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Abstract. Let G be a group. A subgroup H of G is called a TI-subgroup if H ∩Hg = 1
or H for every g ∈ G and H is called a QTI-subgroup if CG(x) 6 NG(H) for any 1 6= x ∈ H .
In this paper, a finite group in which every nonabelian maximal is a TI-subgroup (QTI-
subgroup) is characterized.
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1. Introduction

All groups considered in this paper are finite and G always denotes a group.

A subgroup H of G is called a TI-subgroup if H ∩Hg = 1 or H for every g ∈ G. It

is obvious that a minimal subgroup or a normal subgroup is a TI-subgroup. Recall

that a group G is a Frobenius group if G has a nontrivial subgroup H such that

H ∩Hg = 1 for every g ∈ G−H , and H is said to be a Frobenius complement of G.

It is easy to see that a Frobenius complement of a Frobenius group is a TI-subgroup.

In [13], Walls determined the finite groups in which every subgroup is a TI-subgroup.

As generalizations, Li in [6] described the finite non-nilpotent groups in which every

second maximal subgroup is a TI-subgroup. Moreover, Guo, Li and Flavell in [3]

gave a complete classification of finite groups in which every abelian subgroup is

a TI-subgroup. Most recently, in [8] and [12], Lu et al. and Shi et al. investigated

finite groups in which every nonabelian subgroup is a TI-subgroup, respectively.
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On the other hand, Qian and Tang in [10] introduced the definition of QTI-

subgroups. A subgroup H of G is called a QTI-subgroup if CG(x) 6 NG(H) for

any 1 6= x ∈ H . Clearly a TI-subgroup is a QTI-subgroup. However, the converse is

not true, see [10], Example 1.2.

Furthermore, for every nonnormal maximal subgroup H of G, if H is a QTI-

subgroup of G, then H is a CC-subgroup. In [10], Qian and Tang classify the groups

all of whose abelian subgroups are QTI-subgroups. And in [7], Lu and Guo studied

finite groups with all second maximal subgroups being QTI-subgroups.

Recall that a group G is p-closed if and only if it contains a normal Sylow

p-subgroup (see e.g. [5], page 132).

In [9], Lu, Pang and Zhong characterized the structure of a finite G satisfying that

all non-nilpotent maximal subgroups of G are QTI-subgroups, and they obtained the

following theorem.

Theorem 1.1. Assume that every non-nilpotent maximal subgroup ofG is a QTI-

subgroup. Then

(1) G is solvable;

(2) G is p-closed and q-closed for some primes p and q.

In this paper, we consider an analogous problem as in [9] but putting stronger

assumptions on the maximal subgroups. We investigate a finite group in which

every nonabelian maximal subgroup is a QTI-subgroup, and for convenience we call

such a group an NMQTI-group. Clearly, when G is an NMQTI-group, it satisfies

the premises of this theorem. In fact, our main result, the classification of NMQTI-

groups, reads as follows:

Theorem 1.2. Let every nonabelian maximal subgroup of a group G be a QTI-

subgroup. Then G is one of the following types:

(a) All maximal subgroups of G are normal. Then G is nilpotent.

(b) There is a nonnormal maximal subgroup of G and all nonnormal maximal sub-

groups are abelian. Then G is solvable and the maximal nonnormal subgroups

are all conjugate to a Carter subgroup of G.

(c) There is a nonnormal nonabelian maximal subgroup H of G. Then G = N ⋊H

is a Frobenius group with Frobenius kernel N a minimal normal subgroup of G

and a nilpotent Frobenius complement H . The Sylow 2-subgroup H2 of H is

a generalized quaternion group.

Conversely, if a group G satisfies either of conditions (a)–(c), then every maximal

nonabelian subgroup is a QTI-subgroup.
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2. Proof of Theorem 1.2

Lemma 2.1. The following statements about a nonnormal maximal subgroup H

of a group G are equivalent:

(a) H is a QTI-subgroup of G.

(b) H is a CC-subgroup of G.

P r o o f. Since H is a nonnormal maximal subgroup of G, we deduce that H =

NG(H), and the conclusion comes easily. �

Lemma 2.2 ([1], Lemma 2.8). Let G contain a nilpotent CC-subgroup H with

NG(H) = H . Then G is a Frobenius group and H a Frobenius complement.

Lemma 2.3 ([1], Lemma 2.9). Let a solvable group G contain a CC-subgroup H

satisfying NG(H) = H . Then G is a Frobenius group and H a complement.

Lemma 2.4 ([7], Theorem 2.3). Let G be a finite group in which every maximal

subgroup is a QTI-subgroup. Then G is of one of the following types:

(a) G is nilpotent; or

(b) G = N ⋊H is a Frobenius group with a kernel N and a complement H and N

is the unique minimal normal subgroup of G.

Now we will give the proof of Theorem 1.2.

P r o o f of Theorem 1.2. In (a) and (b) the condition of G being an NMQTI-

group is satisfied in a trivial manner. A case by case discussion will follow according

to premises (a)–(c). We also establish, in each case separately, the converse direction.

(a) Certainly G must be a nilpotent group.

Conversely, if G is nilpotent, every maximal subgroup is normal in G and hence G

is an NMQTI-group.

(b) Exercise 7 on page 309 in [11] implies that G is solvable. Let H be any

nonnormal abelian maximal subgroup. Then H is self-normalizing and nilpotent and

thus it is a Carter subgroup of G. It follows that all nonnormal maximal subgroups

of G are conjugate.

Conversely, let a nonabelian solvable groupG have abelian Carter subgroups which

are at the same time maximal subgroups. Suppose H is any maximal subgroup which

is abelian and not normal. Then H is self-normalizing and hence agrees with one of

the Carter subgroups.

(c) We first claim that G is a Frobenius group with a nonabelian Frobenius com-

plement. We discuss the cases:

Case 1 : Let G not contain nonnormal abelian maximal subgroups. Then, as every

normal subgroup of G is QTI, every nonnormal maximal subgroup of G is nonabelian
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and hence is a QTI-subgroup; therefore, by Theorem 5 of [7], G is a solvable Frobenius

group and H is a complement.

Case 2 : Group G contains a nonnormal abelian maximal subgroup, say H . Then

Exercise 7 on page 309 in [11] implies that G must be solvable. As H contains the

centralizer of each of its nontrivial elements, it is a CC-subgroup of G. It follows

from Lemma 3 of [1] that G is a solvable Frobenius group and H is a complement.

For proving that the Frobenius kernel N is a minimal normal subgroup of G,

suppose, by way of contradiction, that there is a normal subgroupM of G, properly

contained in N , and let it be maximal with respect to this property. Then MH =

M ⋊H is a maximal nonnormal subgroup of G. As G is a Frobenius group and MH

is neither contained nor contains the Frobenius kernel, it turns out that MH is

a nonnormal nonabelian maximal subgroup of G and hence it is a CC-subgroup

of G. SinceM is nilpotent, it contains a nontrivial element centralized by an element

x ∈ N \ M . Since x /∈ MH , it follows that MH is not a QTI-subgroup, contrary

to the assumptions. Hence, N is a minimal normal subgroup of G and all maximal

nonnormal subgroups of G are conjugates of H .

Next let us prove that the Frobenius complement H is nilpotent and it will suffice

to show that every maximal subgroup of H is normal in H (see e.g. [11], page 130).

Suppose, by way of contradiction, that there is a nonnormal maximal subgroup S

of H . Then NS cannot be normal in G and is nonabelian. Hence, NS must be

a QTI-subgroup of G. Therefore, for every 1 6= s ∈ S the centralizer CG(s) must

be contained in NG(NS) = NS. Since s ∈ H and H is a CC-subgroup of G,

we deduce CG(s) 6 NS ∩ H = S. Thus, any nonnormal maximal subgroup S

of H must be a QTI-subgroup of H . In particular, such S is a CC-subgroup of H

and hence a Hall subgroup. Lemma 4 of [1] implies that H is a Frobenius group

and S is the complement. Then, however, Z(H) = 1, contradicting the fact that H

is a Frobenius complement, since any Frobenius complement has a nontrivial center

(see [4], page 506, Satz (c)).

Finally, we observe that for q ∈ π(H) the Sylow q-subgroup Hq is either cyclic or,

when q = 2, it can be a generalized quaternion as well. Thus, Hπ\{2} is finite cyclic

and, as we assumed G to contain a maximal nonabelian QTI-subgroup, it follows

that H and therefore H2 is nonabelian.

Conversely, let G = N ⋊H be a solvable Frobenius group with Frobenius comple-

ment H a maximal subgroup and Frobenius kernel N minimal normal. Then N is

an elementary abelian p-group for some prime p. Consider any maximal nonnormal

subgroup M of G, set π = π(H) and note that N is an elementary abelian Sylow

p-subgroup of G. If M has a nontrivial π-subgroup, by conjugating, we can arrange

that Mπ 6 H . If Mp = 1, then M = H is thus a CC-subgroup and hence even

a TI-subgroup of G.
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Assume next that Mp 6= 1. Then Mπ < H , because otherwise Mπ = H and hence

M = 〈Mp, Mπ〉 = G, a contradiction. Thus, indeed Mπ < H is a maximal subgroup

of H and hence we need to have Mp = N since M is maximal in G. Since H is

nilpotent and Mπ is a maximal subgroup of H , we note that Mπ E H and hence

M E G. ThereforeM is a QTI-subgroup of G and hence G is an NMQTI-group. �

3. Consequences

A concrete type of examples for situation (b) follows:

Example 3.1. Let p be a prime and R an arbitrary nontrivial abelian p′-group.

Consider an irreducible nontrivial representation of R over the field with p-elements

and let N denote the resulting R-module. Thus, R acts on N and we may form

the semidirect product N ⋊R. Fix an arbitrary abelian p-group L and let G be the

direct product G = (N ⋊ R)× L.

The following facts can be seen immediately:

(1) N is a minimal normal subgroup of G.

(2) The Sylow p-subgroup of G agrees with P = N × L.

(3) H := R×L is an abelian maximal subgroup and hence both, a Carter subgroup

and a system normalizer for the Sylow system consisting of P and all the Sylow

r-subgroups of R for r ∈ π(R).

(4) Z(G) = L× CR(N).

In particular, G is an NMQTI-group, having a nonabelian nonnormal maximal

subgroup and all nonnormal maximal subgroups are abelian.

We can give a rather explicit description of the solvable groups in situation (b).

Recall that a group with only abelian Sylow subgroups is called an A-group ([4],

page 751).

Corollary 3.1. Let G be as in (b) of the preceding theorem and H a Carter

subgroup. Let N be a minimal normal subgroup of G with G = NH and p be the

prime for which N is a p-group. Fix a Sylow system S = {Gr : r ∈ π(G)} so that

N 6 Gp and Hr = Gr ∩H for r ∈ π(H). Set R = Hp′ and P = Gp.

Then all of the following holds:

(i) G′ = N and G = P ⋊H .

(ii) Hp 6 Z(G) and P is abelian.

(iii) G is an A-group.

(iv) Z(G) = CH(N) = HpCR(N) intersects N trivially.

In particular, letting L := Hp, the group G is of the type given in Example 3.1.
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P r o o f. (i) Since S is a Sylow system, we have G = PR. Moreover, G = HN

by the maximality of H and as N is not a subgroup of H . Therefore G/N =

HN/N ∼= H/H∩N is abelian and hence N > G′. By the minimality of N we deduce

that N = G′. Since N 6 P , it follows that P is normal and has complement R,

i.e. G = P ⋊R.

(ii) Since the conjugation with elements R = Hp′ induces the action of a p′-

automorphism group on P , application of Theorem 3.6 in [2] implies P =[P,R]CP (R)

and [[P,R], R] = [P,R]. Since G = NH and N 6 P and H ∩ P = H ∩ Gp = Hp,

we have P = NHp. Then, since N and P are both normal in G, one has that

[N,P ] = [N,NHp] = [N,Hp] is normal in G. Since N is a minimal normal subgroup

of G, we can only have [N,P ] = N or [N,P ] = 1. If [N,P ] = N , then [P, P ] =

[NHp, NHp] = N , and [[P, P ], P ] = [N,P ] = N , contradicting P being nilpotent.

Hence [N,P ] = 1, and therefore [N,Hp] = 1. Since G = NH and [H,Hp] = 1, we

deduce Hp 6 Z(G).

Taking into account that Hp is abelian, we find that P = NHp is abelian. Since

R = Gp′ is abelian, G is an A-group.

(iii) Since Gp = P is abelian and H is an abelian Hall p′-subgroup of G, it follows

that G is an A-group.

Since G is an A-group, 14.3 Satz on page 751 in [4] in conjunction with (i) implies

1 = Z(G) ∩ G′ = Z(G) ∩N . By (ii) Hp = P ∩ Z(G) and certainly CR(N) 6 Z(G).

Hence HpCR(N) 6 Z(G).

For proving the converse pick 1 6= z ∈ Z(G). Then z = nhpr for suitable n ∈ N ,

hp ∈ Hp, and r ∈ R. Since hp ∈ Z(G), we must have nr ∈ Z(G). Since nr ∈ CG(N),

we have r ∈ CG(N) and hence r ∈ CR(N). Therefore n ∈ Z(G). And since

N ∩ Z(G) = 1, we conclude that n = 1. Thus Z(G) 6 HpCR(N), as claimed. The

last statement is clear from (i)–(iv) and the discussion in Example 3.1. �

Corollary 3.2. The following statements for a finite group G are equivalent:

(A) G is an NMTI-group.

(B) G is exactly one of the following types:

(B.1) G is nilpotent.

(B.2) G = N ⋊H is a Frobenius group for N a minimal normal subgroup of G

and H is either abelian or nonabelian nilpotent of even order with H2′

cyclic.

P r o o f. Since every NMTI-group is NMQTI, we may use Theorem 1.2 and inspect

conditions (a)–(c).

(a) Certainly every nilpotent group is NMTI since in fact all maximal subgroups

are TI-subgroups.

(b) Since H ∩Hx > Z(G) holds for all x ∈ G, we conclude from the fact that H
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is not normal in G that Z(G) = 1. In particular, Hp = 1, H = R and P = N is

a minimal normal subgroup of G = N ⋊H .

Next suppose there is 1 6= x ∈ R with CN (x) 6= 1. Then selecting any 1 6= n ∈

CN (x), one finds 1 6= x ∈ R∩Rn 6 H∩Hn. SinceH is supposed to be a TI-subgroup,

we conclude H = Hn. Therefore [H, 〈n〉] 6 H ∩ N = 1 implies the contradiction

that G = 〈n, H〉 = 〈n〉H is abelian. Thus, G = N ⋊ R is a Frobenius group with

kernel N and abelian complement H = R. This yields the first type of Frobenius

groups in (B.2).

(c) Now G = N ⋊ H is a Frobenius group and the only nonnormal maximal

subgroups of G are the conjugates of H , and all of them are TI-subgroups. The

second situation in (B.2) arises. �
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