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Abstract. We say that a space X has the discrete countable chain condition (DCCC for
short) if every discrete family of nonempty open subsets of X is countable. A space X has
a zeroset diagonal if there is a continuous mapping f : X2 → [0, 1] with ∆X = f−1(0),
where ∆X = {(x, x) : x ∈ X}. In this paper, we prove that every first countable DCCC
space with a zeroset diagonal has cardinality at most c.
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1. Introduction

All topological spaces in this paper are assumed to be Hausdorff unless otherwise

stated. The cardinality of a set X is denoted by |X |, and [X ]2 will denote the set of

two-element subsets of X . We write ω for the first infinite cardinal, ω1 for the first

uncountable cardinal and c for the cardinality of the continuum.

In 1977, Ginsburg and Woods proved that the cardinality of a T1-space with count-

able extent and a Gδ-diagonal is at most c (see [5]). In the same paper, Ginsburg

and Woods asked if it was true that a regular CCC-space (here CCC denotes the

countable chain condition) with a Gδ-diagonal has cardinality at most c. This ques-

tion was also posted by Arhangel’skii independently. In 1984, Shakhmatov showed

that cardinalities of such spaces may not have an upper bound (see [8]). And later,

Uspenskij proved that an upper bound still does not exist even assuming Fréchet

property (see [9]). Regular Gδ-diagonal is a property stronger than Gδ-diagonal.

Arhangel’skii asked what if “Gδ-diagonal” is replaced by “regular Gδ-diagonal”.
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In 2005, Buzyakova proved that the cardinality of a CCC-space with a regular Gδ-

diagonal is at most c (see [3]). In 2015, Gotchev in [6] proved that the cardinality of

a weakly Lindelöf space with a regular Gδ-diagonal is at most 2
c.

Definition 1.1. We say that a space X has the discrete countable chain con-

dition (DCCC for short) if every discrete family of nonempty open subsets of X is

countable.

By Definition 1.1, it follows immediately that every CCC space is DCCC. In fact,

every weakly Lindelöf space is DCCC, but the converse is not true. For example, ω1

with the ordered topology is a first countable and countably compact (hence, DCCC)

space which is not weakly Lindelöf, because the open cover U = {[0, α] : α < ω1}

of ω1 does not have a countable subfamily whose union is dense in ω1.

Definition 1.2 ([2]). A space X has a zeroset diagonal if there is a continuous

mapping f : X2 → [0, 1] with ∆X = f−1(0), where ∆X = {(x, x) : x ∈ X}.

It is well-known and easy to prove that every submetrizable space has a zeroset

diagonal and every zeroset diagonal is a regular Gδ-diagonal. The converses are not

true (see [1], [10]).

In this paper, we prove that every first countable DCCC space with a zeroset

diagonal has cardinality at most c.

All notations and terminology not explained in the paper are given in [4].

2. Results

We will use the following countable version of a set-theoretic theorem due to Erdős

and Radó (see [7], page 8).

Lemma 2.1. Let X be a set with |X | > c and suppose [X ]2 =
⋃

{Pn : n ∈ ω}.

Then there exist n0 < ω and a subset S of X with |S| > ω such that [S]2 ⊂ Pn0
.

Theorem 2.2. Every first countable DCCC space X with a zeroset diagonal has

cardinality at most c.

P r o o f. Assume the contrary, i.e. that |X | > c. Fix a continuous function

f : X2 → [0, 1] with ∆X = f−1(0). Let B(x) = {Bn(x) : n ∈ ω} be a local decreasing

base for each x ∈ X . Since for any distinct x, y ∈ X there is some n1 ∈ ω such that

(x, y) ∈ f−1((1/(n1 + 2019), 1]) and since f is continuous, there are n2, n3 ∈ ω such

that

Bn2
(x)×Bn3

(y) ⊂ f−1

(( 1

n1 + 2019
, 1
])

.
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Let n∗ = max{n1, n2, n3}. Then by our hypothesis, we can deduce that

Bn∗(x) ×Bn∗(y) ⊂ f−1

(( 1

n∗ + 2019
, 1
])

.

Thus, the following sets Pn are well defined. For each n ∈ ω let

Pn =
{

{x, y} ∈ [X ]2 : Bn(x) ×Bn(y) ⊂ f−1

(( 1

n+ 2019
, 1
])}

.

It is clear that [X ]2 =
⋃

{Pn : n ∈ ω}. (Note that [X ]2 is the set of two-element

subsets of X). We can apply Lemma 2.1 to conclude that there exists an uncountable

subset S of X and n0 ∈ ω such that [S]2 ⊂ Pn0
. It follows immediately that

U = {Bn0
(x) : x ∈ S} is an uncountable family of nonempty open sets of X . Since X

is DCCC, the family U must have a cluster point x ∈ X . Pick any neighbourhood Ox

of x such that

Ox ×Ox ⊂ f−1

([

0,
1

n0 + 2019

))

.

Obviously, Ox meets infinitely many members of U . Thus, there exist two distinct

(at least) y, z ∈ S such that Ox ∩ Bn0
(y) 6= ∅ and Ox ∩ Bn0

(z) 6= ∅. Take any

y′ ∈ Ox ∩ Bn0
(y) and z′ ∈ Ox ∩ Bn0

(z). Hence, f(y′, z′) < 1/(n0 + 2019) since

y′, z′ ∈ Ox. On the other hand, f(y
′, z′) > 1/(n0 + 2019) since y′ ∈ Bn0

(y), z′ ∈

Bn0
(z) and {y, z} ∈ Pn0

. This gives a contradiction and we prove that |X | 6 c. �

If we drop the condition “DCCC”, or “zeroset diagonal” in Theorem 2.2, the

conclusion is no longer true, which can be seen in the following examples.

E x am p l e 2.3. Let D be a discrete space with |D| = 2c. It is evident that D is

first countable and has a zeroset diagonal, but D is not DCCC.

E x am p l e 2.4. Let X be the subspace of [0, 2c], consisting of all ordinals of

countable cofinality, equipped with the ordered topology. Then X is a first countable

and countably compact (hence DCCC) space of cardinality 2c, but it does not have

a zeroset diagonal.

We finish the paper with the following question.

Q u e s t i o n 2.5. Is it true that every DCCC (or weakly Lindelöf) space with a

zeroset diagonal has cardinality at most c?
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