $1 \in\left\{\pi\left(x_{2}\right), \pi\left(y_{2}\right)\right\}$ and $1 \in\left\{\pi\left(x_{3}\right), \pi\left(y_{3}\right)\right\}$. By symmetry, assume that $\pi\left(x_{3}\right)=1$. If $L\left(v_{1}\right) \neq\{1,2,3,4\}$, then it suffices to recolor v_{1} by a color in $L\left(v_{1}\right) \backslash\{1,2,3,4\}$ and then color x_{1} with 2 . So, in what follows, assume that $L\left(v_{1}\right)=\{1,2,3,4\}$. To extend π from G^{\prime} to G, we consider the following cases according to the colors of x_{2} and y_{2}.

Case 1: $\pi\left(y_{2}\right)=1$. If there exists a color $a \in L\left(v_{2}\right) \backslash\left\{1,3,4, \pi\left(x_{2}^{\prime}\right)\right\}$, then we first recolor v_{2} with a and v_{1} with 3 . Then properly recolor x_{2}, and finally color x_{1} with 2. Otherwise, assume that $L\left(v_{2}\right)=\left\{1,3,4, \pi\left(x_{2}^{\prime}\right)\right\}$. It follows that $\pi\left(x_{2}^{\prime}\right) \neq 3$. If $\pi\left(y_{3}\right)=1$, we can recolor v_{2} with $\pi\left(x_{2}^{\prime}\right), x_{2}$ with a color $c \in L\left(x_{2}\right) \backslash\left\{1,3, \pi\left(x_{2}^{\prime}\right)\right\}$, v_{1} with 3 , and afterwards color x_{1} with 2 .

Next assume that $\pi\left(y_{3}\right) \neq 1$. Then we first recolor v_{3} with $d \in L\left(v_{3}\right) \backslash\left\{1,4, \pi\left(y_{3}\right)\right\}$. If $d \notin\{2,3\}$, then we only need to color x_{1} with 4 directly and continue to recolor x_{2} with a color different from $1,3, d$ in the case when $\pi\left(x_{2}\right)=d$ and $\pi\left(x_{2}^{\prime}\right)=3$. If $d=2$, then recolor v_{1} with 4 and further color x_{1} with 2 , and similarly further recolor x_{2} with a color different from $1,2,3$ when $\pi\left(x_{2}\right)=2$ and $\pi\left(x_{2}^{\prime}\right)=3$. Now consider the case that $d=3$. At this moment, we need to recolor v_{2} with $\pi\left(x_{2}^{\prime}\right), x_{2}$ with $c_{1} \in L\left(x_{2}\right) \backslash\left\{1,3, \pi\left(x_{2}^{\prime}\right)\right\}$, and then color x_{1} with 4 . Noting that $c_{1} \neq 1$, so the obtained coloring is not acyclic, then it must be the case when $\pi\left(x_{2}^{\prime}\right)=2$. If $c_{1} \neq 4$, it suffices to recolor v_{1} with 4 and then color x_{1} with 2 . Or else, $c_{1}=4$, implying that $L\left(x_{2}\right)=\{1,2,3,4\}$. Recall that there is one bicolored (1,3)-path P_{1} joining x_{1}^{\prime} and y_{2} and one bicolored (1,4)-path P_{2} joining x_{1}^{\prime} and x_{3}. Then we recolor v_{1} with 4 and then color x_{1} with 2 . If the resultant coloring is not acyclic, then there exists one bicolored $(2,4)$-path in G^{\prime}, say P_{3}, joining y_{1} and x_{2}^{\prime}. Since $\{1,3\} \cap\{2,4\}=\emptyset$,
together with the planarity of G, one may obtain that only two possible cases may occur, as depicted in Fig 1.

Figure 1. Two possible cases occurred in Lemma 7.

Clearly, for configuration (C1), we first recolor x_{2} with 3 . Since P_{2} is a bicolored $(1,4)$-path, we deduce that there is no bicolored (2,3)-path connecting y_{1} and x_{2} outside of f. Thus, we can obtain an acyclic L-coloring of G by recoloring v_{1} with 3 , v_{2} with 2 , v_{3} with 4 and later coloring x_{1} with 2 . Similarly, for configuration (C 2), we can recolor x_{2} and v_{3} with $4, v_{2}$ with $2, v_{1}$ with 3 and then color x_{1} with 2 . Since P_{1} is a bicolored $(1,3)$-path, we declare that there is no bicolored $(2,4)$-path connecting x_{2}^{\prime} and v_{3} outside of f. Hence, the obtained coloring is an acyclic L-coloring, a contradiction.

Case 2: $\pi\left(x_{2}\right)=1$. Since $\pi\left(y_{2}\right) \neq 1$, we deduce that $\pi\left(x_{2}^{\prime}\right)=3$ by the existence of bicolored (1,3)-path P_{1}.
$\triangleright \pi\left(y_{2}\right)=4$. If there is a color $a \in L\left(v_{2}\right) \backslash\left\{1,3,4, \pi\left(y_{3}\right)\right\}$, then we recolor v_{2} with a and then color x_{1} with 3 . Otherwise, assume that $L\left(v_{2}\right)=\left\{1,3,4, \pi\left(y_{3}\right)\right\}$. It follows that $\pi\left(y_{3}\right) \neq 1$. If $L\left(v_{3}\right) \neq\left\{1,2,4, \pi\left(y_{3}\right)\right\}$, then we may recolor v_{3} with $b \in L\left(v_{3}\right) \backslash\left\{1,2,4, \pi\left(y_{3}\right)\right\}, v_{2}$ with $1, v_{1}$ with 4 and then color x_{1} with 2. Afterwards, x_{2} can be properly recolored. Now suppose that $L\left(v_{3}\right)=\left\{1,2,4, \pi\left(y_{3}\right)\right\}$. It is easy to recolor v_{3} with $2, v_{1}$ with 4 and then color x_{1} with 2 . In each case, we always reach an acyclic L-coloring of G, a contradiction.
$\triangleright \pi\left(y_{2}\right) \neq 4$. We first recolor x_{2} with $a \in L\left(x_{2}\right) \backslash\left\{1,3, \pi\left(y_{2}\right)\right\}$. If $a \neq 4$, then we immediately color x_{1} with 3 . Or else, $a=4$. This guarantees us that $L\left(x_{2}\right)=$ $\left\{1,3,4, \pi\left(y_{2}\right)\right\}$. We can do as follows: recolor x_{2} with $\pi\left(y_{2}\right), v_{2}$ with a color in $L\left(v_{2}\right) \backslash\left\{3,4, \pi\left(y_{2}\right)\right\}, v_{1}$ with 3 and finally color x_{1} with 2 .

Lemma 8. Let v be a 5 -vertex. Then
(F1) if v is incident to a $(3,3,5)$-face and $n_{2}(v)=1$, then $p_{3}(v)=0$;
(F2) if v is incident to a $\left(3,4^{2 p}, 5\right)$-face, then $n_{2}(v) \leqslant 1$;
(F3) if v is incident to a $\left(4^{*}, 4^{*}, 5\right)$-face and $n_{2}(v)=2$, then $p_{3}(v)=0$.
Proof. Let $v_{1}, v_{2}, \ldots, v_{5}$ denote all the neighbors of v in a cyclic order. In what follows, in each case, we always denote by v_{i}^{\prime} the other neighbor of v_{i} (different from v) if $d\left(v_{i}\right)=2$, and x_{i}, y_{i} the other two neighbors of v_{i} (different from v) if v_{i} is a pendant triangular 3 -vertex of v. Here, $v_{i} x_{i} y_{i} v_{i}$ forms a 3 -cycle. We will make use of contradictions to show (F1) to (F3).
(F1) Suppose to the contrary that $f_{1}=\left[v_{1} v_{2} v\right]$ is a $(3,3,5)$-face, v_{3} is a 2 -vertex and v_{4} is a pendant triangular 3 -vertex of v. By definition, both v_{1} and v_{2} are 3 -vertices. We let u_{1} or u_{2} denote the neighbor of v_{1} or v_{2} that is not on the boundary of f_{1}.

Let $G^{\prime}=G-\left\{v, v_{1}, v_{2}, v_{3}, v_{4}\right\}$. It is obvious that G^{\prime} has an acyclic L-coloring π by the minimality of G. Let $S=\left\{u_{1}, u_{2}, v_{3}^{\prime}, x_{4}, y_{4}\right\}$. Since $\left|L(v) \backslash\left\{\pi\left(v_{5}\right)\right\}\right| \geqslant 3$ and $|S|=5$, we conclude that there exists a color α belonging to $L(v) \backslash\left\{\pi\left(v_{5}\right)\right\}$ appearing at most once on the set S. We first color v with α. Clearly, if no vertex of S is colored with α, then we may firstly assign a color distinct from that of v, u_{1}, u_{2} to v_{1}, and then properly color remaining vertices v_{2}, v_{3}, v_{4}, in succession. So in the following, assume that such color α appears exactly once on S.

By symmetry, we have three cases to handle. If $\pi\left(u_{1}\right)=\alpha$, then it suffices to color v_{1} with a color in $L\left(v_{1}\right) \backslash\left\{\alpha, \pi\left(v_{5}\right), \pi\left(u_{2}\right)\right\}$ and then properly color v_{2}, v_{3}, v_{4} in the given order. If $\pi\left(v_{3}^{\prime}\right)=\alpha$, then we color v_{3} with a color in $L\left(v_{3}\right) \backslash\left\{\alpha, \pi\left(v_{5}\right)\right\}$, v_{1} with a color in $L\left(v_{1}\right) \backslash\left\{\alpha, \pi\left(u_{1}\right), \pi\left(u_{2}\right)\right\}$, and finally properly color v_{2} and v_{4} in the given order. Now consider the case when $\pi\left(x_{4}\right)=\alpha$. We can first color v_{4} with a color in $L\left(v_{4}\right) \backslash\left\{\alpha, \pi\left(v_{5}\right), \pi\left(y_{4}\right)\right\}$. Then color v_{1} with a color belonging to $L\left(v_{1}\right) \backslash\left\{\alpha, \pi\left(u_{1}\right), \pi\left(u_{2}\right)\right\}$. Finally, v_{2} and v_{3} can be further properly colored without any trouble. One may verify that in each case we always obtain an acyclic L-coloring of G, a contradiction.
(F2) Suppose to the contrary that $f_{1}=\left[v_{1} v_{2} v\right]$ is a $\left(3,4^{2 p}, 5\right)$-face and v_{3}, v_{4} are both 2 -vertices. Then $d\left(v_{1}\right)=3$ and v_{2} is a $4^{2 p}$-vertex, namely, $p_{3}\left(v_{2}\right)=2$. Let $N\left(v_{1}\right)=\left\{v, u_{1}, v_{2}\right\}$ and $N\left(v_{2}\right)=\left\{v, v_{1}, w_{1}, w_{2}\right\}$, where w_{1} and w_{2} are pendant triangular 3 -vertices of v_{2}. For each $i \in\{1,2\}$, denote by x_{i}, y_{i} the other two neighbors of w_{i} such that $w_{i} x_{i} y_{i} w_{i}$ forms a 3 -cycle.

Let $G^{\prime}=G-\left\{v, v_{1}, v_{2}, v_{3}, v_{4}\right\}$. By the minimality of G, G^{\prime} admits an acyclic L-coloring π. Let $S=\left\{u_{1}, w_{1}, w_{2}, v_{3}^{\prime}, v_{4}^{\prime}\right\}$. Similarly, since $\left|L(v) \backslash\left\{\pi\left(v_{5}\right)\right\}\right| \geqslant 3$ and $|S|=5$, we assert that there exists a color $\alpha \in L(v) \backslash\left\{\pi\left(v_{5}\right)\right\}$ appearing at most
once on the set S. Firstly, assign such color α to v. The following discussion is split into two cases:

Case 1: Assume that exactly one of w_{1} and w_{2} is colored with α, say $\pi\left(w_{1}\right)=\alpha$.
It follows that none of $u_{1}, w_{2}, v_{3}^{\prime}$ and v_{4}^{\prime} has color α. Because v_{3} and v_{4} are 2 -vertices, we may first properly color each of them. Then, select a color $c \in L\left(v_{2}\right) \backslash$ $\left\{\alpha, \pi\left(w_{2}\right), \pi\left(v_{5}\right)\right\}$ for v_{2}. If $c \neq \pi\left(u_{1}\right)$, then we further properly color v_{1} and thus we are done. Otherwise, we can choose a color in $L\left(v_{1}\right) \backslash\left\{c, \alpha, \pi\left(w_{2}\right)\right\}$ for v_{1}. In each case, one may verify that the resulting coloring of G is an acyclic L-coloring, a contradiction.

Case 2: Assume that $\pi\left(w_{1}\right) \neq \alpha$ and $\pi\left(w_{2}\right) \neq \alpha$.
Subcase 2.1: $\pi\left(w_{1}\right) \neq \pi\left(w_{2}\right)$. Noting that w_{1}, w_{2} and v have pairwise distinct colors, we can choose a color c belonging to $L\left(v_{2}\right) \backslash\left\{\alpha, \pi\left(w_{1}\right), \pi\left(w_{2}\right)\right\}$ for v_{2}. Suppose that $c \neq \pi\left(u_{1}\right)$. If $\pi\left(v_{3}^{\prime}\right) \neq \alpha$ and $\pi\left(v_{4}^{\prime}\right) \neq \alpha$, then we may first properly color each of v_{3} and v_{4}. Then if $\pi\left(u_{1}\right) \neq \alpha$, it suffices to further properly color v_{1}; otherwise, we only need to choose a color for v_{1} that is distinct from α, c and $\pi\left(v_{5}\right)$. In what follows, w.l.o.g., suppose that $\pi\left(v_{3}^{\prime}\right)=\alpha$. It grantees us that $\pi\left(u_{1}\right) \neq \alpha$. Thus, we first properly color v_{4}, then color v_{3} with a color different from α and $\pi\left(v_{5}\right)$, and afterwards properly color v_{1}.

Next, suppose that $c=\pi\left(u_{1}\right)$. It implies that $\pi\left(u_{1}\right) \neq \alpha$ due to $c \neq \alpha$. First, we can find a possible way for coloring v_{3} and v_{4} as follows: if $\pi\left(v_{i}\right) \neq \alpha$ for each $i=3,4$, then properly color each of v_{3} and v_{4}; otherwise, say $\pi\left(v_{3}^{\prime}\right)=\alpha$, and thus we can color v_{3} with a color different from α and $\pi\left(v_{5}\right)$, and then properly color v_{4}. In what follows, in order to obtain an acyclic L-coloring of G, it remains us to show how to color v_{1}. If $L\left(v_{2}\right) \neq\left\{c, \alpha, \pi\left(w_{1}\right), \pi\left(w_{2}\right)\right\}$, then recolor v_{2} with a color in $L\left(v_{2}\right) \backslash\left\{c, \alpha, \pi\left(w_{1}\right), \pi\left(w_{2}\right)\right\}$ and then further properly color v_{1}. Or else, suppose that $L\left(v_{2}\right)=\left\{c, \alpha, \pi\left(w_{1}\right), \pi\left(w_{2}\right)\right\}$. At this moment, if v_{1} cannot be given a proper color, then one may easily deduce that $L\left(v_{1}\right)=\left\{c, \alpha, \pi\left(w_{1}\right), \pi\left(w_{2}\right)\right\}$ and $c \in\left\{\pi\left(x_{i}\right), \pi\left(y_{i}\right)\right\}$ for each $i \in\{1,2\}$. By symmetry, let $\pi\left(x_{1}\right)=\pi\left(x_{2}\right)=c$. In this case, we may do as follows: recolor v_{2} with $\pi\left(w_{1}\right)$, then color v_{1} with $\pi\left(w_{2}\right)$, and finally properly recolor w_{1}.

Subcase 2.2: $\pi\left(w_{1}\right)=\pi\left(w_{2}\right)$. Recolor w_{1} with a color $\beta \in L\left(w_{1}\right) \backslash\left\{\pi\left(w_{1}\right), \pi\left(x_{1}\right)\right.$, $\left.\pi\left(y_{1}\right)\right\}$. If $\beta \neq \alpha$, then we go back to the previous Subcase 2.1. Otherwise, assume that $\beta=\alpha$. If none of u_{1}, v_{3}^{\prime} and v_{4}^{\prime} has been colored with α, then we reduce the following proof to Case 1 . Or else, exactly one of $u_{1}, v_{3}^{\prime}, v_{4}^{\prime}$ is colored with α. It implies that there exists a color $\gamma \in L(v) \backslash\left\{\alpha, \pi\left(v_{5}\right)\right\}$ such that γ appears at most once on the set $S^{\prime}=\left\{u_{1}, w_{2}, v_{3}^{\prime}, v_{4}^{\prime}\right\}$. Now we recolor v with γ. If $\gamma=\pi\left(w_{2}\right)$, then the following argument is reduced to Case 1. Otherwise, we go back to Subcase 2.1.
(F3) Suppose to the contrary that $f_{1}=\left[v_{1} v_{2} v\right]$ is a $\left(4^{*}, 4^{*}, 5\right)$-face, v_{3} and v_{4} are 2 -vertices, and v_{5} is a pendant triangular 3 -vertex. By definition, both v_{1} and v_{2}
are special 4 -vertices. For each $i=1,2$, let u_{i}, w_{i} denote the other two neighbors of v_{i} not on the boundary of f_{1} such that $d\left(u_{i}\right)=2$. Denote by u_{1}^{\prime} and u_{2}^{\prime} another neighbor of u_{1} and u_{2}, respectively.

By the minimality of $G, G-\left\{v, v_{3}, v_{4}, v_{5}\right\}$ has an acyclic L-coloring π. Let $S=$ $\left\{v_{3}^{\prime}, v_{4}^{\prime}, x_{5}, y_{5}\right\}$. Obviously, there exists a color $\alpha \in L(v) \backslash\left\{\pi\left(v_{1}\right), \pi\left(v_{2}\right)\right\}$ that appears at most twice on the set S. We assign such color α to v firstly. If there is no vertex of S colored with α, then it is easy to extend π to G by properly coloring v_{3}, v_{4}, v_{5} in succession. Next, let us discuss the following two cases depending on the number of occurrences of α.

Case 1: There is exactly one vertex of S colored with α. By symmetry, we have two possibilities as follows:
$\triangleright \pi\left(v_{3}^{\prime}\right)=\alpha$. We can color v_{3} with a color belonging to $L\left(v_{3}\right) \backslash\left\{\alpha, \pi\left(v_{1}\right), \pi\left(v_{2}\right)\right\}$ and then properly color each of v_{4} and v_{5}.
$\triangleright \pi\left(x_{5}\right)=\alpha$. First properly color each of v_{3} and v_{4}. Assume, w.l.o.g., that $\pi\left(v_{1}\right)=1$ and $\pi\left(v_{2}\right)=2$. If $L\left(v_{5}\right) \neq\left\{1,2, \alpha, \pi\left(y_{5}\right)\right\}$, then it suffices to further color v_{5} with a color in $L\left(v_{5}\right) \backslash\left\{1,2, \alpha, \pi\left(y_{5}\right)\right\}$. Next, assume that $L\left(v_{5}\right)=\left\{1,2, \alpha, \pi\left(y_{5}\right)\right\}$. If we are still not able to successfully color v_{5}, then it must be the case when in G^{\prime} there exists a bicolored $(1, \alpha)$-path P_{1} connecting v_{1} and x_{5} and a bicolored $(2, \alpha)$-path P_{2} connecting v_{2} and x_{5}. That is, $\alpha \in\left\{\pi\left(u_{1}\right), \pi\left(w_{1}\right)\right\}$ and $\alpha \in\left\{\pi\left(u_{2}\right), \pi\left(w_{2}\right)\right\}$.

Consider the case when $\pi\left(w_{1}\right)=\alpha$. If there is a color β belonging to $L\left(v_{1}\right) \backslash$ $\left\{1,2, \alpha, \pi\left(u_{1}^{\prime}\right)\right\}$, then we recolor v_{1} with β, color v_{5} with 1 , and then properly color u_{1} (if needed). Otherwise, let $L\left(v_{1}\right)=\left\{1,2, \alpha, \pi\left(u_{1}^{\prime}\right)\right\}$. We recolor v_{1} with $\pi\left(u_{1}^{\prime}\right)$ and then color v_{5} with 1 . Finally, it remains us to recolor u_{1} with a color in $L\left(u_{1}\right) \backslash\left\{2, \alpha, \pi\left(u_{1}^{\prime}\right)\right\}$.

Since the discussion for the case when $\pi\left(w_{2}\right)=\alpha$ is the same as the above case, in what follows, assume that $\pi\left(w_{1}\right) \neq \alpha$ and $\pi\left(w_{2}\right) \neq \alpha$. By the existences of P_{1} and P_{2}, we deduce that $\pi\left(u_{1}\right)=\pi\left(u_{2}\right)=\alpha$. Moreover, $\pi\left(u_{1}^{\prime}\right)=1$ and $\pi\left(u_{2}^{\prime}\right)=2$. If $L\left(v_{1}\right) \neq\left\{1,2, \alpha, \pi\left(w_{1}\right)\right\}$, then recolor v_{1} with a color c in $L\left(v_{1}\right) \backslash\left\{1,2, \alpha, \pi\left(w_{1}\right)\right\}$ and further color v_{5} with 1 . If the resulting coloring is not acyclic, then we deduce that $\pi\left(w_{2}\right)=c$ and $\pi\left(w_{1}\right)=2$. In this case, we further recolor v_{2} with a color distinct from $2, c, \alpha$, and finally recolor v_{5} with 2 . Otherwise, $L\left(v_{1}\right)=\left\{1,2, \alpha, \pi\left(w_{1}\right)\right\}$. Similarly, we deduce that $L\left(v_{2}\right)=\left\{1,2, \alpha, \pi\left(w_{2}\right)\right\}$. At this moment, we may destroy P_{1} and P_{2} by switching the colors of v_{1} and v_{2} and then color v_{5} with 1 successfully.

Case 2: There are exactly two vertices of S colored with α. Since $\pi\left(x_{5}\right) \neq \pi\left(y_{5}\right)$, w.l.o.g., assume that $\pi\left(v_{3}^{\prime}\right)=\pi\left(x_{5}\right)=\alpha$. In this case, we may further suppose that $L(v)=\{1,2, \alpha, \beta\}$ such that $\pi\left(v_{4}^{\prime}\right)=\pi\left(y_{5}\right)=\beta$. First consider the case when
$L\left(v_{5}\right) \neq\{1,2, \alpha, \beta\}$. Choose a color $c \in L\left(v_{5}\right) \backslash\{1,2, \alpha, \beta\}$ for v_{5}. If $L\left(v_{3}\right) \neq$ $\{1,2, \alpha, c\}$, then it is easy to further color v_{3} with a color in $L\left(v_{3}\right) \backslash\{1,2, \alpha, c\}$ and afterwards properly color v_{4}. Similarly, if $L\left(v_{4}\right) \neq\{1,2, \beta, c\}$, then we can continue to color v_{4} with a color in $L\left(v_{4}\right) \backslash\{1,2, \beta, c\}$, recolor v with β and lastly properly color v_{3}. Now assume that $L\left(v_{3}\right)=\{1,2, \alpha, c\}$ and $L\left(v_{4}\right)=\{1,2, \beta, c\}$. Moreover, one may easily inspect that $\left\{\pi\left(u_{1}\right), \pi\left(w_{1}\right)\right\}=\left\{\pi\left(u_{2}\right), \pi\left(w_{2}\right)\right\}=\{\alpha, \beta\}$. W.l.o.g., assume that $\pi\left(u_{1}\right)=\alpha$ and $\pi\left(w_{1}\right)=\beta$. At present, we color v_{3} with 1 and properly color v_{4}. If the resulting coloring is not acyclic, then it should be the case when $\pi\left(u_{1}^{\prime}\right)=1$. We only need to further recolor u_{1} by a color distinct from $1, \alpha, \beta$.

Next, consider the case when $L\left(v_{5}\right)=\{1,2, \alpha, \beta\}$. If $\left\{\pi\left(u_{1}\right), \pi\left(w_{1}\right)\right\} \neq\{\alpha, \beta\}$, say $\alpha \notin\left\{\pi\left(u_{1}\right), \pi\left(w_{1}\right)\right\}$, then color v_{5} with 1 , and v_{3} with a color in $L\left(v_{3}\right) \backslash\{\alpha, 1,2\}$, and then properly color v_{4}. So next, assume that $\left\{\pi\left(u_{1}\right), \pi\left(w_{1}\right)\right\}=\{\alpha, \beta\}$, say $\pi\left(u_{1}\right)=\alpha$ and $\pi\left(w_{1}\right)=\beta$. Similarly, we derive that $\pi\left(u_{1}^{\prime}\right)=1$. Now we can recolor u_{1} with a color in $L\left(u_{1}\right) \backslash\{1, \alpha, \beta\}$, then color v_{5} with $1, v_{3}$ with a color in $L\left(v_{3}\right) \backslash\{1,2, \alpha\}$, and finally properly color v_{4}.

Lemma 9. Let v be a 6 -vertex incident to a $\left(6,3,3^{+}\right)$-face f. Then (Q1) $n_{2}(v) \leqslant 3$;
(Q2) if $n_{2}(v)=3$, then f cannot be a $(6,3,3)$-face.
Proof. Let $v_{1}, v_{2}, \ldots, v_{6}$ denote all the neighbors of v in cyclic order. Suppose that $f=\left[v v_{1} v_{2}\right]$ is a $\left(6,3,3^{+}\right)$-face such that $d\left(v_{1}\right)=3$ and $d\left(v_{2}\right) \geqslant 3$. Let $N\left(v_{1}\right)=\left\{u_{1}, v_{2}, v\right\}$. In each case of the following discussion, we denote by v_{i}^{\prime} the other neighbor of v_{i} whenever $d\left(v_{i}\right)=2$. Next, we shall make use of contradictions to show (Q1) and (Q2).
(Q1) Suppose to the contrary that $n_{2}(v)=4$ so that $v_{3}, v_{4}, v_{5}, v_{6}$ are all 2 -vertices. Let $G^{\prime}=G-\left\{v, v_{3}, v_{4}, v_{5}, v_{6}\right\}$. Then, by the minimality of G, G^{\prime} admits an acyclic L-coloring π. Let $S=\left\{v_{3}^{\prime}, v_{4}^{\prime}, v_{5}^{\prime}, v_{6}^{\prime}\right\}$. Since $\left|L(v) \backslash\left\{\pi\left(v_{1}\right), \pi\left(v_{2}\right)\right\}\right| \geqslant 2$ and $|S|=4$, we declare that there exists a color, say α, belonging to $L(v) \backslash\left\{\pi\left(v_{1}\right), \pi\left(v_{2}\right)\right\}$ such that α appears at most twice on the set S. Firstly, we assign α to v. If there is no vertex of S colored with α, then it is easy to properly color each v_{i}, where $i \in\{3,4,5,6\}$. If exactly one vertex of S, say v_{3}^{\prime}, is colored with α, then we can color v_{3} with $a \in L\left(v_{3}\right) \backslash\left\{\alpha, \pi\left(v_{1}\right), \pi\left(v_{2}\right)\right\}$ and then properly color each remaining 2 -vertex v_{i} for each $i \in\{4,5,6\}$. So, in what follows, assume that there are exactly two vertices of S colored with α. At this moment, one may immediately deduce that $L(v)=\left\{\alpha, \beta, \pi\left(v_{1}\right), \pi\left(v_{2}\right)\right\}$ such that $\pi\left(v_{3}\right)=\pi\left(v_{4}\right)=\alpha$ and $\pi\left(v_{5}\right)=\pi\left(v_{6}\right)=\beta$. Further, w.l.o.g., we may assume that $\pi\left(u_{1}\right) \neq \alpha$ since otherwise we may choose β. Then it suffices to color v_{3} with $a \in L\left(v_{3}\right) \backslash\left\{\alpha, \pi\left(v_{2}\right)\right\}$, color v_{4} with $b \in L\left(v_{4}\right) \backslash$ $\left\{a, \alpha, \pi\left(v_{2}\right)\right\}$, and finally properly color each of v_{5} and v_{6}.
(Q2) Suppose to the contrary that f is a $(6,3,3)$-face such that $d\left(v_{1}\right)=d\left(v_{2}\right)=3$. Let v_{3}, v_{4}, v_{5} be all 2 -vertices. Denote by u_{2} another neighbor of v_{2} that is different from v and v_{1}. By the minimality of $G, G-\left\{v, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ admits an acyclic L-coloring π. Let $S=\left\{u_{1}, u_{2}, v_{3}^{\prime}, v_{4}^{\prime}, v_{5}^{\prime}\right\}$. Similarly, there exists a color $\alpha \in L(v) \backslash$ $\left\{\pi\left(v_{6}\right)\right\}$ that appears at most once on the set S. We first color v with α. If no vertex of S has been colored with α, then it is easy to first color v_{1} with $a \in$ $L\left(v_{1}\right) \backslash\left\{\alpha, \pi\left(u_{1}\right), \pi\left(u_{2}\right)\right\}$, and then properly color each of $v_{2}, v_{3}, v_{4}, v_{5}$ in order. Next, by symmetry, we have to deal with two cases below in light of the location of the vertex whose color is α.
$\triangleright \pi\left(u_{1}\right)=\alpha$. Then color v_{1} with $a \in L\left(v_{1}\right) \backslash\left\{\alpha, \pi\left(v_{6}\right), \pi\left(u_{2}\right)\right\}$. Afterwards, each of $v_{2}, v_{3}, v_{4}, v_{5}$ can be further properly colored.
$\triangleright \pi\left(v_{3}^{\prime}\right)=\alpha$. Then color v_{1} with $c \in L\left(v_{1}\right) \backslash\left\{\alpha, \pi\left(u_{1}\right), \pi\left(u_{2}\right)\right\}$, v_{3} with $d \in L\left(v_{3}\right) \backslash$ $\left\{\alpha, \pi\left(v_{6}\right)\right\}$, and finally properly color each of v_{2}, v_{4}, v_{5} in order.
In each case, one may easily verify that the obtained coloring of G is an acyclic L-coloring. This contradicts the choice of G.
3.2. Discharging process. Next, we are going to apply a discharging procedure to reach a contradiction. We define a weight function ω on $V(G) \cup F(G)$ by letting $\omega(v)=2 d(v)-6$ if $v \in V(G)$ and $\omega(f)=d(f)-6$ if $f \in F(G)$. By Euler's formula, we have that $\sum_{v \in V(G)}(2 d(v)-6)+\sum_{f \in F(G)}(d(f)-6)=-12$. By transferring weights from one element to another, we shall obtain a new non-negative weight function $\omega^{*}(x)$ for all $x \in V(G) \cup F(G)$. Since the total sum of weights is kept fixed when the discharging is in process, this leads to obvious contradiction

$$
-12=\sum_{x \in V(G) \cup F(G)} \omega(x)=\sum_{x \in V(G) \cup F(G)} \omega^{*}(x) \geqslant 0,
$$

and hence we complete the proof of Theorem 1.
Let $v \in V(G)$. If v is a $4^{m p}$-vertex with $m \in\{1,2\}$, then we denote $v \in V_{4^{m p}}$. Similarly, if v is a 4^{*}-vertex, then we say that $v \in V_{4^{*}}$.

In what follows, for $x, y \in V(G) \cup F(G)$ we use $\sigma(x \rightarrow y)$ to denote the amount of weights transferred from x to y. Our discharging rules are defined as follows:
(R1) Every 4^{+}-vertex sends 1 to each adjacent 2-vertex and $\frac{1}{4}$ to each adjacent pendant triangular 3-vertex.
(R2) Every 5^{+}-vertex sends $\frac{1}{2}$ to each incident 5 -face.
(R3) Let x be a 4 -vertex incident to a 5 -face $f=[x y z u v]$. Then (R3.1) $\sigma(x \rightarrow f)=\frac{1}{2}$ if f is either a $\left(4,3,4,2,4^{+}\right)$-face or a $\left(4,3,3^{+}, 3^{+}, 3\right)$-face;
(R3.2) $\sigma(x \rightarrow f)=\frac{3}{8}$ if f is a $\left(4,3,3,4^{+}, 4^{+}\right)$-face;
(R3.3) $\sigma(x \rightarrow f)=\frac{1}{4}$ otherwise.
(R4) Let $f=[x y z]$ be a 3 -face such that $d(x) \leqslant d(y) \leqslant d(z)$. We set
$(\mathrm{R} 4.1)\left(3,3,5^{+}\right) \rightarrow\left(\frac{1}{4}, \frac{1}{4}, \frac{5}{2}\right) ;$
$\left(\right.$ R4.2) $(3,4,4) \rightarrow \begin{cases}\left(\frac{1}{4}, \frac{5}{4}, \frac{3}{2}\right) & \text { if } y \in V_{4^{p}} ; \\ \left(\frac{1}{4}, \frac{11}{8}, \frac{11}{8}\right) & \text { otherwise. }\end{cases}$
(R4.3) $\left(3,4^{+}, 5^{+}\right) \rightarrow \begin{cases}\left(\frac{1}{4}, 1, \frac{7}{4}\right) & \text { if } y \in V_{4^{2 p}} ; \\ \left(\frac{1}{4}, \frac{5}{4}, \frac{3}{2}\right) & \text { if } y \in V_{4^{p}} ; \\ \left(\frac{1}{4}, \frac{11}{8}, \frac{11}{8}\right) & \text { otherwise. }\end{cases}$
(R4.4) $(4,4,4) \rightarrow \begin{cases}\left(\frac{3}{4}, \frac{9}{8}, \frac{9}{8}\right) & \text { if } x \in V_{4^{*}} \text { and } y, z \notin V_{4^{*}} ; \\ (1,1,1) & \text { otherwise. }\end{cases}$
(R4.5) $\left(4,4,5^{+}\right) \rightarrow \begin{cases}\left(\frac{3}{4}, \frac{3}{4}, \frac{3}{2}\right) & \text { if } x, y \in V_{4^{*}} ; \\ \left(\frac{3}{4}, \frac{9}{8}, \frac{9}{8}\right) & \text { if } x \in V_{4^{*}} \text { and } y \notin V_{4^{*}} ; \\ (1,1,1) & \text { otherwise. }\end{cases}$
$\left(\right.$ R4.6) $\left(4^{+}, 5^{+}, 5^{+}\right) \rightarrow \begin{cases}\left(\frac{3}{4}, \frac{9}{8}, \frac{9}{8}\right) & \text { if } x \in V_{4^{*}} ; \\ (1,1,1) & \text { otherwise. }\end{cases}$
Fact 1. By (R3), every 4-vertex sends weight at least $\frac{1}{4}$ to each of incident 5 -face.
Let us first check that $\omega^{*}(f) \geqslant 0$ for each k-face f. Obviously, $k \geqslant 3$. Moreover, $k \neq 4$ due to the absence of 4 -cycles. If $k \geqslant 6$, then it is trivial that $\omega^{*}(f)=\omega(f) \geqslant 0$ since f does not participate in the discharging by (R1)-(R4). Next, we consider the case when $k \in\{3,5\}$.

First suppose that f is a 3 -face. Then $\omega(f)=-3$. Denote $f=[x y z]$ such that $d(x) \leqslant d(y) \leqslant d(z)$. By (A2), none of x, y, z can be a 2 -vertex. We have the following three cases:
$\triangleright d(x)=3$. If $d(y)=3$, then $d(z) \geqslant 5$ by (A4) and Lemma 2. So $\omega^{*}(f) \geqslant$ $-3+\frac{1}{4}+\frac{1}{4}+\frac{5}{2}=0$ by (R4.1). If $d(y) \geqslant 5$, implying that $d(z) \geqslant 5$, then $\omega^{*}(f) \geqslant$ $-3+\frac{1}{4}+\frac{11}{8} \times 2=0$ by (R4.3). In what follows, assume that $d(y)=4$. If $d(z) \geqslant 5$, namely f is a $\left(3,4,5^{+}\right)$-face, then by (R4.3) we see that f receives weight at least W from all incident vertices, where $W=\min \left\{\frac{1}{4}+1+\frac{7}{4}, \frac{1}{4}+\frac{5}{4}+\frac{3}{2}, \frac{1}{4}+\frac{11}{8} \times 2\right\}=3$. Hence, $\omega^{*}(f) \geqslant-3+3=0$. Now we suppose that $d(z)=4$. It follows that f is a (3,4,4)-face. By (R4.2), one may deduce that either $\omega^{*}(f) \geqslant-3+\frac{1}{4}+\frac{5}{4}+\frac{3}{2}=0$ or $\omega^{*}(f) \geqslant-3+\frac{1}{4}+\frac{11}{8} \times 2=0$.
$\triangleright d(x)=4$. If $d(y) \geqslant 5$, that is, f is a $\left(4,5^{+}, 5^{+}\right)$-face, then by (R4.6), f gets weight at least W from all its incident vertices, where $W=\min \left\{\frac{3}{4}+\frac{9}{8} \times 2,1 \times 3\right\}=3$.

Hence, $\omega^{*}(f) \geqslant-3+3=0$. Now assume that $d(y)=4$. If $d(z) \geqslant 5$, namely f is a $\left(4,4,5^{+}\right)$-face, then by (R 4.5), one may easily obtain that f gets weight at least 3 and therefore $\omega^{*}(f) \geqslant-3+3=0$. Next, it remains us to consider the case when $d(z)=4$. In other words, f is a $(4,4,4)$-face at this moment. By (R4.4), it is easy to calculate that either $\omega^{*}(f) \geqslant-3+\frac{3}{4}+\frac{9}{8} \times 2=0$ or $\omega^{*}(f) \geqslant-3+1 \times 3=0$. $\triangleright d(x) \geqslant 5$. It follows that f is a $\left(5^{+}, 5^{+}, 5^{+}\right)$-face. By (R4.6), we have that either $\omega^{*}(f) \geqslant-3+\frac{3}{4}+\frac{9}{8} \times 2=0$ or $\omega^{*}(f) \geqslant-3+1 \times 3=0$.
Now suppose that f is a 5 -face. Obviously, $\omega(f)=-1$. By (A1), there is no 1 -vertex in G, and thus we know that the boundary of f is a cycle. Let $f=$ $\left[v_{1} v_{2} v_{3} v_{4} v_{5}\right]$. Denote by $n_{k}(f)$ the number of k-vertices incident to f. By (A3), $n_{2}(f) \leqslant 2$. If $n_{2}(f)=2$, w.l.o.g., assume that $d\left(v_{1}\right)=d\left(v_{3}\right)=2$, then $d\left(v_{i}\right) \geqslant 4$ for all $i \in\{2,4,5\}$ by applying (A3) again. Moreover, $d\left(v_{2}\right) \geqslant 5$ by (A5). So by (R2), $\sigma\left(v_{2} \rightarrow f\right)=\frac{1}{2}$. Thus, $\omega^{*}(f) \geqslant-1+\frac{1}{2}+\frac{1}{4} \times 2=0$ by Fact 1 . Next consider the case when $n_{2}(f)=1$. W.l.o.g., let $d\left(v_{1}\right)=2$. Then $d\left(v_{i}\right) \geqslant 4$ for each $i \in\{2,5\}$ by (A3). If one of v_{3} and v_{4} is a 5^{+}-vertex, then we may similarly deduce that $\omega^{*}(f) \geqslant-1+\frac{1}{2}+\frac{1}{4} \times 2=0$ by (R2) and Fact 1 . If v_{3} and v_{4} are both 4 -vertices, then by Fact 1 , we have that $\omega^{*}(f) \geqslant-1+\frac{1}{4} \times 4=0$. So, in what follows, assume that for each $i \in\{3,4\}, d\left(v_{i}\right) \leqslant 4$, and at most one of them can be a 4 -vertex. We have two possibilities:
$\triangleright d\left(v_{3}\right)=d\left(v_{4}\right)=3$. Then $d\left(v_{2}\right) \neq 4$ since otherwise v_{3} is adjacent to two weak vertices v_{2} and v_{4}, which contradicts (A4). By symmetry, $d\left(v_{5}\right) \neq 4$, and hence both v_{2} and v_{5} are of degree at least 5 . It is easy to obtain that $\omega^{*}(f) \geqslant-1+$ $\frac{1}{2} \times 2=0$ by (R2).
$\triangleright d\left(v_{3}\right)=3$ and $d\left(v_{4}\right)=4$. In this case, we may further suppose that $d\left(v_{2}\right)=$ $d\left(v_{5}\right)=4$ by similar discussion as above. Notice that f is a (4, 3, 4, 2, 4)-face. By $(\mathrm{R} 3.1), \sigma\left(v_{4} \rightarrow f\right)=\frac{1}{2}$, and therefore $\omega^{*}(f) \geqslant-1+\frac{1}{2}+\frac{1}{4} \times 2=0$ by Fact 1 .
Finally, suppose that $n_{2}(f)=0$, meaning that $d\left(v_{i}\right) \geqslant 3$ for all $i \in\{1,2, \ldots, 5\}$. Since each 3 -vertex is so called weak, by (A4) we confirm that $n_{3}(f) \leqslant 3$. If $n_{3}(f) \leqslant 1$, then it is obvious that $\omega^{*}(f) \geqslant-1+\frac{1}{4} \times 4=0$ by Fact 1 . If $n_{3}(f)=3$, say $d\left(v_{1}\right)=d\left(v_{3}\right)=d\left(v_{4}\right)=3$, then $d\left(v_{i}\right) \geqslant 4$ for each $i \in\{2,5\}$. Notice that if $d\left(v_{i}\right)=4$, then f is a $\left(4,3,3,4^{+}, 3\right)$-face, and thus by (R3.1) we have that $\sigma\left(v_{i} \rightarrow f\right)=\frac{1}{2}$. If $d\left(v_{i}\right) \geqslant 5$, then by (R2) we know that v_{i} also sends weight $\frac{1}{2}$ to f. Hence, $\omega^{*}(f) \geqslant-1+\frac{1}{2} \times 2=0$. So, next assume that $n_{3}(f)=2$. If $d\left(v_{1}\right)=d\left(v_{2}\right)=3$, then each v_{i} is a 4^{+}-vertex for the remaining index $i \in\{3,4,5\}$. If $n_{5^{+}}(f) \geqslant 1$, then $\omega^{*}(f) \geqslant-1+\frac{1}{2}+\frac{1}{4} \times 2=0$ by (R2) and Fact 1 . Or else, $d\left(v_{3}\right)=d\left(v_{4}\right)=d\left(v_{5}\right)=4$. By (R3.2), each of v_{3} and v_{5} sends weight $\frac{3}{8}$ to f, and thus $\omega^{*}(f) \geqslant-1+\frac{1}{4}+\frac{3}{8} \times 2=0$ by Fact 1. Otherwise, assume that $d\left(v_{1}\right)=d\left(v_{3}\right)=3$. Then $d\left(v_{i}\right) \geqslant 4$ for all $i \in\{2,4,5\}$. If $d\left(v_{2}\right)=4$, then f is a $\left(4,3,4^{+}, 4^{+}, 3\right)$-face. By $(\mathrm{R} 3.1), \sigma\left(v_{2} \rightarrow f\right)=\frac{1}{2}$.

If $d\left(v_{2}\right) \geqslant 5$, then again we deduce that $\sigma\left(v_{2} \rightarrow f\right)=\frac{1}{2}$ by applying (R2). Consequently, $\omega^{*}(f) \geqslant-1+\frac{1}{2}+\frac{1}{4} \times 2=0$ by Fact 1 .

In what follows, it remains us to verify that $\omega^{*}(v) \geqslant 0$ for each k-vertex v. By (A1), $k \geqslant 2$. For our convenience, we let $v_{1}, v_{2}, \ldots, v_{k}$ denote the neighbors of v in clockwise order. Let f_{i} be the face with $v v_{i}$ and $v v_{i+1}$ as two boundary edges for $i=1,2, \ldots, k$, where indices are taken modulo k. If $k=2$, then $\omega(v)=-2$. It follows from (A3) that v is adjacent to two 4^{+}-vertices, implying that $\omega^{*}(v) \geqslant-2+1 \times 2=0$ by (R1). If $k=3$, then $\omega(v)=0$. Notice that v only sends weight $\frac{1}{4}$ to its incident 3 -face by (R4). If it works, then v is a pendant triangular 3-vertex of a neighbor which is of degree at least 4 by (A3) and Lemma 3. Thus, by (R1), v receives the same weight $\frac{1}{4}$ from it and hence $\omega^{*}(v) \geqslant-\frac{1}{4}+\frac{1}{4}=0$. So, in what follows, we are going to show that $\omega^{*}(v) \geqslant 0$ for each k-vertex, where $k \geqslant 4$.

Case 1: $k=4$. Then $\omega(v)=2$. By (A5), $n_{2}(v) \leqslant 1$. Moreover, $m_{3}(v) \leqslant 1$ and $m_{5}(v) \leqslant 1$ by the assumption of G.

First suppose that $m_{3}(v)=0$. Then $d\left(f_{i}\right) \geqslant 5$ for all $i \in\{1, \ldots, 4\}$ due to $m_{4}(v)=0$. Since $m_{5}(v) \leqslant 1, v$ sends weight at most $\frac{1}{2}$ in total to all its incident faces by (R3). So if $n_{2}(v)=0$, then it is easy to obtain that $\omega^{*}(v) \geqslant 2-\frac{1}{2}-\frac{1}{4} \times 4=\frac{1}{2}$ by (R1). Otherwise $n_{2}(v)=1$. At present, by (A6) we know that $p_{3}(v)=0$, and therefore $\omega^{*}(v) \geqslant 2-1-\frac{1}{2}=\frac{1}{2}$ by (R1).

Next suppose that $m_{3}(v)=1$, w.l.o.g., say $d\left(f_{1}\right)=3$. Then for each $i \in\{2,3,4\}$, $d\left(f_{i}\right) \geqslant 5$. Note that $p_{3}(v) \leqslant 2$. Let us first consider the case when f_{1} is incident to a 3 -vertex, i.e., $d\left(v_{1}\right)=3$. By (A6), $n_{2}(v)=0$.
$\triangleright p_{3}(v)=0$. Then $\omega^{*}(v) \geqslant 2-\frac{3}{2}-\frac{1}{2}=0$ by (R3) and (R4).
$\triangleright p_{3}(v)=1$. Namely, $v \in V_{4^{p}}$. If $d\left(v_{2}\right) \geqslant 5$, say f_{1} is a $\left(3,4^{p}, 5^{+}\right)$-face, then by (R4.3), $\sigma\left(v \rightarrow f_{1}\right)=\frac{5}{4}$. Otherwise, $d\left(v_{2}\right)=4$. Namely, f_{1} is a $\left(3,4^{p}, 4\right)$ face. By Lemma 5 , v_{2} cannot be any 4^{p}-vertex. So by (R4.2), we know that v sends weight $\frac{5}{4}$ to f_{1} rather than $\frac{3}{2}$. In both cases, one may always obtain that $\omega^{*}(v) \geqslant 2-\frac{5}{4}-\frac{1}{4}-\frac{1}{2}=0$ by applying (R1) and (R3).
$\triangleright p_{3}(v)=2$. That is, $v \in V_{4^{2 p}}$. By Lemma 2, we confirm that $d\left(v_{2}\right) \geqslant 5$. In other words, f_{1} is a $\left(3,4^{2 p}, 5^{+}\right)$-face. $\mathrm{By}(\mathrm{R} 4.3), \sigma\left(v \rightarrow f_{1}\right)=1$ and thus $\omega^{*}(v) \geqslant$ $2-1-\frac{1}{4} \times 2-\frac{1}{2}=0$ by (R1) and (R3).
Now let us consider the remaining case when f_{1} is a $\left(4,4^{+}, 4^{+}\right)$-face such that $d\left(v_{1}\right) \geqslant 4$ and $d\left(v_{2}\right) \geqslant 4$. We have two cases to discuss depending on the value of $n_{2}(v)$.
$\triangleright n_{2}(v)=0$. By (R4.4) to (R4.6), we know that v sends weight at most $\frac{9}{8}$ to f_{1}. So if
$p_{3}(v) \leqslant 1$, then $\omega^{*}(v) \geqslant 2-\frac{9}{8}-\frac{1}{4}-\frac{1}{2}=\frac{1}{8}$ by (R1) and (R3). Otherwise, $p_{3}(v)=2$, meaning that $v \in V_{4^{2 p}}$. If $d\left(v_{1}\right) \geqslant 5$ and $d\left(v_{2}\right) \geqslant 5$, then by (R4.6) we know that $\sigma\left(v \rightarrow f_{1}\right)=1$ basing on the fact that $v \notin V_{4}^{*}$. Hence, $\omega^{*}(v) \geqslant 2-1-\frac{1}{4} \times 2-\frac{1}{2}=0$
by (R1) and (R3). Or else, by symmetry, assume that $d\left(v_{1}\right)=4$. Namely, f is a $\left(4,4^{2 p}, 4^{+}\right)$-face. By Lemma $6, v_{1} \notin V_{4}^{*}$ and $v_{2} \notin V_{4}^{*}$, and thus $\sigma\left(v \rightarrow f_{1}\right)=1$ by (R4.4) and (R4.5). Therefore $\omega^{*}(v) \geqslant 2-1-\frac{1}{4} \times 2-\frac{1}{2}=0$ by (R1) and (R3). $\triangleright n_{2}(v)=1$. Namely, $v \in V_{4}^{*}$. W.l.o.g., assume that $d\left(v_{3}\right)=2$. Moreover, by $(\mathrm{A} 6), p_{3}(v)=0$. It tells us that $v \notin V_{4^{p}} \cup V_{4^{2 p}}$. If f_{1} is a $\left(4,5^{+}, 5^{+}\right)$-face, then $\sigma\left(v \rightarrow f_{1}\right)=\frac{3}{4}$ by (R 4.6). If f_{1} is a $\left(4,4,5^{+}\right)$-face, then by (R 4.5) v sends weight exactly $\frac{3}{4}$ to f_{1}. If f_{1} is a $(4,4,4)$-face, then by Lemma 7 we see that neither v_{1} nor v_{2} can be a 4^{*}-vertex, and thus $\sigma\left(v \rightarrow f_{1}\right)=\frac{3}{4}$ by (R4.4). These facts enable us to confirm that $\sigma\left(v \rightarrow f_{1}\right)=\frac{3}{4}$ regardless the situation of f_{1}. So if $m_{5}(v)=0$ or $m_{5}(v)=1$ such that the unique incident 5 -face only gets weight at most $\frac{1}{4}$ from v, then we are done by showing that $\omega^{*}(v) \geqslant 2-\frac{3}{4}-1-\frac{1}{4}=0$ by (R1). In what follows, assume that f_{j} is a 5 -face for some fixed $j \in\{2,3,4\}$. If $j=2$, then f_{2} is a $\left(4,2,4^{+}, 2^{+}, 4^{+}\right)$-face and thus by (R3.3) v sends weight $\frac{1}{4}$ to f_{2} and then we go back to the previous case. If $j=3$, then f_{3} is a $\left(4,2,4^{+}, 2^{+}, 3^{+}\right)$face. By (R3.3), $\sigma\left(v \rightarrow f_{3}\right)=\frac{1}{4}$ and then we also go back to the former case. Otherwise, $j=4$. Let $f_{4}=\left[v v_{4} w_{1} w_{2} v_{1}\right]$. If $d\left(v_{4}\right) \geqslant 4$, then by (R3.3), v sends at most $\frac{1}{4}$ to f_{4} and thus we are done. Or else, $d\left(v_{4}\right)=3$. Obviously, $d\left(w_{1}\right) \neq 2$ by (A3). Moreover, by (A4), w_{1} cannot be a weak vertex. It follows that $d\left(w_{1}\right) \neq 3$ and if $d\left(w_{1}\right)=4$, then $d\left(w_{2}\right) \neq 2$. So f_{4} can be either a $\left(4,3,5^{+}, 2^{+}, 4^{+}\right)$-face or a $\left(4,3,4,3^{+}, 4^{+}\right)$-face. By (R3.3), $\sigma\left(v \rightarrow f_{4}\right)=\frac{1}{4}$ and then we are done by the former case argument.

Case 2: $k=5$. Then $\omega(v)=4$. By $(\mathrm{A} 7), n_{2}(v) \leqslant 3$. Moreover, $m_{i}(v) \leqslant 1$ for each $i \in\{3,5\}$ by the assumption on G.

First suppose that $m_{3}(v)=0$. Then by (R1) and (R2) we deduce that $\omega^{*}(v) \geqslant$ $4-n_{2}(v)-\frac{1}{4} \times p_{3}(v)-\frac{1}{2}=4-n_{2}(v)-\frac{1}{4} \times\left(5-n_{2}(v)\right)-\frac{1}{2}=\frac{9}{4}-\frac{3}{4} n_{2}(v) \geqslant 0$. Next, suppose that $m_{3}(v)=1$. W.l.o.g., assume that $f_{1}=\left[v_{1} v_{2} v\right]$ is a 3 -face. Here, $n_{2}(v) \leqslant 2$ by (A8). The following discussion is divided into several cases according to the condition on f_{1}.
$\triangleright d\left(v_{1}\right)=d\left(v_{2}\right)=3$. That is, f_{1} is a (3,3,5)-face. By $(\mathrm{R} 4.1), \sigma\left(v \rightarrow f_{1}\right)=\frac{5}{2}$. By Lemma 4, we see that $n_{2}(v) \leqslant 1$. If $n_{2}(v)=1$, then $p_{3}(v)=0$ by (F1), and so $\omega^{*}(v) \geqslant 4-\frac{5}{2}-1-\frac{1}{2}=0$ by (R1) and (R2). Otherwise, $n_{2}(v)=0$. Then $p_{3}(v) \leqslant 3$ and therefore $\omega^{*}(v) \geqslant 4-\frac{5}{2}-\frac{1}{4} \times 3-\frac{1}{2}=\frac{1}{4}$ by (R1) and (R2).
$\triangleright d\left(v_{1}\right)=3$ and $d\left(v_{2}\right)=4$. If $v_{2} \in V_{4^{2 p}}$, namely f_{1} is a $\left(3,4^{2 p}, 5\right)$-face. then $\sigma\left(v \rightarrow f_{1}\right)=\frac{7}{4}$ by (R4.3). Moreover, by (F2) we are sure that $n_{2}(v) \leqslant 1$. Thus, $\omega^{*}(v) \geqslant 4-\frac{7}{4}-n_{2}(v)-\frac{1}{4} \times\left(3-n_{2}(v)\right)-\frac{1}{2}=1-\frac{3}{4} n_{2}(v) \geqslant \frac{1}{4}$ by (R1) and (R2). Otherwise, $v_{2} \notin V_{4^{2 p}}$. Clearly, by (R4.3), $\sigma\left(v \rightarrow f_{1}\right) \leqslant \frac{3}{2}$. If $n_{2}(v)=2$, then $p_{3}(v)=0$ by (A9), implying that $\omega^{*}(v) \geqslant 4-\frac{3}{2}-1 \times 2-\frac{1}{2}=0$ by (R1) and (R2). Or else, $n_{2}(v) \leqslant 1$. It is easy to deduce that $\omega^{*}(v) \geqslant 4-\frac{3}{2}-1-\frac{1}{4} \times 2-\frac{1}{2}=\frac{1}{2}$.
$\triangleright d\left(v_{1}\right)=3$ and $d\left(v_{2}\right) \geqslant 5$. It follows that f_{1} is a $\left(3,5^{+}, 5\right)$-face. Then by (R 4.3), $\sigma\left(v \rightarrow f_{1}\right)=\frac{11}{8}$. If $n_{2}(v) \leqslant 1$, then $\omega^{*}(v) \geqslant 4-\frac{11}{8}-1-\frac{1}{4} \times 2-\frac{1}{2}=\frac{5}{8}$ by (R1) and (R2). Otherwise $n_{2}(v)=2$. Again, by (A9), $p_{3}(v)=0$. Hence, $\omega^{*}(v) \geqslant 4-\frac{11}{8}-1 \times 2-\frac{1}{2}=\frac{1}{8}$ by (R1) and (R2).
$\triangleright d\left(v_{1}\right)=d\left(v_{2}\right)=4$. Then f_{1} is a $(4,4,5)$-face. By (R 4.5), the weight sent from v to f_{1} is either $\frac{3}{2}, \frac{9}{8}$ or 1 . If $\sigma\left(v \rightarrow f_{1}\right) \leqslant \frac{9}{8}$, then $\omega^{*}(v) \geqslant 4-\frac{9}{8}-1 \times 2-\frac{1}{4}-\frac{1}{2}=\frac{1}{8}$ by (R1) and (R2). Otherwise assume that $\sigma\left(v \rightarrow f_{1}\right)=\frac{3}{2}$. It follows from (R4.5) that v_{1} and v_{2} are both 4^{*}-vertices. In other words, f_{1} is a $\left(4^{*}, 4^{*}, 5\right)$-face. If $n_{2}(v) \leqslant 1$, then $\omega^{*}(v) \geqslant 4-\frac{3}{2}-1-\frac{1}{4} \times 2-\frac{1}{2}=\frac{1}{2}$ by (R1) and (R2). Otherwise, $n_{2}(v)=2$. By (F3), $p_{3}(v)=0$. Hence, it is easy to deduce that $\omega^{*}(v) \geqslant 4-\frac{3}{2}-$ $1 \times 2-\frac{1}{2}=0$.
$\triangleright d\left(v_{1}\right) \geqslant 4$ and $d\left(v_{2}\right) \geqslant 5$. Then f_{1} is a $\left(4^{+}, 5^{+}, 5\right)$-face. By (R 4.6$), \sigma\left(v \rightarrow f_{1}\right) \leqslant \frac{9}{8}$, and therefore $\omega^{*}(v) \geqslant 4-\frac{9}{8}-1 \times 2-\frac{1}{4}-\frac{1}{2}=\frac{1}{8}$ by (R1) and (R2).
Case 3: $k=6$. Clearly $\omega(v)=6$. By (A10), $n_{2}(v) \leqslant 4$. If $d\left(f_{i}\right) \geqslant 5$ for all $i=1,2, \ldots, 6$, then $\omega^{*}(v) \geqslant 6-1 \times 4-\frac{1}{4} \times 2-\frac{1}{2}=1$ by (R1) and (R2). Next, suppose that there exists a face f_{i}, say $f_{1}=\left[v v_{1} v_{2}\right]$, such that $d\left(f_{1}\right)=3$. If f_{1} is a $\left(6,4^{+}, 4^{+}\right)$-face, then v sends at most $\frac{3}{2}$ to f_{1} by (R4.5) and (R4.6), and thus $\omega^{*}(v) \geqslant 6-\frac{3}{2}-1 \times 4-\frac{1}{2}=0$ by (R1) and (R2). Now suppose that f_{1} is a $\left(6,3,3^{+}\right)$face. By (Q1), we are sure that $n_{2}(v) \leqslant 3$. Moreover, v sends at most $\frac{5}{2}$ to f_{1} by (R4). If $n_{2}(v) \leqslant 2$, then it is obvious that $\omega^{*}(v) \geqslant 6-\frac{5}{2}-1 \times 2-\frac{1}{4} \times 2-\frac{1}{2}=\frac{1}{2}$ by (R1) and (R2). Otherwise, $n_{2}(v)=3$. At this moment, it is guaranteed by (Q2) that f_{1} cannot be a $(6,3,3)$-face, which implies that $\sigma\left(v \rightarrow f_{1}\right) \leqslant \frac{7}{4}$ by (R4). Hence, $\omega^{*}(v) \geqslant 6-\frac{7}{4}-1 \times 3-\frac{1}{4}-\frac{1}{2}=\frac{1}{2}$ by (R1) and (R2).

Case 4: $k \geqslant 7$. If $m_{3}(v)=0$, then it is obvious that $\omega^{*}(v) \geqslant 2 d(v)-6-n_{2}(v)-$ $\frac{1}{4} p_{3}(v)-\frac{1}{2} \geqslant 2 d(v)-6-n_{2}(v)-\frac{1}{4}\left(d(v)-n_{2}(v)\right)-\frac{1}{2} \geqslant \frac{7}{4} d(v)-\frac{3}{4} n_{2}(v)-\frac{13}{2} \geqslant$ $\frac{7}{4} d(v)-\frac{3}{4} d(v)-\frac{13}{2} \geqslant d(v)-\frac{13}{2} \geqslant \frac{1}{2}$. Or else, assume that f_{1} is the unique 3 -face that is incident to v. By (R1), (R2) and (R4), one can easily derive that $\omega^{*}(v) \geqslant$ $2 d(v)-6-\frac{5}{2}-n_{2}(v)-\frac{1}{4} p_{3}(v)-\frac{1}{2} \geqslant 2 d(v)-\frac{17}{2}-n_{2}(v)-\frac{1}{4}\left(d(v)-2-n_{2}(v)\right)-\frac{1}{2} \geqslant$ $\frac{7}{4} d(v)-\frac{17}{2}-\frac{3}{4} n_{2}(v) \geqslant \frac{7}{4} d(v)-\frac{17}{2}-\frac{3}{4}(d(v)-2) \geqslant d(v)-7 \geqslant 0$.

Therefore, we complete the proof of Theorem 1.
Acknowledgments. The authors thank deeply the referees for supplying detailed and valuable suggestions which led to improving the paper.

References

[1] M. O. Albertson, D. M. Berman: Every planar graph has an acyclic 7-coloring. Isr. J. Math. 28 (1977), 169-174.
[2] O. V. Borodin: On acyclic colorings of planar graphs. Discrete Math. 306 (2006), 953-972.
[3] O. V. Borodin, D. G. Fon-Der Flaass, A. V. Kostochka, A. Raspaud, E. Sopena: Acyclic list 7-coloring of planar graphs. J. Graph Theory 40 (2002), 83-90.
zbl MR doi
[4] O. V. Borodin, A. O. Ivanova: Acyclic 5-choosability of planar graphs without 4-cycles. Sib. Math. J. 52 (2011), 411-425.
zbl MR doi
[5] O. V. Borodin, A. O. Ivanova, A. Raspaud: Acyclic 4-choosability of planar graphs with neither 4-cycles nor triangular 6-cycles. Discrete Math. 310 (2010), 2946-2950.
zbl MR doi
[6] M. Chen, A. Raspaud: On acyclic 4-choosability of planar graphs without short cycles. Discrete Math. 310 (2010), 2113-2118.
[7] M. Chen, A. Raspaud: A sufficient condition for planar graphs to be acyclically 5-choosable. J. Graph Theory 70 (2012), 135-151.
zbl MR doi
[8] M. Chen, A. Raspaud: Planar graphs without 4- and 5-cycles are acyclically 4-choosable. Discrete Appl. Math. 161 (2013), 921-931.
zbl MR doi
[9] M. Chen, A. Raspaud, N. Roussel, X. Zhu: Acyclic 4-choosability of planar graphs. Discrete Math. 311 (2011), 92-101.
zbl MR doi

10] M. Chen, W. Wang: Acyclic 5-choosability of planar graphs without 4-cycles. Discrete Math. 308 (2008), 6216-6225.
[11] B. Grünbaum: Acyclic colorings of planar graphs. Isr. J. Math. 14 (1973), 390-408.
zbl MR doi
[12] A. V. Kostočka: Acyclic 6-coloring of planar graphs. Metody Diskretn. Anal. 28 (1976), 40-54. (In Russian.)
zbl MR doi

```
zbl MR
```

[13] J. Mitchem: Every planar graph has an acyclic 8-coloring. Duke Math. J. 41 (1974), 177-181.
[14] M. Montassier: Acyclic 4-choosability of planar graphs with girth at least 5. Graph Theory in Paris (A. Bondy, et al., eds.). Trends in Mathematics, Birkhäuser, Basel, 2007, pp. 299-310.
177-181.
zbl MR doi

5] M. Montassier, A. Raspaud, W. Wang: Acyclic 4-choosability of planar graphs without cycles of specific lengths. Topics in Discrete Mathematics (M. Klazar, et al., eds.). Algorithms and Combinatorics 26, Springer, Berlin, 2006, pp. 473-491.
zbl MR doi
[16] M. Montassier, A. Raspaud, W. Wang: Acyclic 5-choosability of planar graphs without small cycles. J. Graph Theory 54 (2007), 245-260.
zbl MR doi
[17] Y. Sun, M. Chen, D. Chen: Acyclic 4-choosability of planar graphs without intersecting short cycles. Discrete Math. Algorithms Appl. 10 (2018), Article ID 1850014, 11 pages.
zbl MR doi
[18] W. Wang, M. Chen: Planar graphs without 4-cycles are acyclically 6-choosable. J. Graph Theory 61 (2009), 307-323.
zbl MR doi
[19] W. Wang, G. Zhang, M. Chen: Acyclic 6-choosability of planar graphs without adjacent short cycles. Sci. China, Math. 57 (2014), 197-209.
zbl MR doi
[20] H. Zhang, B. Xu: Acyclic 5-choosability of planar graphs with neither 4-cycles nor chordal 6-cycles. Discrete Math. 309 (2009), 6087-6091.
zbl MR doi
Authors' address: Yingcai Sun, Min Chen (corresponding author), Department of Mathematics, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua 321004, P.R.China, e-mail: chenmin@zjnu.cn.

