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Two remarks on Lie rings of 2 × 2

matrices over commutative associative rings

Evgenii L. Bashkirov

Abstract. Let C be an associative commutative ring with 1. If a ∈ C, then aC

denotes the principal ideal generated by a. Let l, m, n be nonzero elements of C
such that mn ∈ lC. The set of matrices

(

a11 a12

a21 −a11

)

, where a11 ∈ lC, a12 ∈ mC,
a21 ∈ nC, forms a Lie ring under Lie multiplication and matrix addition. The
paper studies properties of these Lie rings.
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1. Introduction and the statement of main results

The present paper is a part of a large project devoted to the classification

of Lie rings lying between two given matrix Lie rings over various commutative

associative rings. In the course of doing preceding stages of the project, it has been

noted, see [2], that some of the laws which govern the structure of matrix Lie rings

over a commutative associative ring C with 1 fail when C has a noninvertible

element 2 = 1 + 1, and a Lie ring in question is formed by 2 × 2 matrices. More

generally, these laws are violated when 2C = {c + c : c ∈ C} is a proper ideal

of C (in this case, C may not possess 1). In particular, the subring structure

of the Lie ring of traceless 2 × 2 matrices over such C is, in itself, but little

susceptible of analysis. This obstacle leads naturally to the necessity to extend

a family of Lie rings under investigation to overcome difficulties thus arising. One

of possible ways for such an extension is the consideration of net Lie rings formed

by matrices introduced one way or another by several authors under different

names in different situations, see for instance [5], [6]. As an application of this

concept, the description of Lie rings contained between sl2(Z) and sl2(K), K an

integral quadratic extension of Z, has been given, see [1]. Thus the class of net

Lie rings being a central tool of this description is of importance in itself. For

no other reason it is interesting to investigate interior properties of this class,

and it is this investigation which is the main purpose of the present paper. Here
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continuing our study from [1], we develop some further aspects of this concept in

the situation where Lie nets consist of principal ideals of the ring C. At first, let

us recall the definitions of the concepts mentioned. To this end, it is appropriate

to list main notation to be used throughout.

Let Q be a ring. If A,B ⊆ Q, then AB is the subset of Q formed by finite

sums
∑

aibi with ai ∈ A, bi ∈ B. Given q ∈ Q, put

Aq = {aq : a ∈ A}, qA = {qa : a ∈ A}.

Also if m is a positive integer, then Am denotes the set of all elements

am = a+ · · ·+ a
︸ ︷︷ ︸

m times

,

where a ∈ A (this definition makes sense because we do not insist that Q has

an identity element). In the case when Q is a ring with an identity element,

Q∗ denotes the multiplicative group of invertible elements of Q.

If S is a commutative multiplicative semigroup, and a, b ∈ S, we write a | b to

express the fact that a divides b, that is, there is c ∈ S such that b = ac.

Given an additive abelian group A and subsets A1, A2, . . . , An of A, n ≥ 2, we

define A1 + A2 + · · · + An to be the set of the elements a1 + a2 + · · · + an with

ai ∈ Ai for each i = 1, 2, . . . , n.

Returning to our initial commutative associative ring C, we say that a triple

A = (A11, A12, A21) of additive subgroups A11, A12, A21 of C is a Lie net (over C)

if

2A11A12 ⊆ A12, 2A11A21 ⊆ A21, A12A21 ⊆ A11.

For this A, the collection sl2(A) of matrices
(

a11 a12

a21 −a11

)

with aij ∈ Aij is a Lie ring

under usual matrix addition and the operation of Lie multiplication [a, b] = ab−ba,

where ab denotes the row by column product of a and b. This Lie ring sl2(A) is

termed a net Lie ring (corresponding to the Lie net A). If the net Lie ring carries

a structure of a module over C, it is called a net Lie algebra over C. Notice in

passing that if l,m, n are fixed elements of C, then the triple (lC,mC, nC) is

a Lie net provided l | mn and, moreover, this condition is not only necessary but

also sufficient for C possessing an identity element.

The aim of the present paper is to establish two properties of net Lie algebras

over a commutative associative ring C with 1. The first property deals with

conditions under which two net Lie algebras over C corresponding to Lie nets

formed by principal ideals of C are isomorphic provided C is a domain that

has a theory of divisors (background related to this concept can be found in [3,

Chapter 3]).
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Theorem 1.1. Suppose that a commutative associative ring C is a domain that

has a theory of divisors, and let l,m, n, l1,m1, n1 be nonzero elements of C such

that A = (lC,mC, nC), A1 = (l1C,m1C, n1C) are Lie nets. Then the net Lie

C-algebras sl2(A) and sl2(A1) are isomorphic if and only if l1 = lε, m1n1 = mnη

for some ε, η ∈ C∗.

Our second result is concerned with the number of matrices that generate the

net Lie C-algebra sl2(lC,mC, nC) provided m,n are not zero divisors in a com-

mutative associative ring C with 1. The result asserts that this number can be

determined by means of solving a quadratic congruence equation. More precisely,

we have:

Theorem 1.2. Let C be an arbitrary commutative associative ring with 1, and

let l,m, n ∈ C be such that m,n are not zero divisors in C and mn = lq for some

q ∈ C. Then the net Lie C-algebra sl2(lC,mC, nC) is generated by two matrices

if and only if the following two conditions are satisfied:

(G1) qC + 4lC = C.

(G2) For some u ∈ C∗, the congruence equation

(1.1) x2 ≡ uq (mod 4lC)

has a solution within C.

Specializing C to the ring of integers Z and recalling the necessary and sufficient

conditions for the quadratic congruence equation x2 ≡ ±q (mod 4l), q, l ∈ Z,

to have a solution, see [4, Proposition 5.1.1], we make use of Theorem 1.2 to

obtain the following rather curious criterion, in terms of the Jacobi symbol (a
b
),

[4, page 56], for the net Lie ring sl2(lZ,mZ, nZ) to be generated by two matrices.

Theorem 1.3. Let l,m, n be positive integers such that l | mn. Let q = mn/l

and 4l = 2αpα1

1 pα2

2 . . . pαk

k , where p1, p2, . . . , pk are distinct odd primes and all

αi are positive integers. The net Lie ring sl2(lZ,mZ, nZ) is generated by two

matrices if and only if q is an odd number relatively prime to l, and one of the

following conditions holds:

(Z1) α = 2, q ≡ 1 (mod 4), ( q
pi
) = 1 for all i = 1, 2, . . . , k.

(Z2) α ≥ 3, q ≡ 1 (mod 8), ( q

pi

) = 1 for all i = 1, 2, . . . , k.

(Z3) α = 2, q ≡ 3 (mod 4), (pi

q
) = 1 for all i = 1, 2, . . . , k.

(Z4) α ≥ 3, q ≡ 7 (mod 8), (pi

q
) = 1 for all i = 1, 2, . . . , k.

In Section 5, we use Theorem 1.3 to provide a source of examples illustrating

Theorem 1.2.
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2. Restatements of the results

In this section, we slightly formalize the Lie algebras under investigation to

arrive at more convenient forms of the formulations of Theorems 1.1 and 1.2 as

well as of their proofs.

Namely, let C be a commutative associative ring, and let M be a left free C-

module with free basis of three elements a0, a+, a−. By this we mean that every

element of M can be uniquely written as c1a0 + c2a+ + c3a− with ci ∈ C. Let l, q

be fixed elements of C. Define products of a0, a+, a− by

(2.1)

a0 a+ a−
a0 0 2la+ −2la−
a+ −2la+ 0 qa0
a− 2la− −qa0 0

and extend this by linearity to the whole of M . This makes M into a C-algebra

which is denoted by l(l, q), the ordered basis {a0, a+, a−} being called the standard

basis of l(l, q). Clearly x2 = 0 for all x ∈ l(l, q). Moreover,

(a0a+)a− + (a+a−)a0 + (a−a0)a+ = 0.

This shows that l(l, q) is a Lie algebra over C, and henceforth the operation of

multiplication on any l(l, q) is designated by Lie brackets [x, y]. Furthermore, let

m,n be elements of C such that mn = lq (these always do exist for one can put

m = l, n = q), and suppose that m,n are not zero divisors in C. Then the Lie

C-algebra s = sl2(lC,mC, nC) exists, the elements l, q are also not zero divisors

and the matrices

(2.2)

(
l 0

0 −l

)

,

(
0 m

0 0

)

,

(
0 0

n 0

)

form a free basis of s as a module over C. By inspection, the table for Lie

multiplication of (2.2) is exactly the same as (2.1). In other words, the Lie C-

algebras sl2(lC,mC, nC) and l(l, q) are isomorphic, and in order to demonstrate

Theorems 1.1 and 1.2 it is enough to proof the following two assertions.

Proposition 2.1. Let C be a domain that has a theory of divisors, and let

l, q, l1, q1 be nonzero elements of C. Then the Lie C-algebras l(l, q), l(l1, q1) are

isomorphic if and only if l1 = lε, q1 = qη for some ε, η ∈ C∗.

Proposition 2.2. Let C be a commutative associative ring with 1, and l, q ∈ C

are not zero divisors. Then the Lie C-algebra l(l, q) is generated by two elements

if and only if conditions (G1), (G2) are satisfied.
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3. Proof of Proposition 2.1

That l(lε, qη) ∼= l(l, q) for all ε, η ∈ C∗ is quite evident.

Conversely, let us suppose that l(l, q) ∼= l(l1, q1), and let ϕ : l(l1, q1) → l(l, q)

be an isomorphism. Choosing standard bases {a0, a+, a−}, {b0, b+, b−} for l(l, q),

l(l1, q1), respectively, we put

ϕ(b0) = a1a0 + a2a+ + a3a−,

ϕ(b+) = b1a0 + b2a+ + b3a−,

ϕ(b−) = c1a0 + c2a+ + c3a−, ai, bi, ci ∈ C, 1 ≤ i ≤ 3.

(3.1)

Since ϕ is a C-linear map preserving multiplication,

[ϕ(b0), ϕ(b±)] = ±2l1ϕ(b±), [ϕ(b+), ϕ(b−)] = q1ϕ(b0),

and in view of (3.1), we get

q(a2b3 − a3b2) = 2l1b1,(3.2)

l(a1b2 − a2b1) = l1b2,(3.3)

l(a3b1 − a1b3) = l1b3,(3.4)

q(a3c2 − a2c3) = 2l1c1,(3.5)

l(a2c1 − a1c2) = l1c2,(3.6)

l(a1c3 − a3c1) = l1c3,(3.7)

q(b2c3 − b3c2) = q1a1,(3.8)

2l(b1c2 − b2c1) = q1a2,(3.9)

2l(b3c1 − b1c3) = q1a3.(3.10)

The requirement C to have a theory of divisors means that we are given a com-

mutative semigroup D, with identity e, and with unique factorization such that

there is a homomorphism α → (α) of the semigroup C \ {0} into D satisfying,

among others, the following conditions:

(1) α ∈ C \ {0} is divisible by β ∈ C \ {0} (in C) if and only if (α) is divisible

by (β) in D.

(2) If α, β ∈ C are divisible by a ∈ D, then α± β are also divisible by a.

(See [3, page 178].)

Applying the homomorphism α → (α) to (3.3) shows that

(l)((a1b2 − a2b1)) = (l1)(b2).

Since D is a unique factorization semigroup, (l) and (l1) have a greatest common

divisor which we denote by d. Thus (l) = ad, (l1) = a1d for some a, a1 ∈ D, and
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hence ad((a1b2−a2b1)) = a1d(b2), or after cancelling d, a((a1b2−a2b1)) = a1(b2).

It follows that a divides the product a1(b2), and since a and a1 are relatively prime,

a must divide (b2), or in other words, a divides b2. Similarly, (3.4), (3.6), (3.7)

imply that a divides b3, c2, c3. Therefore, using row 1 to expand the determinant

(3.11) D =

∣
∣
∣
∣
∣
∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣
∣
∣
∣
∣
∣

,

and employing condition (2) imposing on the theory of divisor, we conclude that

a divides D. On the other hand, D is the determinant of the matrix of the

isomorphism ϕ relative to the ordered free bases

{b0, b+, b−}, {a0, a+, a−},

and so D ∈ C∗. This implies that (D) is the unit element e ∈ D and hence (l) = d.

Since l1 = a1d, we see that (l) divides (l1) which by (1) amounts to saying l | l1.
A similar reasoning being applied to the inverse isomorphism ϕ−1 : l(l, q) →

l(l1, q1) yields l1 | l, and hence l1 = lε for some ε ∈ C∗. So l(l1, q1) = l(lε, q1), and

since l(lε, q1) ∼= l(l, q1), one may assume l = l1. Then (3.3), (3.4), (3.6), (3.7) give

(3.12)

b2 = a1b2 − a2b1,

b3 = a3b1 − a1b3,

c2 = a2c1 − a1c2,

c3 = a1c3 − a3c1,

and so

b2c3 − b3c2 = a1D,

where D is determined in (3.11). Thus (3.8) becomes

(3.13) qa1D = q1a1.

If a1 6= 0, (3.13) implies that q | q1. Suppose that a1 = 0. Then equations (3.12)

become

b2 = −a2b1, b3 = a3b1, c2 = a2c1, c3 = −a3c1,

and so (3.2) shows that qa2a3b1 = lb1, whereas by (3.5), qa2a3c1 = lc1. According

to the bijectivity of ϕ, at least one of b1, c1 must be nonzero (because a1 = 0),

and hence l = qa2a3. Substituting this result in (3.9) and (3.10), we arrive at

4qa22a3b1c1 = q1a2,(3.14)

4qa2a
2
3b1c1 = q1a3,(3.15)
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respectively. Again, since a1 = 0, either a2 6= 0 or a3 6= 0 and therefore, ei-

ther (3.14) or (3.15) shows that q | q1 and thus this relation holds in any case.

The consideration of ϕ−1 gives q1 | q, whence q1 = qη for some η ∈ C∗.

4. Proof of Proposition 2.2

We begin with several preliminary observations.

LetR be an associative ring with involution J . Let C be the set of J-symmetric

elements of R, C = {x ∈ R : xJ = x}, and L the set of J-skew elements of R,

L = {x ∈ R : xJ = −x}. Suppose that C is contained in the center of R, and

therefore, C is a commutative subring ofR. The Lie subring L ofR can and will be

treated as a Lie algebra over C (relative to the Lie multiplication [a, b] = ab− ba,

a, b ∈ L).

Lemma 4.1. The subalgera N of the Lie C-algebra L generated by two elements

a, b ∈ L equals to

T = Ca+ Cb+ C · [a, b] + Za+ Zb+ Z · [a, b].

Proof: The relations a, b, [a, b] ∈ N imply T ⊆ N . On the other hand, for

any l ∈ L, l2 = −llJ lies in the center of R and therefore, [a, [a, b]] = 2a2b −
2aba. Further, aba = (ab + (ab)J )a + (aaJ)b which shows that [a, [a, b]] ∈ T .

Interchanging a and b yields [b, [a, b]] ∈ T , and thus T is a subalgebra of the Lie

C-algebra L. Since N is the intersection of all subalgebras of L that contain a, b,

we obtain N ⊆ T , whence N = T . �

Now we specialize R and J . Namely, let R be the associative ring M2(C) of

2×2 matrices over a commutative associative ring C, and J be the symplectic

involution on M2(C):

(
x y

z t

)J

=

(
t −y

−z x

)

, x, y, z, t ∈ C.

Then L is interpreted as the Lie C-algebra sl2(C) formed by all matrices ofM2(C)

with trace 0, and Lemma 4.1 can be restated as follows.

Lemma 4.2. The subalgebra N of the C-algebra sl2(C) generated by two ma-

trices a, b ∈ sl2(C) coincides with

Ca+ Cb + C · [a, b] + Za+ Zb+ Z · [a, b].

If C contains 1, then N = Ca+ Cb+ C · [a, b].

Now we are ready to prove Proposition 2.2.
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Proof of Proposition 2.2: Choose a standard basis a0, a+, a− of l(l, q). Sup-

pose that l(l, q) is generated by two elements

a = a1a0 + a2a+ + a3a−, b = b1a0 + b2a+ + b3a−.

The coefficient of a− in any element of the subalgebra generated by a, b belongs

to the ideal I = Ca3 + Cb3 of the ring C. This shows that I = C, and so

z1a3 + z2b3 = 1 for some z1, z2 ∈ C. Therefore, one may replace the pair a, b by

z1a + z2b,−b3a + a3b and assume from the very beginning that a3 = 1, b3 = 0.

Viewing a0, a+, a− as the matrices (2.2) of M2(C) (it is this place in which we

use the assumption that l, q are not zero divisors), we use Lemma 4.2 to conclude

that the elements

(4.1)

a = a1a0 + a2a+ + a−,

b = b1a0 + b2a+,

[a, b] = −qb2a0 + 2l(a1b2 − a2b1)a+ + 2lb1a−

generate C-module l(l, q) and hence form a basis of it. It follows that the determi-

nant of the transition matrix from the ordered basis {a0, a+, a−} to the ordered

system (4.1) lies in C∗, or explicitly,

(4.2) 4lb1(a1b2 − a2b1) + qb22 = u,

where u ∈ C∗. This shows at once that condition (G1) holds. Moreover, according

to (4.2), qb22 ≡ u (mod 4lC) which implies (qb2)
2 ≡ uq (mod 4lC).

Now let us assume that (G1) and (G2) are valid. So the congruence equa-

tion (1.1) has a solution for some u ∈ C∗. Call this solution x0 and note that

condition (G1) implies that the image of q under the canonical epimorphism

C → C/(4lC) is an invertible element of the quotient ring C/(4lC). Hence

q(q−1x0)
2 ≡ u (mod 4lC) and denoting q−1x0 by b2, we get qb22 + 4lb1 = u

for some b1 ∈ C. This shows that b1C + b2C = C, and therefore one can find

a1, a2 ∈ C such that a1b2 − a2b1 = 1. This yields

u = qb22 + 4lb1 · 1 =

∣
∣
∣
∣
∣
∣

a1 b1 −qb2
a2 b2 2l

1 0 2lb1

∣
∣
∣
∣
∣
∣

,

which, in turn, means that the elements

g = a1a0 + a2a+ + a−, h = b1a0 + b2a+, f = −qb2a0 + 2la+ + 2lb1a−

form a basis of the C-module l(l, q). But [g, h] = f , and so g and h generate l(l, q)

as a Lie C-algebra. �
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5. Examples

This section is devoted to several examples illustrating Proposition 2.2 and

Theorem 1.2.

Example 5.1. First of all, it is worthwhile to note that if C is an associative

commutative ring with 1 and this 1 is taken as q, then both conditions (G1), (G2)

of Theorem 1.2 are obviously true. This completely agrees with the evident fact

that the Lie C-algebra sl2(mnC,mC, nC) is generated by the matrices

(
0 m

0 0

)

,

(
0 0

n 0

)

.

Example 5.2. This series of examples addresses the ring C = Z, where one

can refer to Lie rings rather than Lie C-algebras. Here we refer to conditions

(Z1)–(Z4) from Theorem 1.3.

Certainly the elementary theory of congruence equations implies that all of

the possibilities (Z1)–(Z4) can be realized, thus giving Lie rings l(l, q), l, q ∈ Z

generated by two elements. For concreteness, each of the Lie rings

g1 = l(32, 5 ·17), g2 = l(22 ·5, 32), g3 = l(29 ·37, 7), g4 = l(2 ·29 ·37, 7),

is generated by two elements because gi satisfies (Zi). For instance, using the

process described in the second part of the Proposition 2.2 proof, one can find

that g1 is generated by 366a0 − 5a+ + a−, −2269a0 + 31a+, where {a0, a+, a−}
means a standard basis for g1.

On the other hand, let us take l = 2 · 29 · 31 · 37, q = 7. Here
(
31

7

)
= −1, and

so condition (Z4) does not hold. Further, conditions (Z1), (Z3) are not satisfied

because α = 3, and (Z2) is not valid for q 6≡ 1 (mod 8). Thus though l, q are

relatively prime, the corresponding Lie ring l(l, q) cannot be generated by two

elements.

Now g5 = l(6, 2), g6 = l(5 · 7, 32 · 5) are not generated by two elements since

for g5, q = 2, is even, while in the case of g6, l = 5 · 7 and q = 32 · 5 are not

relatively prime.

Translating the aforementioned examples into the language of matrices, we

obtain that the Lie rings

sl2(9Z, 15Z, 51Z), sl2(20Z, 12Z, 15Z), sl2(29 · 37Z, 7 · 29Z, 37Z),
sl2(2 · 29 · 37Z, 7 · 29Z, 2 · 37Z)
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are generated by two matrices, whereas

sl2(2 · 29 · 31 · 37Z, 7 · 29Z, 2 · 31 · 37Z),
sl2(6Z, 3Z, 4Z), sl2(5 · 7Z, 3 · 52Z, 3 · 7Z)

are not.

Example 5.3. Letting C be the ring Q[λ] of polynomials in the indeterminate

λ with coefficients from the field Q of rational numbers, we take l = λ2 − 2,

q = λ. Since 2 ∈ C∗, condition (G1) is reduced to qC+ lC = C which is evidently

true, whereas (1.1) becomes x2 ≡ uλ (mod (λ2 − 2)C), where u is a rational

number. However, this congruence equation has no solution within C because for

any rational u, u
√
2 is not a square in the field Q(

√
2). Thus the Lie C-algebra

l(λ2 − 2, λ) is not generated by two elements.
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