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Abstract. Suppose that G is a finite group and H is a subgroup of G. Subgroup H is said
to be weaklyM-supplemented in G if there exists a subgroup B of G such that (1) G = HB,
and (2) ifH1/HG is a maximal subgroup of H/HG, then H1B = BH1 < G, where HG is the
largest normal subgroup of G contained in H . We fix in every noncyclic Sylow subgroup P
of G a subgroup D satisfying 1 < |D| < |P | and study the p-nilpotency of G under the
assumption that every subgroup H of P with |H | = |D| is weakly M-supplemented in G.
Some recent results are generalized.
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1. Introduction

All groups considered in this paper are finite. We use conventional notions and

notation. G always means a group, |G| is the order of G, π(G) denotes the set of all

primes dividing |G|.

A subgroup H of G is called M-supplemented in a finite group G if there ex-

ists a subgroup B of G such that G = HB and H1B is a proper subgroup of G

for every maximal subgroup H1 of H . This concept was introduced by Miao and

Lempken in [5]. More recently, in [6] they generalizedM-supplemented subgroups

to weakly M-supplemented subgroups. A subgroup H of G is said to be weakly

M-supplemented in G if there exists a subgroup B of G such that (1) G = HB,

and (2) if H1/HG is a maximal subgroup of H/HG, then H1B = BH1 < G, where

HG is the largest normal subgroup of G contained in H . In this case, B is also called
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a weakM-supplement of H in G. Clearly, everyM-supplemented subgroup of G is

a weaklyM-supplemented subgroup of G, but the converse does not hold. The au-

thors use weaklyM-supplemented subgroups when investigating the structure of G,

as in [4] and [6]. For example, Miao in [4] proves the following result.

Theorem 1.1. Let p be an odd prime divisor of |G| and P a Sylow p-subgroup

of G. If NG(P ) is p-nilpotent and supposing that P has a subgroup D such that

1 < D < P , and every subgroup E of P with order |D| is weaklyM-supplemented

in G, then G is p-nilpotent.

A celebrated theorem of Frobenius (see [2], Satz IV.5.8) asserts that G is

p-nilpotent if NG(H) is p-nilpotent for every p-subgroup H of G. In this article, we

replace some of the conditions of the Frobenius theorem and Theorem 1.1, namely,

H is restricted to be a p-subgroup of a fixed order, the condition of p-nilpotency

ofNG(P ) is changed to the p-nilpotency ofNG(H), and we assume thatH is a weakly

M-supplemented subgroup of G. The results of this article can be viewed as ex-

tensions of the Frobenius theorem and Theorem 1.1 with weakly M-supplemented

subgroups. Our main theorem is the following result.

Theorem 1.2. Let G be a group and P a Sylow p-subgroup of G, where p is an

odd prime. If P has a subgroup D with 1 < |D| < |P | such that all subgroupsH of P

with order |H | = |D| are weakly M-supplemented in G and NG(H) is p-nilpotent,

then G is p-nilpotent.

2. Preliminary results

In this section, we collect some known results that are useful later.

Lemma 2.1 ([6]). Let G be a group.

(i) If H is weakly M-supplemented in G, H 6 M 6 G, then H is weakly M-

supplemented in M .

(ii) Let N E G and N 6 H . Then H is weaklyM-supplemented in G if and only

if H/N is weaklyM-supplemented in G/N .

(iii) Let π be a set of primes. Let K be a normal π′-subgroup and H a π-subgroup

of G. If H is weakly M-supplemented in G, then HK/K is weakly M-

supplemented in G/K.

(iv) Let R be a solvable minimal normal subgroup of the group G and R1 be a max-

imal subgroup of R. If R1 is weaklyM-supplemented in G, then R is a cyclic

group of prime order.

292



(v) Let P be a p-subgroup of G, where p is a prime divisor of |G|. If P is weaklyM-

supplemented in G, then there exists a subgroup B of G such that |G : TB| = p

for every maximal subgroup T of P containing PG.

Lemma 2.2 ([2], Satz IV.5.4). Suppose that p is a prime and G is a minimal

non-p-nilpotent group, i.e., G is not a p-nilpotent group but every proper subgroup

of G is p-nilpotent. Then:

(i) G has a normal Sylow p-subgroup P for some prime p and G = PQ, where Q

is a non-normal cyclic q-subgroup for some prime q 6= p.

(ii) P/Φ(P ) is a minimal normal subgroup of G/Φ(P ).

(iii) The exponent of P is p or 4.

3. Main results

In this section, we prove our main results.

Theorem 3.1. Let G be a group and P a Sylow p-subgroup of G, where p is

an odd prime. If each maximal subgroup P1 of P is weaklyM-supplemented in G

and NG(P1) is p-nilpotent, then G is p-nilpotent.

P r o o f. Assume that the theorem is not true and let G be a counterexample of

minimal order. We derive a contradiction in several steps.

Step 1. Op′(G) = 1.

Suppose that Op′(G) 6= 1. Consider G/Op′(G). Let M/Op′(G) be a maximal

subgroup of POp′(G)/Op′(G). ThenM = M∩POp′ (G) = (M∩P )Op′ (G). Let P1 =

M∩P . It is easy to see that P1 is maximal in P . Let NG/O
p′
(G)(P1Op′(G)/Op′(G)) =

K/Op′(G). Then P1Op′(G)⊳K, and thus K = NK(P1)P1Op′(G) = NG(P1)Op′ (G) 6

K; that is,

NG/O
p′
(G)(P1Op′(G)/Op′ (G)) = NG(P1)Op′(G)/Op′ (G).

By the hypothesis, NG(P1)Op′(G)/Op′ (G) is p-nilpotent. Then by Lemma 2.1, we

have that G/Op′(G) satisfies the hypothesis of the theorem. The choice of G yields

that G/Op′(G) is p-nilpotent, which implies that G is p-nilpotent, a contradiction.

Step 2. Let T be a subgroup of G such that P 6 T < G, then T is p-nilpotent.

Let P1 be a maximal subgroup of P . Obviously, NT (P1) 6 NG(P1). By the

hypothesis, we have NT (P1) is p-nilpotent and by Lemma 2.1 P1 is weakly M-

supplemented in T . Hence T satisfies the hypothesis of the theorem. The minimality

of G forces that T is p-nilpotent.
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Step 3. Op(G) is the unique minimal normal subgroup of G and G/Op(G) is

p-nilpotent. Moreover, Φ(G) = 1.

Since G is not p-nilpotent, by the Glauberman-Thompson Theorem we have that

NG(Z(J(P ))) is not p-nilpotent, where J(P ) is the Thompson subgroup of P . Notic-

ing that Z(J(P )) is a characteristic subgroup of P , we get NG(P ) 6 NG(Z(J(P ))).

By Step 2, we have NG(Z(J(P ))) = G and so Op(G) 6= 1. Let N be a minimal nor-

mal subgroup ofG contained in Op(G). If N = P , then obviouslyG/N is p-nilpotent.

If N is maximal in P , then by the hypothesis G = NG(N) is p-nilpotent, a contra-

diction. Hence we may assume that |P : N | > p2. By Lemma 2.1, it is easy to

see that G/N satisfies the hypothesis of the theorem, so the choice of G yields that

G/N is p-nilpotent. Next we prove the uniqueness of N . If Op(G) contains a second

minimal normal subgroup M of G then both G/N and G/M are p-nilpotent by the

choice of G, and so G ∼= G/(M ∩ N) 6 G/M × G/N shows that G is p-nilpotent

contrary to hypothesis. If Φ(G) 6= 1, then by Lemma 2.1 and Step 1, it is easy to

see that G/Φ(G) satisfies the hypothesis of the theorem, so G is p-nilpotent contrary

to hypothesis. Thus Φ(G) = 1. Now we show N = Op(G). Lemma 2.6 in [3] shows

that if K 6= 1 is a normal subgroup of any finite group G and K ∩ Φ(G) = 1, then

the Fitting subgroup F (K) of K lies in the socle Soc(G) and therefore F (K) is the

direct product of minimal normal subgroups of G contained in F (K). In our case,

since N is the unique minimal normal p-subgroup of G, applying this lemma with

K = Op(G) = F (K) shows that Op(G) is equal to N .

Step 4. G is p-solvable, CG(Op(G)) 6 Op(G).

By Step 3, the p-solvablity of G is obvious. So CG(Op(G)) 6 Op(G) follows from

Step 1 and [7], Theorem 9.3.1.

Step 5. G = PQ, where Q is a Sylow q-subgroup of G with q 6= p.

For each prime q ∈ π(G) and q 6= p, there exists a Sylow q-subgroup Q of G such

that G1 = PQ is a subgroup of G by Step 4 and [1], Theorem 6.3.5. If G1 < G, then

Step 2 forces that G1 is p-nilpotent and so Q E G1. Thus we have NQ = N ×Q. It

follows that Q 6 CG(N) = CG(Op(G)), which contradicts Step 4. Hence G1 = G,

that is, G = PQ.

Step 6. |N | = p and P ∩M is maximal in P .

By Step 3, Φ(G) = 1. Therefore, G has a maximal subgroupM such that G = MN

and M ∩N = 1. Clearly, P = N(P ∩M). Since P ∩M < P , there exists a maximal

subgroup P1 of P such that P ∩ M 6 P1. First we may assume P ∩M < P1. By

hypotheses, P1 is weaklyM-supplemented in G. There exists a subgroupB such that

G = P1B and TB < G for every maximal subgroup (P1)G 6 T . If (P1)G 6= 1, then we

have N 6 (P1)G 6 P1, a contradiction. So we have (P1)G = 1. By Lemma 2.1 (v),

|G : TB| = p for every maximal subgroup T of P1. Particularly, there exists at

least a maximal subgroup T of P1 such that N � TB. We may choose a maximal
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subgroup T of P1 such that P ∩M 6 T . Clearly, N � TB. Otherwise, N 6 TB and

TB = NTB = PB = G, a contradiction. Thus P ∩M = P1 is maximal in P and

|N | = p.

Step 7. The final contradiction.

Let Q1 be a Sylow q-subgroup of M such that M = (P ∩ M)Q1. If p < q,

then by [8], Lemma 2.8, Op(G)Q1 is p-nilpotent, and so Q1 6 CG(Op(G)), which

contradicts Step 4. So q < p. By Step 5, G is solvable. Then by Step 3, we

have F (G) = N = CG(N). It follows that M ∼= G/N = NG(N)/CG(N), which is

isomorphic to a subgroup of Aut(N). Because |N | = p by Step 6, Aut(N) is a cyclic

group of order p − 1. It follows that M is cyclic, and so Q1 6 NG(P ∩M). Since

P ∩M is maximal in P , we have P ∩M E P and G = PM = PQ1 6 NG(P ∩M).

Now by the hypothesis G = NG(P ∩M) is p-nilpotent, the final contradiction. �

P r o o f of Theorem 1.2. Suppose that the theorem is false and let G be a coun-

terexample of minimal order. We will derive a contradiction in several steps.

Step 1. Op′(G) = 1.

If Op′(G) 6= 1, Lemma 2.1 guarantees that G/Op′(G) satisfies the hypotheses of the

theorem. Thus G/Op′(G) is p-nilpotent by the choice of G. Then G is p-nilpotent,

a contradiction.

Step 2. Let T be a subgroup of G such that P 6 T < G, then T is p-nilpotent.

This is proved by the same arguments as those shown in Step 2 of the proof of

Theorem 3.1.

Step 3. |P : D| > p.

By Theorem 3.1.

Step 4. |D| > p.

Suppose that |D| = p. Clearly, the hypothesis is inherited by all proper sub-

groups of G by Lemma 2.1. Thus, G is a minimal non-p-nilpotent group. Then by

Lemma 2.2, G has a normal Sylow p-subgroup P and G = [P ]Q, where Q is a non-

normal cyclic Sylow q-subgroup of G, and P/Φ(P ) is a minimal normal subgroup

of G/Φ(P ). Since p is an odd prime, by Lemma 2.2, the exponent of P is p. Let L be

a minimal subgroup of P . By hypotheses, L is weaklyM-supplemented in G. If L is

non-normal in G, then L has a complement B in G. By [8], Lemma 2.8, B E G and

hence G is nilpotent, a contradiction. Since every minimal subgroup of P is normal

in G, we also get a contradiction.

Step 5. Op(G) 6= 1 and G = PQ, where Q ∈ Sylq(G) and q 6= p.

Since G is not p-nilpotent, by the Glauberman-Thompson theorem we have that

NG(Z(J(P ))) is not p-nilpotent, where J(P ) is the Thompson subgroup of P . Notic-

ing that Z(J(P )) is a characteristic subgroup of P , we get NG(P ) 6 NG(Z(J(P ))).

By Step 2, we have NG(Z(J(P ))) = G and so Op(G) 6= 1. Consider G = G/Op(G)

295



and let G1 be the inverse image of NG(Z(J(P ))) in G. Since Op(G) is the largest

normal subgroup of G contained in P , we have NG(P ) 6 G1 < G. By Step 2, G1 is

p-nilpotent and by [1], Theorem 8.3.1 again, G is p-nilpotent. Then there exists

a Sylow q-subgroup Q of G such that PQ is a subgroup of G for any q ∈ π(G) with

q 6= p by [1], Theorem 6.3.5. If PQ < G, then PQ is p-nilpotent by Step 2. Hence

Q 6 CG(Op(G)) 6 Op(G) by [1], Theorem 6.3.2, a contradiction. Thus PQ = G.

Step 6. Let N be a minimal normal subgroup of G, then |N | < |D|.

If |N | = |D|, then by the hypothesis, G = NG(N) is p-nilpotent, a contradiction.

Suppose that |N | > |D|. By hypotheses we may choose a subgroup E of P with

order |D| such that E < N . Since E is weakly M-supplemented in G, there exists

a subgroup B of G such that G = EB and TB < G for every maximal subgroup T

of E. Since N is a minimal normal subgroup of G, we have N ∩ B = 1 or N . If

N ∩B = 1, then N = E, a contradiction. If N ∩B = N , then B = G, which is also

a contradiction.

Step 7. G/N is p-nilpotent, N is the unique minimal normal subgroup of G and

Φ(G) = 1.

By Step 6 and Lemma 2.1, it is easy to see that G/N satisfies the hypothesis of

the theorem, so the choice of G yields that G/N is p-nilpotent. The uniqueness of N

and Φ(G) = 1 are obvious.

Step 8. The final contradiction.

Since G is solvable by Step 5, there is a maximal subgroup M of G such that

|G : M | is a prime. If |G : M | 6= p, then M is p-nilpotent by Step 2 and therefore

P = M E G by Step 1, a contradiction. Thus we may assume that |G : M | = p.

Then it follows that P ∩M is a maximal subgroup of P and also a Sylow p-subgroup

of M . If NG(P ∩ M) < G, then NG(P ∩ M) is p-nilpotent by Step 2 and so is

NM (P ∩ M). Since |P : D| > p by Step 3, every subgroup of P ∩ M of order |D|

is weakly M-supplemented in M by Lemma 2.1. Consequently, M satisfies the

hypotheses of our theorem and therefore the choice ofG implies thatM is p-nilpotent,

a contradiction. Hence P ∩M E G and N = Op(G) = P ∩M is a maximal subgroup

of P by Step 7. This leads to |D| < |N | by Theorem 3.1, in contradiction to Step 6,

the final contradiction. The proof of the theorem is complete. �
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