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Abstract. A ring extension R ⊆ S is said to be strongly affine if each R-subalgebra of S is
a finite-type R-algebra. In this paper, several characterizations of strongly affine extensions
are given. For instance, we establish that if R is a quasi-local ring of finite dimension, then
R ⊆ S is integrally closed and strongly affine if and only if R ⊆ S is a Prüfer extension
(i.e. (R,S) is a normal pair). As a consequence, the equivalence of strongly affine extensions,
quasi-Prüfer extensions and INC-pairs is shown. Let G be a subgroup of the automorphism
group of S such that R is invariant under action by G. If R ⊆ S is strongly affine, then
RG

⊆ SG is strongly affine under some conditions.

Keywords: strongly affine; Prüfer extension; finitely many intermediate algebras prop-
erty extension; finite chain propery extension; normal pair; integrally closed pair; ring of
invariants

MSC 2010 : 13B02, 13A15, 13A50, 13E05

1. Introduction and notation

All rings and algebras considered below are commutative with identity. All

subrings, subalgebras, and inclusions of rings are (unital) ring extensions; all

ring/algebra homomorphisms are unital. If R is a ring, by an overring of R we

mean a subring of total quotient ring of R containing R. By a quasi-local ring we

mean a ring with unique maximal ideal. The symbol ⊆ is used for inclusion, while ⊂
is used for proper inclusion. Any unexplained terminology is standard as in [13]

and [19]. By affine extension of a ring R we mean an extension ring S of R that is

finitely generated as a ring extension of R. Recall from [15] that a ring extension

R ⊆ S is said to be strongly affine if each R-subalgebra of S is a finite-type R-

algebra. The notion of strongly affine extension of rings is related to another class of

ring pairs, namely Noetherian pair. Noetherian pair was introduced by Wadsworth,

see [26]. For Noetherian rings R and S with R ⊆ S, (R,S) is called a Noetherian

DOI: 10.21136/CMJ.2019.0240-18 251

http://dx.doi.org/10.21136/CMJ.2019.0240-18


pair if every intermediate ring T , R ⊆ T ⊆ S, is Noetherian. Attention is focussed

on Noetherian rings. In that case, S strongly affine over R implies that each inter-

mediate ring is Noetherian so that (R,S) is a Noetherian pair. The converse need

not hold in general, see [15], Introduction.

The set of all R-subalgebras of S (that is, of rings T such that R ⊆ T ⊆ S) is de-

noted by [R,S] and the integral closure of R in S by R∗. The extension R ⊆ S is said

to have (or to satisfy) FIP (finitely many intermediate algebras property) if [R,S] is

finite. The FIP property was introduced in [1] and, along with various related prop-

erties, has been treated in many other papers [8], [9], [10], [14], [17], [18]. A chain of

R-subalgebras of S is a set of elements of [R,S] that are pairwise comparable with re-

spect to inclusion. We say that the extensionR ⊆ S has FCP (finite chain property) if

each chain in [R,S] is finite, see for example [2], [4], [9], [10], [14], [17], [18] for proper-

ties and characterizations of FCP extensions. It is clear that each extension that sat-

isfies FIP must also satisfy FCP. The main tool that is used to study the FIP and FCP

properties is the concept of a minimal (ring) extension, as introduced by Ferrand-

Olivier, see [12]. Recall that an extension R ⊂ S is called minimal if [R,S] = {R,S}.
In Section 2, we establish several characterizations of some strongly affine exten-

sions. Knebusch and Zhang define Prüfer extensions in [20]. It is now well known

that R ⊆ S is Prüfer if and only if (R,S) is a normal pair, see [20], Theorem 5.2,

case (4). (A pair (R,S) is a normal pair if S is integrally closed in T for all T ∈ [R,S],

see [5]). We refer the reader to [20] for the properties of Prüfer extensions, noting

here only that a ring extension R ⊆ S is Prüfer if R ⊆ T is a flat epimorphism

for each T ∈ [R,S]. Motivated by this concept, Picavet and Picavet-L’Hermitte

introduced the following definition, see [23]. An extension of rings R ⊆ S is called

quasi-Prüfer if R∗ ⊆ S is a Prüfer extension. An extension is clearly Prüfer if and

only if it is quasi-Prüfer and integrally closed, see for example [24] for properties

and characterizations of quasi-Prüfer extensions. An important result is that quasi-

Prüfer extensions coincide with INC-pairs. Recall from [6] that (R,S) is said to be

an INC-pair if R ⊆ T satisfies INC for any intermediate ring R ⊆ T ⊆ S.

The main result of Section 2 is Theorem 2.6, in which we characterize the integrally

closed, strongly affine extensions. Precisely, if R is a quasi-local ring of finite krull

dimension, then R ⊆ S is an integrally closed, strongly affine extension of rings if

and only if it is a Prüfer extension. An immediate consequence of our main result

is that under certain conditions, the strongly affine ring extensions coincide with

quasi-Prüfer extensions and INC-pairs (see Theorem 2.7). We conclude Section 2

with several results showing when the notions of strongly affine extension, FCP and

FIP are equivalent.

In Section 3, we investigate the behavior of a subgroup G of the automorphism

group Aut(S) on a strongly affine extension R ⊆ S. Indeed, let SG = {s ∈ S :
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σ(s) = s for all σ ∈ G} be the fixed subring under the action of G. We find conditions
for which the integrally closed, strongly affine extension condition descends from

R ⊆ S down to RG ⊆ SG. It is worth noting that early studies in this area are due

in large measure to Hilbert’s fourteenth problem.

2. Properties of strongly affine extensions

We begin this section with some primary results which will be used in character-

izing the integrally closed strongly affine extension of rings. Recall from [16] that an

extension R ⊆ S is called a P -extension if each s ∈ S is the root of some polynomial

f(X) ∈ R[X ] with unit content (that is, such that the coefficients of f generate the

unit ideal of R). We will say that an extension R ⊆ S satisfies ACC (or DCC) if each

ascending (or descending) chain of members of [R,S] terminates. Note that every

strongly affine extension of rings is a P -extension as we have the first proposition.

Proposition 2.1. Let R ⊆ S be a strongly affine extension of rings. Then R ⊆ S

is a P -extension.

P r o o f. In view of the comments in the end of Section 1 (after example 10)

of [15], S is strongly affine over R if and only if the ACC condition holds for inter-

mediate rings between R and S. The hypothesis gives an ascending finite maximal

chain R0 ⊂ R1 ⊂ . . . ⊂ Rn = S of rings from R to S. Therefore, by applying [2],

Theorem 2.3, we get that R ⊆ S is a P -extension. �

Corollary 2.2. Let R ⊆ S be a strongly affine extension of rings such that R is

integrally closed in S, u ∈ S and P ∈ Spec(R). Then u satisfies at least one of the

following two conditions:

(i) u/1 ∈ RP ;

(ii) u/1 is a unit of SP and (u/1)
−1 ∈ RP .

P r o o f. Proposition 2.1 ensures that each element of S satisfies a polynomial

with coefficients in R that has at least one coefficient in R \ P . Thus, by [9],

Lemma 3.8, the result follows. �

We next give two lemmas that will be used often in proving subsequent results.

Lemma 2.3. If R ⊆ S is an integrally closed strongly affine extension, then R ⊆ S

is a Prüfer extension.

P r o o f. Let P be a prime ideal of R. According to Proposition 2.1, every

s/t ∈ SP satisfies a polynomial f(X) ∈ RP [X ] with at least one unit coefficient. It
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follows from [20], Theorem 5.2 that RP ⊆ SP is a Prüfer extension. Since “integrally

closed in” is a local property and P was an arbitrarily chosen prime ideal, R ⊆ S is

a Prüfer extension. �

Lemma 2.4. Let R ⊆ S be a ring extension and I a common ideal of R and S.

Then R ⊆ S is strongly affine if and only if R/I ⊆ S/I is strongly affine.

P r o o f. Applying [8], Lemma II.3 to the pullback R = S ×S/I R/I, we have an

order-preserving bijection between the set of all R-subalgebras of S and the set of

all R/I-subalgebras of S/I. The assertion now follows easily. �

Remark 2.5. The “only if” assertion in Lemma 2.4 also follows from Gilmer

and Heinzer, see [15], Proposition 1.1 case (1).

We now present a characterization of integrally closed strongly affine extension of

rings. We need the following concept from Papick, see [22]. An extension R ⊆ S of

domains is said to be open if Spec(S) → Spec(R) is an open map. Following Gilmer

and Heinzer, see [15], page 258, for a Prüfer domain R, openness is equivalent to the

assertion that R has only finitely many maximal ideals and the prime ideals of RM

satisfy DCC for each maximal ideal M of R.

Theorem 2.6. If R is quasi-local and dim(R) is finite, then R ⊆ S is integrally

closed and strongly affine if and only if R ⊆ S is a Prüfer extension (i.e. (R,S) is

a normal pair).

P r o o f. The “only if part” follows immediately from Lemma 2.3.

Conversely, according to [9], Theorem 6.8, the hypothesis that (R,S) is a normal

pair is equivalent to that there exists Q ∈ Spec(R) such that S = RQ, Q = SQ

and R/Q is a valuation domain. Then R/Q is a Prüfer domain. Note that S/Q is

the quotient field of R/Q. On the other hand, each overring of R/Q is a quasi-local

integral domain and it is clear that R/Q is an open Prüfer domain. Hence, by [22],

Theorem 2, R/Q ⊆ S/Q is an integrally closed strongly affine extension of rings.

Finally, since Q is a common ideal of R and S, Lemma 2.4 gives that R ⊂ S is an

integrally closed strongly affine extension of rings. �

From [3], Definitions 1.1 and 2.1, an extension of integral domains R ⊆ S is called

residually algebraic if for any prime ideal Q of S and P = Q ∩ R, the ring S/Q is

algebraic over R/P . If the extension R ⊆ T is residually algebraic for all T ∈ [R,S],

then (R,S) is called a residually algebraic pair. The concept of residually algebraic

pairs is generalized by Dobbs to the context of arbitrary commutative rings, see [7],

Section 2. The next result shows when the notions of strongly affine, quasi-Prüfer,

INC, and residually algebraic are all equivalent.

254



Theorem 2.7. If R is quasi-local, dim(R) is finite and R ⊆ S is an integrally

closed extension. Then the following are equivalent:

(1) R ⊆ S is strongly affine,

(2) R ⊆ S is quasi-Prüfer,

(3) (R,S) is an INC-pair,

(4) (R,S) is a residually algebraic pair.

P r o o f. It suffices to notice that an extension is Prüfer if and only if it is quasi-

Prüfer and integrally closed. Hence, the result follows immediately from Theorem 2.6

and [23], Theorem 2.3. �

By combining Theorem 2.7 and [3], Lemma 2.9, we immediately arrive at the

following result.

Corollary 2.8. If R ⊆ S is a strongly affine extension of integral domains such

that R is quasi-local and integrally closed in S, then Spec(S) = {PS : PS 6= S,

P ∈ Spec(R)}.

Remark 2.9. (1) By combining Theorem 2.6 and [9], Theorem 6.8, we can derive

another characterization of strongly affine extension. If R is quasi-local and dim(R)

is finite, then R ⊆ S is integrally closed and strongly affine if and only if there exists

Q ∈ Spec(R) such that S = RQ, Q = SQ and R/Q is a valuation domain. Under

these conditions, S/Q is necessarily the quotient field of R/Q.

(2) According to [15], Section 6, the “strongly affine” property is not generally

transitive. However, it is shown in [23], Corollary 3.3 that if R ⊆ T ⊆ S, then

R ⊆ S is a quasi-Prüfer extension if and only if R ⊆ T and T ⊆ S are quasi-

Prüfer extensions. Hence, in view of Theorem 2.7 and [23], Corollary 3.3 we have

the following result: Let R be a quasi-local ring such that dim(R) is finite and let

R ⊆ T ⊆ S be a tower of rings. Then R ⊆ S is strongly affine if and only if R ⊆ T

and T ⊆ S are strongly affine.

In light of Theorem 2.6 and [9], Theorem 6.10, we immediately get the following

result showing that in the case of integrally closed extensions of rings the notions of

FIP, FCP and strongly affine extensions are equivalent.

Theorem 2.10. Let R be a quasi-local ring of finite dimension and R ⊆ S an

integrally closed extension. Then the following conditions are equivalent:

(i) R ⊆ S has FCP;

(ii) R ⊆ S has FIP;

(iii) R ⊆ S is strongly affine.

If the above equivalent conditions hold, then |[R,S]| = l[R,S]+1 and [R,S] is linearly

ordered by inclusion.
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Recall that if R ⊆ S is an extension of rings, then Supp(S/R) = {P ∈ Spec(R) :

RP ⊂ SP }. We say that R ⊆ S is locally strongly affine if RM ⊆ SM is an

affine extension for each maximal ideal M ∈ Max(R). Combining Theorem 2.6, [9],

Lemma 6.2 and [9], Theorem 6.9, we immediately arrive at the following result.

Proposition 2.11. Suppose that R ⊆ S is an integrally closed, locally strongly

affine extension of rings. The following statements are equivalent:

(i) R ⊆ S has FCP;

(ii) R ⊆ S has FIP;

(iii) Supp(S/R) is finite.

To facilitate the proof of Theorem 2.13, we isolate the following proposition, which

is of some independent interest. This result is surely known, but we include a proof

of it for the sake of completeness.

Proposition 2.12. Let R ⊆ S be a ring extension. If R ⊆ S has FCP, then

R ⊆ S is strongly affine.

P r o o f. Let T be an intermediate ring between R and S and let t1 ∈ T \ R.

If T = R[t1], we are done. Otherwise, we take another element t2 ∈ T \ R[t1]. If

T = R[t1, t2], there is nothing more to prove, otherwise we pick an element t3 ∈
T \R[t1, t2] and we repeat the same argument. As R ⊂ R[t1] ⊂ R[t1, t2] ⊂ . . . ⊂ T is

an increasing chain of intermediate rings between R and T , then this process must

terminate since R ⊆ T inherits the “satisfies FCP” property from R ⊆ S. Hence,

T = R[t1, t2 . . . , tn] for some t1, t2, . . . , tn ∈ T . �

In the next theorem, we present a characterization for an integral strongly affine

extension of rings to satisfy FCP. For convenience, we will use the symbol
√
I to

denote the radical of an ideal I of R. Recall that if R ⊆ S is an extension of rings,

the conductor of S in R is defined by (R : S) = {x ∈ R : xS ⊆ R}.

Theorem 2.13. Let (R,M) be a quasi-local ring andR ⊆ S an integral extension.

Then R ⊆ S has FCP if and only if R ⊆ S is strongly affine and M is an ideal of S.

P r o o f. First, suppose that R ⊆ S has FCP. Then R ⊆ S is strongly affine by

Proposition 2.12. For the second assertion, it suffices to prove that M =
√
(R : S).

The hypothesis gives a finite maximal chain in [R,S] from R to S. As S is integral

over R, [2], Lemma 4.9 (b) ensures that
√
(R : S) can be expressed as the intersection

of finitely many maximal ideals of R. Hence
√
(R : S) = M . This proves that M is

an ideal of S.

Conversely, suppose that M is an ideal of S. Since R ⊆ S is strongly affine and

integral, it follows from Lemma 2.4 that R/M ⊆ S/M is also strongly affine and

256



integral. It follows that R/M ⊆ S/M is module finite. This proves that S/M is

finite dimensional R/M -vector space, and hence R/M ⊆ S/M satisfies FCP. Finally,

R ⊆ S has FCP by [9], Proposition 3.7, case (c). �

3. Group action on strongly affine extension of rings

Throughout this section, we assume that R ⊆ S and G is a subgroup of the

automorphism group of S such that σ(R) ⊆ (R) for all σ ∈ G. In the first theorem,

we prove that strongly affine extension of rings is a G-invariant property under the

stated conditions on G. We need the following two lemmas.

Lemma 3.1. Assume |G| is finite and a unit in R, and R ⊆ S is integral. If

R ⊆ S has FCP, then so does RG ⊆ SG.

P r o o f. Let RG = T0 ⊂ T1 ⊂ T2 ⊂ . . . be an ascending chain of intermediate

rings in [RG, SG]. According to [25], Lemma 3.32, Ti = TiR∩SG, hence this chain can

be written as RG = T0R∩SG ⊂ T1R∩SG ⊂ T2 ∩SG ⊂ . . . Note that R ⊆ TiR ⊆ S,

then R = T0R ⊂ T1R ⊂ T2R ⊂ . . . is an ascending chain of intermediate rings

in [R,S]. Henceforth, TnR = Tn+1R = . . . for some n since R ⊆ S has FCP. Also, it

is clear that if A 6= B ∈ [RG, SG], then AR 6= BR, it follows that Tn = Tn+1 = . . .

Whence, ACC holds in [RG, SG].

A similar argument shows that DCC also holds in [RG, SG], and hence RG ⊂ SG

has FCP, as required. �

Lemma 3.2 ([9], Theorem 3.13). The extension R ⊆ S has FCP (or FIP) if and

only if R ⊆ R∗ and R∗ ⊆ S have FCP (or FIP).

Theorem 3.3. Assume |G| is finite and a unit in R. If R ⊆ S is strongly affine

and satisfies DCC, then RG ⊆ SG is strongly affine.

P r o o f. Since R ⊆ S is strongly affine, then R ⊆ S satisfies ACC. As in addition

R ⊆ S satisfies DCC, it follows that the extension R ⊆ S has FCP. According to

Lemma 3.2, each of the extensions R ⊆ R∗ and R∗ ⊆ S has FCP. Hence, by virtue

of Lemma 3.1, RG ⊆ (R∗)G has FCP and by [25], Theorem 3.28, (R∗)G ⊆ SG

has FCP. Now, let (RG)
∗
denote the integral closure of RG in SG. We wish to show

that (RG)
∗
= (R∗)G. According to [11], Lemma 2.2, the extensions RG ⊆ R and

R ⊆ R∗ are both integral. Thus, we conclude by the transitivity of integrality that

RG ⊆ R∗ is an integral extension. Moreover, since (R∗)G ∈ [RG, R∗], it follows

that (R∗)G is integral over RG. On the other hand, as R∗ is integrally closed in S,

hence (R∗)G is integrally closed in SG by [25], Proposition 3.2, case (a). This proves
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that (RG)
∗
= (R∗)G. Henceforth, we may again apply Lemma 3.2 to obtain that the

extension RG ⊆ SG has FCP, and then it is strongly affine by Proposition 2.12. �

Interestingly, for an integrally closed extension of a quasi-local ring, we can remove

the condition that |G| is a unit. We are also able to relax the finiteness condition
to local finiteness on G. In fact, if G is locally finite and R is quasi-local, then

“integrally closed, strongly affine extension” is a G-invariant property.

Theorem 3.4. Let (R,M) be a quasi-local ring and let G be locally finite sub-

group of Aut(S). If R ⊆ S is an integrally closed, strongly affine extension, then

RG ⊆ SG is also an integrally closed, strongly affine extension.

P r o o f. By Remark 2.9, case (1), there exists Q ∈ Spec(R) such that S = RQ,

Q = QS and R/Q is a valuation domain with quotient field S/Q. First, we need to

prove that S is quasi-local. If R = S, then Q = M will work. Now, assume that

R ⊂ S. Let s ∈ S. By Corollary 2.2, either (i) s ∈ R or (ii) s is a unit of S and

s−1 ∈ R. It follows that if M1 and M2 are maximal ideals of S, then M1 and M2 are

contained in R. Thus, S = M1+M2 ⊆ R and hence R = S, which is a contradiction.

Hence, S must be quasi-local, say with maximal ideal Q. Since (R,M) is quasi-local,

(RG,MG) is quasi-local by [11], Lemma 2.1, case (b). By the same result, (SG, QG)

is quasi-local. We may again apply Remark 2.9, case (1), it is enough to show that

QG ∈ Spec(RG) such that SG = RG
QG , QG = QGSG and RG/QG is a valuation

domain with quotient field SG/QG.

Now, for the rest of the proof we will argue as in the proof of [21], Theorem 3.2.

For any σ ∈ G, r ∈ R and s ∈ R \Q, we have r/s ∈ RQ = S and σ(r) = σ(r/s)σ(s).

Then σ(r/s) = σ(r)/σ(s). First, we assert that SG = (RQ)
G = (RG)QG . Since

QG = Q ∩ RG, (RG)QG ⊆ (RQ)
G. For the reverse inclusion, let r/s ∈ (RQ)

G. Let

s̃ :=
∏
σ∈G

σ(s) ∈ RG ∩ (R \Q). If I is the identity map in G, then

r

( ∏

σ∈G,σ 6=I

σ(s)

)
/s̃ =

r

s
∈ (RQ)

G.

It follows that

r

( ∏

σ∈G,σ 6=I

σ(s)

)
= s̃

(r
s

)
∈ (RQ)

G ∩R = RG.

On the other hand, s̃ 6∈ Q implies s̃ 6∈ QG, and so r/s ∈ (RG)QG . It follows that

SG = (RQ)
G = (RG)QG and QG = QGSG. Now, we can extend this G-action to S/Q

via σ(s+q) = σ(s)+q for each s ∈ S. Clearly this G-action on S/Q is well defined as

σ(Q) = Q for all σ ∈ G. Next, we define ϕ : SG/QG → (S/G)G by ϕ(s+QG) = s+Q.

Clearly, ϕ is well-defined. Let s +QG ∈ ker(ϕ), that is, s ∈ Q. Then s ∈ QG since
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Q ∩ SG = QG. This implies that ϕ is injective, and hence SG/QG ⊆ (S/G)G,

up to isomorphism. Similarly RG/QG ⊆ (R/Q)G, up to isomorphism. Now, it

remains to show that RG/QG is a valuation domain with quotient field SG/QG. It

is clear that the quotient field of RG/QG is (RG)QG/QG((R
G)QG) = SG/QG. Take

s+Q = ϕ(s +QG) ∈ ϕ(SG/QG) ⊆ (S/G)G. Since R/Q is a valuation domain with

quotient field S/Q, (R/Q)G is a valuation domain with quotient field (S/Q)G by [12],

Proposition 2.7. �

Acknowledgment. The author would like to thank the referees for many valu-
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