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A short note on f-biharmonic hypersurfaces

Selcen Y. Perktaş, B
.
ilal E. Acet, Adara M. Blaga

Abstract. In the present paper we give some properties of f -biharmonic hypersur-
faces in real space forms. By using the f -biharmonic equation for a hypersurface
of a Riemannian manifold, we characterize the f -biharmonicity of constant mean
curvature and totally umbilical hypersurfaces in a Riemannian manifold and, in
particular, in a real space form. As an example, we consider f -biharmonic ver-
tical cylinders in S2

× R.

Keywords: f -biharmonic maps; f -biharmonic hypersurface

Classification: 58E20, 53C25, 53C43

1. Introduction

In the latest years, the interest in biharmonic maps theory and its applications

to other areas has considerably increased. For some recent geometric studies of

general biharmonic maps and biharmonic submanifolds, see [13], [1], [12], [15],

[16], [8], [17], [18] and the references therein. Harmonic maps are generalizations

of geodesics and minimal immersions, defined as critical points of the energy

functional.

J. Eells and J.H. Sampson in [5] introduced the notion of biharmonic map as

a critical point of the bienergy functional. In [7], G.Y. Jiang derived the Euler–

Lagrange equations whose solutions are the biharmonic maps, from where it is

clear that any harmonic map is biharmonic.

On the other hand, B.Y. Chen in [2] defined biharmonic submanifolds of Eu-

clidean spaces by ∆H = 0, more precisely, any submanifold in an Euclidean

space whose mean curvature H is harmonic is called a biharmonic submanifold,

where ∆ is the Laplace operator of the submanifold. If one uses the definition

of biharmonic maps to Riemannian immersions into Euclidean spaces, it is easy

to see that Chen’s definition for biharmonic submanifold coincides with the def-

inition given by using the bienergy functional. There are many results on the

nonexistence of biharmonic submanifolds in manifolds with nonpositive sectional
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curvature. These nonexistence consequences, see [1], [6], [11], led the studies to

spheres and other nonnegatively curved spaces.

Recall that f -harmonic maps between Riemannian manifolds were firstly in-

troduced and studied by A. Lichnerowicz in 1970, see also [4], as critical points

of the f -energy functional. If f is a constant function, then f -harmonic maps are

harmonic. Thus, proper f -harmonic maps (i.e. for f a nonconstant function) are

more interesting to study. f -harmonic maps have also some physical meanings

by considering them as solutions of the continuous spin systems and inhomoge-

nous Heisenberg spin systems, see [9], [3]. Moreover, there is a strong relationship

between f -harmonic maps and the gradient Ricci solitons, see [19].

The notion of f -biharmonic map has been introduced by W.-J. Lu in [10] as

a critical point of the f -bienergy functional. If f = 1, then f -biharmonic maps

are biharmonic.

2. f-biharmonic hypersurfaces

Let Ψ: (M, g) → (N, h) be a smooth map between Riemannian manifolds and

f a positive smooth function on M .

The map Ψ is called f -biharmonic map if it is a critical point of the f -bienergy

functional E2,f defined by

E2,f (Ψ) :=
1

2

∫

Ω

f |τ(Ψ)|2ϑg,

where Ω is a compact domain ofM and τ(Ψ) := trace∇dΨ is the tension field of Ψ.

The Euler–Lagrange equation gives the f -biharmonic map equation, see [10],

τ2,f (Ψ) ≡ fτ2(Ψ) + (△f)τ(Ψ) + 2∇Ψ
gradfτ(Ψ) = 0,

where τ2(Ψ) ≡ −△τ(Ψ)− traceRN(dΨ, τ(Ψ))dΨ is the bitension field of Ψ, with

∆ = −trace(∇Ψ∇Ψ − ∇Ψ
∇
) the rough Laplace operator on sections of Ψ−1TN

and RN the curvature operator of N .

Definition 2.1 ([14]). A submanifold in a Riemannian manifold is called an f -

biharmonic submanifold if the isometric immersion defining the submanifold is an

f -biharmonic map.

The minimal submanifolds are well known basic examples of biharmonic sub-

manifolds and all the biharmonic submanifolds are f -biharmonic with the func-

tion f = 1. f -biharmonic submanifolds which are neither minimal nor biharmonic

submanifolds will be called proper f -biharmonic submanifolds.

The f -biharmonic equation for a hypersurface of a Riemannian manifold is

given in the following.
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Theorem 2.1 ([14]). Let Ψ: Mm → Nm+1 be an isometric immersion of codi-

mension one with mean curvature vector η = Hξ. Then Ψ is an f -biharmonic

map if and only if

(2.1)

{

△H −
(

|A|2 − RicN (ξ, ξ)− △f
f

)

H + 2(grad ln f)(H) = 0,

2A(gradH) + m
2 gradH

2 − 2H (RicN (ξ))T + 2HA(grad ln f) = 0,

where RicN denotes the Ricci operator of the ambient space, A is the shape

operator of the hypersurface with respect to the unit normal vector ξ, and ∆ and

grad are the Laplace and the gradient operator of the hypersurface, respectively.

For hypersurfaces with constant mean curvature, by using (2.1) we have

Proposition 2.1. Let M be a constant mean curvature hypersurface in a Rie-

mannian manifold N. Then M is an f -biharmonic hypersurface if and only if it

is minimal or

(2.2)

{

RicN (ξ, ξ) = |A|2 − △f
f
,

(RicN (ξ))T = A(grad ln f).

Corollary 2.1. If f is a harmonic function, then a constant mean curvature

hypersurface in a Riemannian manifold N with RicN (ξ, ξ) ≤ 0 is f -biharmonic if

and only if it is minimal.

It is well known that a Riemannian manifold (Nm+1, h) is called an Einstein

manifold if its Ricci tensor RicN is of the form RicN = ah, where a is constant.

For an Einstein manifold (Nm+1, h), we have a = r/(m+ 1), where r is the scalar

curvature of (Nm+1, h). Then we get

(RicN (ξ))T = 0 and RicN (ξ, ξ) =
r

m+ 1
.

By using the last equations in (2.1) we get

Proposition 2.2. Let M be a hypersurface in an Einstein manifold (Nm+1, h).

Then M is an f -biharmonic hypersurface if and only if its mean curvature H

satisfies

(2.3)

{

△H −
(

|A|2 − r
m+1 − △f

f

)

H + 2(grad ln f)(H) = 0,

2A(gradH) + m
2 gradH

2 + 2HA(grad ln f) = 0,

where r is the scalar curvature of the ambient space.

If Nm+1(c) is a real space form (i.e. a Riemannian manifold with constant

sectional curvature c), then it is an Einstein manifold with scalar curvature r =

m(m+1)c. From the previous Proposition, we recover the following result of [14].
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Theorem 2.2 ([14]). A hypersurface in a real space form Nm+1(c) is f -bihar-

monic if and only if its mean curvature H satisfies

(2.4)

{

△H −
(

|A|2 −mc− △f

f

)

H + 2(grad ln f)(H) = 0,

2A(gradH) + m
2 gradH

2 + 2HA(grad ln f) = 0.

For hypersurfaces with constant mean curvature, by using (2.4) we have

Proposition 2.3. Let M be a constant mean curvature hypersurface in a real

space form Nm+1(c). Then M is an f -biharmonic hypersurface if and only if it

is minimal or

(2.5)

{

△f = (|A|2 −mc)f,

A(grad ln f) = 0.

As a consequence we get

Corollary 2.2. Let M be a nonzero constant mean curvature f -biharmonic hy-

persurface in the (m + 1)-dimensional unit Euclidean sphere. If |A|2 = m, then

f is a harmonic function.

Newt we shall characterize the f -biharmonic totally umbilical hypersurfaces in

an Einstein manifold.

Theorem 2.3. Let M be a totally umbilical hypersurface in an Einstein manifold

(Nm+1, h). Then M is an f -biharmonic submanifold if and only if it is totally

geodesic or

(2.6)

{

△H −
(

|A|2 − r
m+1 − △f

f

)

H + 2(grad ln f)(H) = 0,

(m+ 2)gradH = −2A(grad ln f).

Proof: Let {e1, . . . , em, ξ} be an orthonormal frame of N adapted to the hyper-

surface M such that Aei = λiei, where A is the Weingarten map of the hyper-

surface and λi is the principal curvature in the direction ei. Since M is totally

umbilical, all the principal curvatures at any point p ∈ M are equal to a λ(p). It

follows that

H =
1

m

m
∑

i=1

〈Aei, ei〉 = λ,(2.7)

A(gradH) = A

( m
∑

i=1

ei(λ)ei

)

=
1

2
gradλ2,(2.8)

|A|2 = mλ2.(2.9)
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Using (2.7)–(2.9) in (2.3) we get

(2.10)

{

△λ−mλ3 +
(

r
m+1 + △f

f

)

λ+ 2(grad ln f)(λ) = 0,

m+2
2 gradλ2 + 2λA(grad ln f) = 0,

which is equivalent to

(2.11)

{

△λ−mλ3 +
(

r
m+1 + △f

f

)

λ+ 2(grad ln f)(λ) = 0,

λ[(m+ 2)gradλ+ 2A(grad ln f)] = 0.

Solving the equation we have either λ = 0 and hence H = 0, or (2.6) holds. �

3. Example. f-biharmonic cylinders in S2 × R

Assume that ϕ : (M3, g) → (N2, h) is a Riemannian submersion with totally

geodesic fibres from a complete manifold and α : I → (N2, h) is an immersed

regular curve parametrized by arclength. In this case, the disjoint union S =
⊔

t∈I ϕ
−1(α(t)) of all horizontal lifts of the curve α, is a surface in M . Let β : I →

(M3, g) be a horizontal lift of α and let {X, ξ, V } be an orthonormal frame of M

adapted to the surface with ξ being the unit normal vector of surface and V

the unit vector field tangent to the fibres of the submersion ϕ. Note that the

restriction of this frame to the curve β is the Frenet frame along β and the Frenet

formulas along β are

∇X X = κξ,

∇X ξ = −κX + τV,(3.1)

∇X V = −τξ,

where ∇ denotes the Levi–Civita connection of (M3, g).

Denoting by b the second fundamental form, b(X,Y ) := 〈A(X), Y 〉, by using

(3.1) we have the following equations, see also [12], which will be used in the

f -biharmonic equation:

A(X) = −〈∇X ξ,X〉X − 〈∇X ξ, V 〉V = κX − τV,

A(V ) = −〈∇V ξ,X〉X − 〈∇V ξ, V 〉V = −τX,

b(X,X) = 〈A(X), X〉 = κ,

b(X,V ) = 〈A(X), V 〉 = −τ = 〈A(V ), X〉 = b(V,X),

b(V, V ) = 〈A(V ), V 〉 = 0,

H =
1

2
(b(X,X) + b(V, V )) =

κ

2
,
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A(gradH) = A
(

X
(κ

2

)

X + V
(κ

2

)

V
)

=
κ′

2
(κX − τV ),

∆H = X(X(H))− (∇X X)(H) + V (V (H))− (∇V V )(H) =
κ′′

2
,

|A|2 = (b(X,X))2 + (b(X,V ))2 + (b(V,X))2 + (b(V, V ))2 = κ2 + 2τ2.

Writing all these terms in the f -biharmonic equation for hypersurfaces given

by (2.1), we obtain that S is an f -biharmonic surface in (M3, g) if and only if

(3.2)











κ′′

2 − κ
2 (κ

2 + 2τ2) + κ
2Ric

M (ξ, ξ) + κ
2
△f

f
+ κ′X(ln f) = 0,

κ
[

7
4κ

′ + κX(ln f)− τV (ln f)− RicM (ξ,X)
]

X

+[−κ′τ − κRicM (ξ, V )− κτX(ln f)]V = 0,

or equivalently

(3.3)











κ′′ − κ(κ2 + 2τ2) + κRicM (ξ, ξ) + κ△f

f
+ 2κ′X(ln f) = 0,

κ
[

7
4κ

′ + κX(ln f)− τV (ln f)− RicM (ξ,X)
]

= 0,

−κ′τ − κRicM (ξ, V )− κτX(ln f) = 0.

Now we consider the product space S2 × R, where S2 is the unit sphere with

the standard metric. Let π : S2 × R → S2 be the Riemannian submersion with

totally geodesic fibers and integrable horizontal distribution. Then we have

Proposition 3.1. The vertical cylinder S =
⊔

t∈I ϕ
−1(α(t)) is an f -biharmonic

surface in S2 × R if and only if α : I → (S2, h) is a geodesic or a regular curve

with the geodesic curvature satisfying

(3.4)
κ′′

k
−

7(κ′)2

2k2
− k2 = −

(△f

f
+ 1

)

.

Proof: Let S2 × R be the product space endowed with the metric h = dr2 +

sin2 rdθ2 + dz2 with respect to the coordinates (r, θ, z). It is easy to see that

(3.5)
{

E1 =
∂

∂r
, E2 =

1

sin r

∂

∂θ
, E3 =

∂

∂z

}

is a local orthonormal frame on S2 × R. The coefficients of the Levi–Civita

connection are

∇E1
E1 = 0, ∇E1

E2 = 0, ∇E1
E3 = 0,

∇E2
E1 = cot r E2, ∇E2

E2 = − cot r E1, ∇E2
E3 = 0,(3.6)

∇E3
E1 = 0, ∇E3

E2 = 0, ∇E3
E3 = 0.
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Hence we have

(3.7) [E1, E2] = − cot r E2, [E1, E3] = [E2, E3] = 0,

and

(3.8) Ric(E1, E1) = Ric(E2, E2) = 1, all the other Ric(Ei, Ej) = 0.

Now let α : I → (S2, h) with α(s) = x(s)E1 + y(s)E2 be an immersed regular

curve parametrized by arclength. The tangent vector of the curve is given by

X = α′(s) = x′(s)E1 + y′(s)E2,

and its principal normal is

ξ = y′(s)E1 − x′(s)E2,

while

V = E3.

Then using (3.8) we have

Ric(ξ, ξ) = (x′)2 + (y′)2 = 1,

Ric(ξ,X) = x′y′ − y′x′ = 0,(3.9)

Ric(ξ, V ) = 0.

By replacing (3.9) in (3.3) and using the fact that τ = 0, we see that the vertical

cylinder S is an f -biharmonic surface if and only if

(3.10)

{

κ′′ − κ
(

κ2 − △f
f

− 1
)

+ 2κ′X(ln f) = 0,

κ[7κ′ + 4κX(ln f)] = 0.

If we solve the equation above we have κ = 0 which implies that the vertical

cylinder is minimal or the geodesic curvature of α satisfies κ′′

k
− 7(κ′)2

2k2 − k2 =

−
(

△f
f

+ 1
)

. �
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