Czechoslovak Mathematical Journal

Liushuan Dong

Finite p-nilpotent groups with some subgroups weakly \mathcal{M}-supplemented

Czechoslovak Mathematical Journal, Vol. 70 (2020), No. 1, 291-297

Persistent URL: http://dml.cz/dmlcz/148056

Terms of use:

© Institute of Mathematics AS CR, 2020

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

FINITE p-NILPOTENT GROUPS WITH SOME SUBGROUPS WEAKLY \mathcal{M}-SUPPLEMENTED

Liushuan Dong, Zhengzhou

Received June 3, 2018. Published online November 19, 2019.

The paper is dedicated to Professor Shaoxue Liu for his 80th birthday.
Abstract. Suppose that G is a finite group and H is a subgroup of G. Subgroup H is said to be weakly \mathcal{M}-supplemented in G if there exists a subgroup B of G such that (1) $G=H B$, and (2) if H_{1} / H_{G} is a maximal subgroup of H / H_{G}, then $H_{1} B=B H_{1}<G$, where H_{G} is the largest normal subgroup of G contained in H. We fix in every noncyclic Sylow subgroup P of G a subgroup D satisfying $1<|D|<|P|$ and study the p-nilpotency of G under the assumption that every subgroup H of P with $|H|=|D|$ is weakly \mathcal{M}-supplemented in G. Some recent results are generalized.

Keywords: p-nilpotent group; weakly \mathcal{M}-supplemented subgroup; finite group
MSC 2010: 20D10, 20D20

1. Introduction

All groups considered in this paper are finite. We use conventional notions and notation. G always means a group, $|G|$ is the order of $G, \pi(G)$ denotes the set of all primes dividing $|G|$.

A subgroup H of G is called \mathcal{M}-supplemented in a finite group G if there exists a subgroup B of G such that $G=H B$ and $H_{1} B$ is a proper subgroup of G for every maximal subgroup H_{1} of H. This concept was introduced by Miao and Lempken in [5]. More recently, in [6] they generalized \mathcal{M}-supplemented subgroups to weakly \mathcal{M}-supplemented subgroups. A subgroup H of G is said to be weakly \mathcal{M}-supplemented in G if there exists a subgroup B of G such that (1) $G=H B$, and (2) if H_{1} / H_{G} is a maximal subgroup of H / H_{G}, then $H_{1} B=B H_{1}<G$, where H_{G} is the largest normal subgroup of G contained in H. In this case, B is also called
a weak \mathcal{M}-supplement of H in G. Clearly, every \mathcal{M}-supplemented subgroup of G is a weakly \mathcal{M}-supplemented subgroup of G, but the converse does not hold. The authors use weakly \mathcal{M}-supplemented subgroups when investigating the structure of G, as in [4] and [6]. For example, Miao in [4] proves the following result.

Theorem 1.1. Let p be an odd prime divisor of $|G|$ and P a Sylow p-subgroup of G. If $N_{G}(P)$ is p-nilpotent and supposing that P has a subgroup D such that $1<D<P$, and every subgroup E of P with order $|D|$ is weakly \mathcal{M}-supplemented in G, then G is p-nilpotent.

A celebrated theorem of Frobenius (see [2], Satz IV.5.8) asserts that G is p-nilpotent if $N_{G}(H)$ is p-nilpotent for every p-subgroup H of G. In this article, we replace some of the conditions of the Frobenius theorem and Theorem 1.1, namely, H is restricted to be a p-subgroup of a fixed order, the condition of p-nilpotency of $N_{G}(P)$ is changed to the p-nilpotency of $N_{G}(H)$, and we assume that H is a weakly \mathcal{M}-supplemented subgroup of G. The results of this article can be viewed as extensions of the Frobenius theorem and Theorem 1.1 with weakly \mathcal{M}-supplemented subgroups. Our main theorem is the following result.

Theorem 1.2. Let G be a group and P a Sylow p-subgroup of G, where p is an odd prime. If P has a subgroup D with $1<|D|<|P|$ such that all subgroups H of P with order $|H|=|D|$ are weakly \mathcal{M}-supplemented in G and $N_{G}(H)$ is p-nilpotent, then G is p-nilpotent.

2. Preliminary results

In this section, we collect some known results that are useful later.

Lemma 2.1 ([6]). Let G be a group.
(i) If H is weakly \mathcal{M}-supplemented in $G, H \leqslant M \leqslant G$, then H is weakly \mathcal{M} supplemented in M.
(ii) Let $N \unlhd G$ and $N \leqslant H$. Then H is weakly \mathcal{M}-supplemented in G if and only if H / N is weakly \mathcal{M}-supplemented in G / N.
(iii) Let π be a set of primes. Let K be a normal π^{\prime}-subgroup and H a π-subgroup of G. If H is weakly \mathcal{M}-supplemented in G, then $H K / K$ is weakly \mathcal{M} supplemented in G / K.
(iv) Let R be a solvable minimal normal subgroup of the group G and R_{1} be a maximal subgroup of R. If R_{1} is weakly \mathcal{M}-supplemented in G, then R is a cyclic group of prime order.
(v) Let P be a p-subgroup of G, where p is a prime divisor of $|G|$. If P is weakly \mathcal{M} supplemented in G, then there exists a subgroup B of G such that $|G: T B|=p$ for every maximal subgroup T of P containing P_{G}.

Lemma 2.2 ([2], Satz IV.5.4). Suppose that p is a prime and G is a minimal non-p-nilpotent group, i.e., G is not a p-nilpotent group but every proper subgroup of G is p-nilpotent. Then:
(i) G has a normal Sylow p-subgroup P for some prime p and $G=P Q$, where Q is a non-normal cyclic q-subgroup for some prime $q \neq p$.
(ii) $P / \Phi(P)$ is a minimal normal subgroup of $G / \Phi(P)$.
(iii) The exponent of P is p or 4 .

3. Main results

In this section, we prove our main results.

Theorem 3.1. Let G be a group and P a Sylow p-subgroup of G, where p is an odd prime. If each maximal subgroup P_{1} of P is weakly \mathcal{M}-supplemented in G and $N_{G}\left(P_{1}\right)$ is p-nilpotent, then G is p-nilpotent.

Proof. Assume that the theorem is not true and let G be a counterexample of minimal order. We derive a contradiction in several steps.

Step 1. $O_{p^{\prime}}(G)=1$.
Suppose that $O_{p^{\prime}}(G) \neq 1$. Consider $G / O_{p^{\prime}}(G)$. Let $M / O_{p^{\prime}}(G)$ be a maximal subgroup of $P O_{p^{\prime}}(G) / O_{p^{\prime}}(G)$. Then $M=M \cap P O_{p^{\prime}}(G)=(M \cap P) O_{p^{\prime}}(G)$. Let $P_{1}=$ $M \cap P$. It is easy to see that P_{1} is maximal in P. Let $N_{G / O_{p^{\prime}}(G)}\left(P_{1} O_{p^{\prime}}(G) / O_{p^{\prime}}(G)\right)=$ $K / O_{p^{\prime}}(G)$. Then $P_{1} O_{p^{\prime}}(G) \triangleleft K$, and thus $K=N_{K}\left(P_{1}\right) P_{1} O_{p^{\prime}}(G)=N_{G}\left(P_{1}\right) O_{p^{\prime}}(G) \leqslant$ K; that is,

$$
N_{G / O_{p^{\prime}}(G)}\left(P_{1} O_{p^{\prime}}(G) / O_{p^{\prime}}(G)\right)=N_{G}\left(P_{1}\right) O_{p^{\prime}}(G) / O_{p^{\prime}}(G)
$$

By the hypothesis, $N_{G}\left(P_{1}\right) O_{p^{\prime}}(G) / O_{p^{\prime}}(G)$ is p-nilpotent. Then by Lemma 2.1, we have that $G / O_{p^{\prime}}(G)$ satisfies the hypothesis of the theorem. The choice of G yields that $G / O_{p^{\prime}}(G)$ is p-nilpotent, which implies that G is p-nilpotent, a contradiction.

Step 2. Let T be a subgroup of G such that $P \leqslant T<G$, then T is p-nilpotent.
Let P_{1} be a maximal subgroup of P. Obviously, $N_{T}\left(P_{1}\right) \leqslant N_{G}\left(P_{1}\right)$. By the hypothesis, we have $N_{T}\left(P_{1}\right)$ is p-nilpotent and by Lemma $2.1 P_{1}$ is weakly \mathcal{M} supplemented in T. Hence T satisfies the hypothesis of the theorem. The minimality of G forces that T is p-nilpotent.

Step 3. $O_{p}(G)$ is the unique minimal normal subgroup of G and $G / O_{p}(G)$ is p-nilpotent. Moreover, $\Phi(G)=1$.

Since G is not p-nilpotent, by the Glauberman-Thompson Theorem we have that $N_{G}(Z(J(P)))$ is not p-nilpotent, where $J(P)$ is the Thompson subgroup of P. Noticing that $Z(J(P))$ is a characteristic subgroup of P, we get $N_{G}(P) \leqslant N_{G}(Z(J(P)))$. By Step 2, we have $N_{G}(Z(J(P)))=G$ and so $O_{p}(G) \neq 1$. Let N be a minimal normal subgroup of G contained in $O_{p}(G)$. If $N=P$, then obviously G / N is p-nilpotent. If N is maximal in P, then by the hypothesis $G=N_{G}(N)$ is p-nilpotent, a contradiction. Hence we may assume that $|P: N| \geqslant p^{2}$. By Lemma 2.1, it is easy to see that G / N satisfies the hypothesis of the theorem, so the choice of G yields that G / N is p-nilpotent. Next we prove the uniqueness of N. If $O_{p}(G)$ contains a second minimal normal subgroup M of G then both G / N and G / M are p-nilpotent by the choice of G, and so $G \cong G /(M \cap N) \leqslant G / M \times G / N$ shows that G is p-nilpotent contrary to hypothesis. If $\Phi(G) \neq 1$, then by Lemma 2.1 and Step 1 , it is easy to see that $G / \Phi(G)$ satisfies the hypothesis of the theorem, so G is p-nilpotent contrary to hypothesis. Thus $\Phi(G)=1$. Now we show $N=O_{p}(G)$. Lemma 2.6 in [3] shows that if $K \neq 1$ is a normal subgroup of any finite group G and $K \cap \Phi(G)=1$, then the Fitting subgroup $F(K)$ of K lies in the socle $\operatorname{Soc}(G)$ and therefore $F(K)$ is the direct product of minimal normal subgroups of G contained in $F(K)$. In our case, since N is the unique minimal normal p-subgroup of G, applying this lemma with $K=O_{p}(G)=F(K)$ shows that $O_{p}(G)$ is equal to N.

Step 4. G is p-solvable, $C_{G}\left(O_{p}(G)\right) \leqslant O_{p}(G)$.
By Step 3, the p-solvablity of G is obvious. So $C_{G}\left(O_{p}(G)\right) \leqslant O_{p}(G)$ follows from Step 1 and [7], Theorem 9.3.1.

Step 5. $G=P Q$, where Q is a Sylow q-subgroup of G with $q \neq p$.
For each prime $q \in \pi(G)$ and $q \neq p$, there exists a Sylow q-subgroup Q of G such that $G_{1}=P Q$ is a subgroup of G by Step 4 and [1], Theorem 6.3.5. If $G_{1}<G$, then Step 2 forces that G_{1} is p-nilpotent and so $Q \unlhd G_{1}$. Thus we have $N Q=N \times Q$. It follows that $Q \leqslant C_{G}(N)=C_{G}\left(O_{p}(G)\right)$, which contradicts Step 4. Hence $G_{1}=G$, that is, $G=P Q$.

Step 6. $|N|=p$ and $P \cap M$ is maximal in P.
By Step $3, \Phi(G)=1$. Therefore, G has a maximal subgroup M such that $G=M N$ and $M \cap N=1$. Clearly, $P=N(P \cap M)$. Since $P \cap M<P$, there exists a maximal subgroup P_{1} of P such that $P \cap M \leqslant P_{1}$. First we may assume $P \cap M<P_{1}$. By hypotheses, P_{1} is weakly \mathcal{M}-supplemented in G. There exists a subgroup B such that $G=P_{1} B$ and $T B<G$ for every maximal subgroup $\left(P_{1}\right)_{G} \leqslant T$. If $\left(P_{1}\right)_{G} \neq 1$, then we have $N \leqslant\left(P_{1}\right)_{G} \leqslant P_{1}$, a contradiction. So we have $\left(P_{1}\right)_{G}=1$. By Lemma $2.1(\mathrm{v})$, $|G: T B|=p$ for every maximal subgroup T of P_{1}. Particularly, there exists at least a maximal subgroup T of P_{1} such that $N \not \leq T B$. We may choose a maximal
subgroup T of P_{1} such that $P \cap M \leqslant T$. Clearly, $N \not \approx T B$. Otherwise, $N \leqslant T B$ and $T B=N T B=P B=G$, a contradiction. Thus $P \cap M=P_{1}$ is maximal in P and $|N|=p$.

Step 7. The final contradiction.
Let Q_{1} be a Sylow q-subgroup of M such that $M=(P \cap M) Q_{1}$. If $p<q$, then by [8], Lemma 2.8, $O_{p}(G) Q_{1}$ is p-nilpotent, and so $Q_{1} \leqslant C_{G}\left(O_{p}(G)\right)$, which contradicts Step 4. So $q<p$. By Step $5, G$ is solvable. Then by Step 3, we have $F(G)=N=C_{G}(N)$. It follows that $M \cong G / N=N_{G}(N) / C_{G}(N)$, which is isomorphic to a subgroup of $\operatorname{Aut}(N)$. Because $|N|=p$ by Step $6, \operatorname{Aut}(N)$ is a cyclic group of order $p-1$. It follows that M is cyclic, and so $Q_{1} \leqslant N_{G}(P \cap M)$. Since $P \cap M$ is maximal in P, we have $P \cap M \unlhd P$ and $G=P M=P Q_{1} \leqslant N_{G}(P \cap M)$. Now by the hypothesis $G=N_{G}(P \cap M)$ is p-nilpotent, the final contradiction.

Pro of of Theorem 1.2. Suppose that the theorem is false and let G be a counterexample of minimal order. We will derive a contradiction in several steps.

Step 1. $O_{p^{\prime}}(G)=1$.
If $O_{p^{\prime}}(G) \neq 1$, Lemma 2.1 guarantees that $G / O_{p^{\prime}}(G)$ satisfies the hypotheses of the theorem. Thus $G / O_{p^{\prime}}(G)$ is p-nilpotent by the choice of G. Then G is p-nilpotent, a contradiction.

Step 2. Let T be a subgroup of G such that $P \leqslant T<G$, then T is p-nilpotent.
This is proved by the same arguments as those shown in Step 2 of the proof of Theorem 3.1.

Step 3. $|P: D|>p$.
By Theorem 3.1.
Step 4. $|D|>p$.
Suppose that $|D|=p$. Clearly, the hypothesis is inherited by all proper subgroups of G by Lemma 2.1. Thus, G is a minimal non- p-nilpotent group. Then by Lemma 2.2, G has a normal Sylow p-subgroup P and $G=[P] Q$, where Q is a nonnormal cyclic Sylow q-subgroup of G, and $P / \Phi(P)$ is a minimal normal subgroup of $G / \Phi(P)$. Since p is an odd prime, by Lemma 2.2, the exponent of P is p. Let L be a minimal subgroup of P. By hypotheses, L is weakly \mathcal{M}-supplemented in G. If L is non-normal in G, then L has a complement B in G. By [8], Lemma 2.8, $B \unlhd G$ and hence G is nilpotent, a contradiction. Since every minimal subgroup of P is normal in G, we also get a contradiction.

Step 5. $O_{p}(G) \neq 1$ and $G=P Q$, where $Q \in \operatorname{Syl}_{q}(G)$ and $q \neq p$.
Since G is not p-nilpotent, by the Glauberman-Thompson theorem we have that $N_{G}(Z(J(P)))$ is not p-nilpotent, where $J(P)$ is the Thompson subgroup of P. Noticing that $Z(J(P))$ is a characteristic subgroup of P, we get $N_{G}(P) \leqslant N_{G}(Z(J(P)))$. By Step 2, we have $N_{G}(Z(J(P)))=G$ and so $O_{p}(G) \neq 1$. Consider $\bar{G}=G / O_{p}(G)$
and let G_{1} be the inverse image of $N_{\bar{G}}(Z(J(\bar{P})))$ in G. Since $O_{p}(G)$ is the largest normal subgroup of G contained in P, we have $N_{G}(P) \leqslant G_{1}<G$. By Step 2, G_{1} is p-nilpotent and by [1], Theorem 8.3.1 again, G is p-nilpotent. Then there exists a Sylow q-subgroup Q of G such that $P Q$ is a subgroup of G for any $q \in \pi(G)$ with $q \neq p$ by [1], Theorem 6.3.5. If $P Q<G$, then $P Q$ is p-nilpotent by Step 2. Hence $Q \leqslant C_{G}\left(O_{p}(G)\right) \leqslant O_{p}(G)$ by [1], Theorem 6.3.2, a contradiction. Thus $P Q=G$.

Step 6 . Let N be a minimal normal subgroup of G, then $|N|<|D|$.
If $|N|=|D|$, then by the hypothesis, $G=N_{G}(N)$ is p-nilpotent, a contradiction. Suppose that $|N|>|D|$. By hypotheses we may choose a subgroup E of P with order $|D|$ such that $E<N$. Since E is weakly \mathcal{M}-supplemented in G, there exists a subgroup B of G such that $G=E B$ and $T B<G$ for every maximal subgroup T of E. Since N is a minimal normal subgroup of G, we have $N \cap B=1$ or N. If $N \cap B=1$, then $N=E$, a contradiction. If $N \cap B=N$, then $B=G$, which is also a contradiction.

Step 7. G / N is p-nilpotent, N is the unique minimal normal subgroup of G and $\Phi(G)=1$.

By Step 6 and Lemma 2.1, it is easy to see that G / N satisfies the hypothesis of the theorem, so the choice of G yields that G / N is p-nilpotent. The uniqueness of N and $\Phi(G)=1$ are obvious.

Step 8. The final contradiction.
Since G is solvable by Step 5 , there is a maximal subgroup M of G such that $|G: M|$ is a prime. If $|G: M| \neq p$, then M is p-nilpotent by Step 2 and therefore $P=M \unlhd G$ by Step 1, a contradiction. Thus we may assume that $|G: M|=p$. Then it follows that $P \cap M$ is a maximal subgroup of P and also a Sylow p-subgroup of M. If $N_{G}(P \cap M)<G$, then $N_{G}(P \cap M)$ is p-nilpotent by Step 2 and so is $N_{M}(P \cap M)$. Since $|P: D|>p$ by Step 3, every subgroup of $P \cap M$ of order $|D|$ is weakly \mathcal{M}-supplemented in M by Lemma 2.1. Consequently, M satisfies the hypotheses of our theorem and therefore the choice of G implies that M is p-nilpotent, a contradiction. Hence $P \cap M \unlhd G$ and $N=O_{p}(G)=P \cap M$ is a maximal subgroup of P by Step 7. This leads to $|D|<|N|$ by Theorem 3.1, in contradiction to Step 6, the final contradiction. The proof of the theorem is complete.

Acknowledgements. The author is very grateful to the referee who read the manuscript carefully and provided a lot of valuable suggestions and useful comments. It should be said that I could not have polished the final version of this paper well without his or her outstanding efforts.

References

[1] D. Gorenstein: Finite Groups. Chelsea Publishing Company, New York, 1980.
zbl MR
[2] B. Huppert: Endliche Gruppen I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134, Springer, Berlin, 1967. (In German.)
zbl MR doi
[3] Y. Li, Y. Wang, H. Wei: The influence of π-quasinormality of some subgroups of a finite group. Arch. Math. 81 (2003), 245-252.
zbl MR doi
[4] L. Miao: On weakly \mathcal{M}-supplemented subgroups of Sylow p-subgroups of finite groups. Glasg. Math. J. 53 (2011), 401-410.
zbl MR doi
[5] L. Miao, W. Lempken: On \mathcal{M}-supplemented subgroups of finite groups. J. Group Theory 12 (2009), 271-287.
zbl MR doi
[6] L. Miao, W. Lempken: On weakly \mathcal{M}-supplemented primary subgroups of finite groups. Turk. J. Math. 34 (2010), 489-500.
zbl MR doi
[7] D.J.S. Robinson: A Course in the Theory of Groups. Graduate Texts in Mathematics 80, Springer, New York, 1982.
zbl MR doi
[8] H. Wei, Y. Wang: On c^{*}-normality and its properties. J. Group Theory 10 (2007), 211-223.
zbl MR doi

Author's address: Liushuan Dong, College of Information and Business, Zhongyuan University of Technology, No. 41 Zhongyuan Road, Zhengzhou 450007, P. R. China, e-mail: dk091234@163.com.

