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Stranger things about forcing without AC

Martin Goldstern, Lukas D. Klausner

Abstract. Typically, set theorists reason about forcing constructions in the con-
text of Zermelo–Fraenkel set theory (ZFC). We show that without the axiom
of choice (AC), several simple properties of forcing posets fail to hold, one of
which answers Miller’s question from the work: Arnold W. Miller, Long Borel

hierarchies, MLQ Math. Log. Q. 54 (2008), no. 3, 307–322.
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1. Fin(X, 2) and cardinal collapse

Arnold W. Miller in [3, page 314] posed the question whether forcing with

Fin(X, 2) in Zermelo–Fraenkel set theory without the axiom of choice (ZF) can

make two sets A and B of different cardinality in the ground model have the

same cardinality in the generic extension. We find that “collapses” are possible

in the sense that non-equipotent sets may become equipotent after forcing with

Fin(X, 2), but not if both sets are well-ordered.

Definition 1.1. We write A ≈ B to abbreviate “there is a bijection from A

onto B”.

Example 1.2. Let (An)n<ω be a countable sequence of pairs of socks, i.e. a se-

quence of pairwise disjoint two-element sets which does not have a choice function.

Let A :=
⋃

n<ω An and P := Fin(A× ω, 2). Then we have that V � A 6≈ ω (since

there is no choice function), but V P � A ≈ ω.

Similarly, with X := A × ω we get that Fin(X, 2) forces X ≈ ω, while X 6≈ ω

in the ground model.

Proof: Let Dn := {p ∈ P : ∃m < ω p[An × {m}] = {0, 1}}. For any n, Dn is

dense in P: Given p ∈ P, let m be minimal with p↾An×{m} = ∅. Letting An =

{a, b} (choosing once), define q := p ∪ {((a,m), 0), ((b,m), 1)}. Then p ≥ q ∈ Dn.
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The generic g then satisfies that for any n < ω, there is an m < ω such that

g[An × {m}] = 2. We now choose for each n < ω the minimal mn < ω with that

property, and thus have a well-order on A in the generic extension (by letting

An = {a, b} be ordered by a < b ⇔ g(a,mn) < g(b,mn)). �

Lemma 1.3. Let A be an antichain in Fin(X, 2) consisting only of conditions

with domains of size k. Then A is finite, and |A| is even bounded by 2k.

Proof: It suffices to show that every finite subset A′ ⊆ A has at most 2k ele-

ments.

So let A′ ⊆ A be finite with n elements. Let D :=
⋃

a∈A′ dom(a) and d := |D|.

Consider the set 2D; for each a ∈ A′, there are exactly 2d−k many possible

extensions of a in 2D, and since A′ is an antichain, they must all be pairwise

different. Hence there are n · 2d−k many different such elements of 2D, thus

n · 2d−k ≤ 2d, which concludes the proof.1 �

Theorem 1.4. Let κ < λ be well-ordered cardinals. Then there is no X such

that Fin(X, 2) forces κ ≈ λ.

Proof: Let ḟ be a Fin(X, 2)-name and let p ∈ Fin(X, 2) be such that p 

“ ḟ : κ → λ, ḟ is onto”. For each α ∈ κ and k < ω, define

Aα,k := {β ∈ λ : ∃ q ≤ p |dom(q)| = k, q  ḟ(α) = β}.

We claim that all such Aα,k are finite, even bounded by 2k: Assume otherwise,

i.e. let β1, . . . , β2k+1 be different elements of Aα,k. Then there are witnesses

q1, . . . , q2k+1 to that, which necessarily are incompatible and thus form a (2k+1)-

sized antichain of conditions with domains of size k, giving an obvious contradic-

tion to Lemma 1.3.

From here on, we work in the ground model. By the above, we have that

λ =
⋃

α∈κ

⋃

k<ω

Aα,k.

Using the bijection ϕ : κ× ω → κ : (α, k) 7→ ω · α+ k to arrange the sets linearly,

we have that

λ =
⋃

γ∈κ

Bγ

with finite Bγ . As the Bγ are subsets of λ (thus well-ordered) as well as finite, we

can embed
⋃

γ∈κBγ into κ × ω (by embedding Bγ into {γ} × ω) and hence into

κ (again using ϕ), arriving at a contradiction. �

1We wish to thank Martin Ziegler for pointing out this simple proof for this (optimal) bound

for the size of A.
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We remark that a similar argument shows that the statement “cof(α) = β” is

absolute for any pair of ordinals (α, β).

Remark 1.5. Can the forcing Fin(X) add a bijection between two sets A, B for

which there is no such bijection in the ground model? In the following (rough)

analysis we will write WO(X) to abbreviate “X can be well-ordered”.

◦ Assume ¬WO(X).

– Example 1.2 shows that the answer can be “yes” if one of ¬WO(A),

¬WO(B) holds. A minor variation shows that this may also be

possible if both ¬WO(A) and ¬WO(B) hold.

– If both WO(A) and WO(B) hold, then the answer is “no”, as shown

in Theorem 1.4.

◦ Now assume WO(X).

– If both WO(A) and WO(B) hold, then the answer is “no” once again.

– A. Karagila in [1] pointed out that the answer is also “no” if WO(A)

and ¬WO(B) hold.

– While we suspect that the answer is also “no” if both ¬WO(A) and

¬WO(B) hold, we cannot prove this yet.

2. σ-closedness

Definition 2.1. A forcing poset P is σ-closed if for all descending sequences of

conditions 〈pn : n < ω〉 in P, there is a q ∈ P with q ≤ pi for all i < ω.

It is well-known that in ZFC, σ-closed forcing posets have a number of “nice”

properties; the following examples (which are probably part of set-theoretic folk-

lore) show that this is not true in ZF alone.

Proposition 2.2. Let X be a Dedekind-finite infinite set (i. e. there is no ω-

sequence within X , or equivalently, there is no injective function from X onto

a proper subset of X). Then the forcing poset P := Fininj(ω,X) of partial finite

injective functions from ω to X is σ-closed.2

Proof: It is well-known that P is Dedekind-finite, hence trivially σ-closed. For

completeness’ sake, we give an explicit proof:

Let 〈pn : n < ω〉 be a descending sequence of conditions in P. We claim that

the sequence must be eventually constant; if that is the case and 〈pn : n < ω〉 is

eventually constant beginning with pk = pk+1 = pk+2 = . . ., let q := pk.

2Alternatively, we could consider the poset P := FinSeqinj(X) of finite sequences of different

elements in X: If X is σ-closed, then so is P.
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To prove the claim, assume that the sequence is not eventually constant, i. e.

there is a strictly monotone sequence of integers 〈l(n) : n < ω〉 such that pl(0) >

pl(1) > pl(2) > . . . For all n < ω, let s(n) be defined as the first new element in

the domain of pl(n), i.e.

s(n) := min

(

dom(pl(n))r
⋃

k<n

dom(pl(k))

)

.

But then xn := pl(n)(s(n)) is an ω-sequence within X , contradicting the assump-

tion. �

Using this, we can define forcing posets which are σ-closed but add new reals

and/or collapse cardinals. Let Finπ1-inj(A,B×C) denote the poset of partial finite

functions from A to B×C which are π1-injective (where π1 is the projection onto

the first coordinate), i.e. functions f for which π1 ◦ f (from A to B) is injective.

Example 2.3. Let X be a Dedekind-finite infinite set (i.e. there is no ω-sequence

within X , or equivalently, there is no injective function from X onto a true subset

of X). Then the forcing posets P1 := Finπ1-inj(ω,X × 2) and P2 := Finπ1-inj(ω,

X × ω1) are σ-closed, but P1 adds a new real and P2 collapses ωV
1 to ωV .3

Proof: First, for P1, assume we are given a descending sequence of conditions

〈(pXn , p2n) : n < ω〉 (writing (pX , p2) for (π1 ◦ p, π2 ◦ p)). By Proposition 2.2, the

sequence 〈pXn : n < ω〉 must be eventually constant, hence so must their domains,

and hence so must the sequence 〈p2n : n < ω〉. Therefore, P1 is σ-closed. However,

due to the second components of the conditions, forcing with P1 adds a Cohen

real.

For P2 the same argument shows σ-closedness. Here, the second components

of the conditions ensure that forcing with P2 adds a function from ωV onto ωV
1

and hence collapses ωV
1 . �

Sufficiently disenchanted by this result, we would like to introduce a property

of forcing posets which

◦ is equivalent to σ-closedness under DC and

◦ implies that the forcing poset adds no new reals even in ZF.

Definition 2.4. A family 〈Pn : n < ω〉 of disjoint subsets of a forcing poset P is

a pyramid (in P) if for all n < ω and all p ∈ Pn, there is a k > n and a q ∈ Pk

such that q ≤ p.

A forcing poset P is capstone-closed if for each pyramid 〈Pn : n < ω〉 in P, there

is a capstone q ∈ P such that for all k < ω, there is a p ∈
⋃

n≥k Pk with q ≤ p.

3Of course, P2 then also adds a new real (namely the well-order of ωV

1 ).
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Lemma 2.5. Assume DC. If a forcing poset P is σ-closed, then it is also capstone-

closed.

Proof: Let 〈Pn : n < ω〉 be a pyramid in P. Use DC and the defining property

of a pyramid to find a strictly increasing sequence 〈kn : n < ω〉 and a descending

sequence of conditions 〈pn : n < ω〉 in P such that pn ∈ Pkn
for all n < ω. By the

σ-closedness of P, there must be some q ∈ P such that q ≤ pn for all n < ω. This

q then is the capstone of the pyramid 〈Pn : n < ω〉 as witnessed by the pn. �

The converse holds even in ZF:

Lemma 2.6. If a forcing poset P is capstone-closed, then it is also σ-closed.

Proof: Let 〈pn : n < ω〉 be a descending sequence of conditions in P. Without

loss of generality, assume it is strictly descending. The capstone q of the pyramid

〈{pn} : n < ω〉 fulfils q ≤ pn for all n < ω. �

Finally, we show that capstone-closedness ensures that forcing posets behave

nicely even in ZF.

Theorem 2.7. If a forcing poset P is capstone-closed, it adds neither new reals

nor new sequences of ordinals.

Proof: Assume towards a contradiction that there is a condition p∗ ∈ P and

a P-name ẋ such that p∗  “ ẋ : ω → Ord is new”.

Let Pn be the set of all conditions below p∗ which decide ẋ↾n, but not ẋ↾n+1.

Then 〈Pn : n < ω〉 is a disjoint covering of the conditions below p∗: It is clear

that no condition can be in more than one Pn, and if p were in none of the Pn, it

would decide all of ẋ – but then it would force that ẋ is not a new real, which is

a contradiction. Moreover, 〈Pn : n < ω〉 is a pyramid: Given n < ω and p ∈ Pn,

there is some q ≤ p deciding ẋ↾n+1; since q cannot decide all of ẋ, there must be

some k > n such that q ∈ Pk.

Now let q be the capstone of the pyramid 〈Pn : n < ω〉. For each n < ω,

there is exactly one sn ∈ Ordn and a condition p such that q ≤ p and such that

p  sn ⊆ ẋ. These sn are necessarily pairwise compatible, hence s∗ :=
⋃

n<ω sn

exists and q  ẋ = s∗ – but s∗ is in the ground model, which is a contradiction. �
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3. Finite chain condition

Definition 3.1. A forcing poset P has the θ-chain condition (is θ-cc) if every

family of incompatible elements of P has cardinality less than θ.

It is well known that (in ZFC) every forcing poset that is ℵ0-cc must also be

n-cc for some n < ω, see [2, Exercises for Chapter (VII) (F1)]. We show that this

is not true in ZF.

Example 3.2. Let X be infinite without a function from X onto ω (for example,

let X be an amorphous set); this is consistent with ZF. Let P := Fin(X, 2). For

any n, there is an n-element subset E of X , and the set of functions from E into 2

is an antichain of size 2n in P; however, there is no infinite antichain.

Proof: Let us assume towards a contradiction that C is an infinite antichain,

and let Cn be the set of elements of C of size at most n. Let Xn :=
⋃

c∈Cn
dom(c).

By Lemma 1.3, each Cn is finite, and so is each Xn.

Now define f : P → ω by defining f↾⋃
n<ω

Xn
as f(x) := min{n : x ∈ Xn} and

letting f↾Pr
⋃

n<ω
Xn

≡ 0. Then f is a map from P onto an infinite subset of ω, so

there is some g : ω → ω such that g ◦ f is onto, which is a contradiction. �

Acknowledgement. We are grateful to the anonymous referee for suggesting

improvements, and in particular for asking a question that led to Remark 1.5.
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