Billel Aliat; Fayçal Hamdi
Probabilistic properties of a Markov-switching periodic $GARCH$ process

Persistent URL: http://dml.cz/dmlcz/148084

Terms of use:

© Institute of Information Theory and Automation AS CR, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz
PROBABILISTIC PROPERTIES OF A MARKOV-SWITCHING PERIODIC GARCH PROCESS

BILLEL ALIAT AND FAYÇAL HAMDI

In this paper, we propose an extension of a periodic GARCH (PGARCH) model to a Markov-switching periodic GARCH (MS-PGARCH), and provide some probabilistic properties of this class of models. In particular, we address the question of strictly periodically and of weakly periodically stationary solutions. We establish necessary and sufficient conditions ensuring the existence of higher order moments. We further provide closed-form expressions for calculating the even-order moments as well as the autocovariances of the powers of a MS-PGARCH process. We thus show how these moments and autocovariances can be used for estimating model parameters using GMM method.

Keywords: Markov-switching models, periodic GARCH models, periodic stationarity, higher-order moments, Markov-switching PGARCH models, GMM method

Classification: 62M10, 60G10

1. INTRODUCTION

Modeling volatility remains an important research area given its crucial role in modeling financial data such as stock price indices, interest rates and exchange rate data. Among volatility models, we find the GARCH model proposed by Bollerslev [15] which is one of the most popular models, because it represents a powerful tool for analyzing and forecasting the volatility of financial markets. The GARCH formulation explicitly describes instantaneous volatility using both conditional variances and squares of observations. After its introduction in time series literature, GARCH model has captured several empirical features that characterize many financial data, referred to as stylized facts, such as lack of serial correlation, nonlinear dependence, heavy-tailed marginal distributions and volatility clustering. However, other features such as multimodality of marginal distributions and regime changes remain uncaptured by this class of models. These features are best represented by regime switching models.

Since the seminal paper by Hamilton [29], the use of Markov-switching (in short MS) models has become increasingly popular in dynamic econometrics. Introducing changes in regime into the classical time series models substantially increases their flexibility. Therefore, different research works using ARCH-type models have been developed in

DOI: 10.14736/kyb-2019-6-0915
that direction. Cai [18] and Hamilton and Susmel [30] introduced the Markov-switching ARCH model (MS-ARCH). Gray [24] proposed a Markov-switching GARCH (MS-GARCH) model assuming that the conditional variance, knowing the current regime, depends on the expectation of past conditional variances, rather than their values. Klaassen [33] and Haas et al. [26] proposed other MS-GARCH formulations that differ from Gray’s one. Since then, an important number of studies have been devoted to MS-GARCH models. See, among others, Francq and Zakoïan [20, 21], Bauwens et al. [7], Augustyniak [5] and Billio et al. [14].

On the other hand, it is widely documented that most asset and exchange rate returns exhibit strong seasonal patterns in the form of day of the week and holiday effects (see, e. g. Bollerslev and Ghysels [16]; Franses and Paap [22]; Hamdi and Souam [28]). Hence, we can say that each day of the week constitutes a different regime. This seasonal effect can be interpreted as a deterministic regime-switching behavior. Contrary to the MS modeling, the regime that occurs at any given point in time is known with certainty in advance. As a result, financial time series analysts have, nowadays, become more convinced of the need to combine periodicity and conditional heteroskedasticity in one model. In particular, the class of periodic GARCH (PGARCH) models introduced by Bollerslev and Ghysels [16] has shown to be appropriate for capturing periodicity in the conditional variance, a property that cannot be explained by the classical GARCH formulation. Despite the interest and importance of the PGARCH model since its introduction, various limitations of this class of models (see e. g. Bentarzi and Hamdi [8, 9]; Regnard and Zakoïan [37], Hamdi and Souam [28]) pushed us to propose another, more flexible, class of models, able to capture different features that characterize, usually, economic series in general, and financial time series in particular.

In this paper, we present a study of the probabilistic properties of Markov-switching periodic GARCH (MS-PGARCH) models that constitute a very flexible and parsimonious class of nonlinear time series models of the conditional variance. The rest of this article is organized as follows. In section 2, we introduce the class of Markov-switching periodic GARCH models and give some related notations and assumptions. In section 3, we give a condition under which strictly periodically stationary solution to the MS-GARCH equation exists. In section 4, we focus on conditions ensuring finiteness of higher order moments, and provide explicitly the expression of these moments. We also give the autocorrelation function of the squared observations. In Section 5, we concentrate on the particular MS-PGARCH (1, 1) case that allows for rather simple explicit expressions. The first part of the Section 6 is devoted to the GMM parameter estimation problem. In the second part, we provide a simulation study of the performance of the proposed estimation method.

2. MARKOV-SWITCHING PERIODIC GARCH MODEL

Let \(\{ \eta_t; t \in \mathbb{Z} \} \) be a sequence of independent and identically distributed (i. i. d.) random variables and let \(\omega_t, \alpha_{t,i} \) and \(\beta_{t,j} \), for \(1 \leq i \leq q \) and \(1 \leq j \leq p \), be nonnegative periodic functions with period \(S \), i. e. \(\omega_{t+S} = \omega_t > 0, \alpha_{t+S,i} = \alpha_{t,i} \geq 0 \) and \(\beta_{t+S,j} = \beta_{t,j} \geq 0 \). Recall that a PGARCH \((p_t, q_t)\) process \(\{ \epsilon_t, t \in \mathbb{Z} \} \) with periodic volatility process
\{h_t, t \in \mathbb{Z}\} is a solution to the equations

\[
\begin{align*}
\epsilon_t &= \sqrt{h_t} \eta_t, \quad t \in \mathbb{Z} \\
\eta_t &= \omega_t + \sum_{i=1}^{q_t} \alpha_{t,i} \epsilon_{t-i}^2 + \sum_{j=1}^{p_t} \beta_{t,j} h_{t-j}.
\end{align*}
\]

(1)

Note that in some articles the definition of \(p_t\) and \(q_t\) for \(PGARCH\) models is a \(S\)-periodic function in \(t\). For simplicity purposes, \(p_t\) and \(q_t\) can be taken as constants in \(t\); simply set \((p, q) = (\max p_t, \max q_t)\) and take \(\alpha_{t,i} = 0\), for \(i > q_t\) and \(\beta_{t,j} = 0\), for \(j > p_t\).

By multiplying the second equation in (1) by \(\eta_t^2\), we get

\[
\epsilon_t^2 = h_t \eta_t^2 = \omega_t \eta_t^2 + \sum_{i=1}^{q_t} \alpha_{t,i} \eta_t^2 \epsilon_{t-i}^2 + \sum_{j=1}^{p_t} \beta_{t,j} \eta_t^2 h_{t-j},
\]

and by defining the random vectors \(z_t\) and \(b_t\) of dimension \((p + q)\)

\[
z_t = (\epsilon_t^2, \epsilon_{t-1}^2, \ldots, \epsilon_{t-q+1}^2, h_t, h_{t-1}, \ldots, h_{t-p+1})'\quad \text{and}\quad b_t = (\omega_t \eta_t^2, \mathbf{0}_{1 \times (q-1)}, \omega_t, \mathbf{0}_{1 \times (p-1)})',
\]

as well as the square random matrix \(A_t\) of dimension \((p + q)\)

\[
A_t = \begin{pmatrix}
\alpha_{t,1:q-1} \eta_t^2 & \alpha_{t,q} \eta_t^2 & \beta_{t,1:p-1} \eta_t^2 & \beta_{t,q} \eta_t^2 \\
\mathbf{I}_{q-1} & \mathbf{0}_{(q-1) \times 1} & \mathbf{0}_{(q-1) \times (p-1)} & \mathbf{0}_{(q-1) \times 1} \\
\alpha_{t,1:q-1} & \alpha_{t,q} & \beta_{t,1:p-1} & \beta_{t,q} \\
\mathbf{0}_{(p-1) \times (q-1)} & \mathbf{0}_{(p-1) \times 1} & \mathbf{I}_{p-1} & \mathbf{0}_{(p-1) \times 1}
\end{pmatrix},
\]

where \(\alpha_{t,1:q} = (\alpha_{t,1}, \ldots, \alpha_{t,q})\) and \(\beta_{t,1:p} = (\beta_{t,1}, \ldots, \beta_{t,p})\). As a result, the model (1) admits the following Markovian representation

\[
Y_t = A_t Y_{t-1} + b_t.
\]

(2)

Note that the periodic stationarity property of the model (2) can be studied by examining the stationarity of a certain appropriate transformation (see Gladyshev [23]). Indeed, it is well known that a periodically stationary process \(\{Y_t, t \in \mathbb{Z}\}\) is equivalent to the stationary \(S\)-ivariate process \(\{Y_\tau, \tau \in \mathbb{Z}\}\), where \(Y_\tau = (Y_{1+S\tau}, Y_{2+S\tau}, \ldots, Y_{S+S\tau})\). This last process admits the generalized autoregressive representation

\[
Y_\tau = A_\tau Y_{\tau-1} + b_\tau,
\]

(3)

where \((A_\tau, b_\tau)_{\tau \in \mathbb{Z}}\) is an \(i.i.d.\) process and \(A_\tau\) and \(b_\tau\) are defined by blocks respectively as

\[
(A_\tau)_{i,j} = \prod_{s=0}^{i-1} A_{i-s+\tau S} 1_{(j=S)}
\]

and

\[
(b_\tau)_{i,1} = \sum_{v=1}^{i} \left(\prod_{s=0}^{i-v-1} A_{i-s+\tau S} \right) b_{v+\tau S}, \text{ for } i, j = 1, \ldots, S.
\]

The strict periodic stationarity of the \(PGARCH\) \((1, 1)\) model was studied by Aknouche and Bentarzi [1]. For more general \(PGARCH\) models, the strict periodic stationarity
conditions were established by Bibi and Aknouche [10], Aknouche and Bibi [2] and Lee and Shin [35]. Bibi and Aknouche [10] and Lee and Shin [35] used the representation [3] to obtain strict periodic stationarity conditions of the PGARCH \((p, q)\) model. Aknouche and Bibi [2] have instead exploited the representation (2) which differs from the standard formulation studied by Bougerol and Picard [17] in that the sequence \((A_t, b_t)\) is rather periodically stationary and periodically ergodic. Aknouche and Bibi [2] have shown that a necessary and sufficient condition for the existence of a nonanticipative and strictly periodic stationary solution is that the top Lyapunov exponent associated with the sequence of matrices \(A =: \{A_t, t \in \mathbb{Z}\}\) is strictly negative. This nonanticipative solution is unique and periodically ergodic. A necessary and sufficient condition of second-order periodic stationarity of a particular 2-periodic PGARCH \((1, 1)\) model was established in Bollerslev and Ghysel [16]. The general PGARCH case is considered by Aknouche and Bentarzi [1], as well as the existence of a strictly periodic stationary solution having finite higher order moments (see also Aknouche and Bibi [2]; Bibi and Aknouche [10]). The calculation of some moments and the autocovariances of the squares of PGARCH processes were stated by Bibi and Aknouche [10]. The asymptotic properties, namely the strong consistency and the asymptotic normality, of the quasi-maximum likelihood, the calculation of some moments and the autocovariances of the squares of periodic \((p, q)\) model. Aknouche and Bibi [2] have instead exploited the representation (2) which differs from the standard case is considered by Aknouche and Bentarzi [1], as well as the existence of a strictly periodic stationary solution having finite higher order moments (see also Aknouche and Bibi [2]; Bibi and Aknouche [10]). The asymptotic properties, namely the strong consistency and the asymptotic normality, of the quasi-maximum likelihood, the least squares and a Yule–Walker estimators were respectively established in Aknouche and Bibi [2], Bibi and Lesheb [11, 12] and Bibi and Lesheb [13].

Despite the interest and the importance of the PGARCH models since their introduction, various limitations of this class of models (e.g. Bentarzi and Hamdi [8]; Regnard and Zakoïan [37]; Hamdi and Souam [27, 28]) let us to propose a new more flexible class, making possible the capture of the main stylized facts characterizing financial series.

The Markov-switching periodic GARCH model (in short, MS-PGARCH), that we propose here can be defined as a bivariate process \(\{(\epsilon_t, \Delta_t); t \in \mathbb{Z}\}\). The regime, in which a PGARCH process \((\epsilon_t)\) is located at a given date \(t\), is indexed by a Markov chain \((\Delta_t)\) defined on a finite state space. Hence, a stochastic process \(\{\epsilon_t, t \in \mathbb{Z}\}\) is said to have a Markov-switching PGARCH representation with orders \(p\) and \(q\) and period \(S \geq 1\), denoted MS-PGARCH\(_S\) \((p, q)\), if it is a solution of the following stochastic difference equation

\[
\begin{align*}
\epsilon_t &= \sqrt{h_t} \eta_t, \quad t \in \mathbb{Z} \\
h_t &= d \sum_{k=1}^{d} \omega_t(k)^2 (1_{\Delta_t=k}) + \sum_{i=1}^{q} \sum_{k=1}^{d} \alpha_{t,i}^{(k)} \epsilon_{t-i}^{(k)} 1_{\Delta_t=k} + \sum_{j=1}^{p} \sum_{k=1}^{d} \sum_{l=1}^{d} \beta_{t,j}^{(k)} h_{t-j}^{(l)} 1_{\Delta_{t-k}, \Delta_{t-j-l}=l},
\end{align*}
\]

where \(h_t = \mathbb{E} \left[\epsilon_t^2 \mid \mathcal{F}_{t-1} \right] \), \(\mathcal{F}_t\) denotes the \(\sigma\)-algebra based on the information available up to time \(t\) and \(1_{(\cdot)}\) is the indicator function. The process \((\Delta_t)\) is a homogenous Markov chain defined on a finite state space \(\mathcal{E} = \{1, 2, \ldots, d\}\), and \(\{\eta_t; t \in \mathbb{Z}\}\) is a sequence of independent and identically distributed (i.i.d.) random variables such that \(\mathbb{E}(\eta_t) = 0\) and \(\mathbb{E}(\eta_t^2) = 1\). The coefficients \(\omega_t^{(k)}, \alpha_{t,i}^{(k)}\) and \(\beta_{t,j}^{(k)}\), for \(1 \leq k \leq d, 1 \leq i \leq q\) and \(1 \leq j \leq p\), are periodic functions with period \(S\) (i.e. \(\omega_{t+r \mod S}^{(k)} = \omega_t^{(k)}, \alpha_{t+r \mod S,i}^{(k)} = \alpha_{t,i}^{(k)}\) and \(\beta_{t+r \mod S,j}^{(k)} = \beta_{t,j}^{(k)}\)), and satisfy the constraints \(\omega_t^{(k)} > 0, \alpha_{t,i}^{(k)} \geq 0\) and \(\beta_{t,j}^{(k)} \geq 0\), for \(1 \leq k \leq d, 1 \leq i \leq q\) and \(1 \leq j \leq p\).

Note that the MS-PGARCH model (4) may be seen as a mixture of \(d\) components of periodic GARCH. At each time point \(t\), one of them generates the observation \(y_t\).
The stochastic process selecting the component generating the observation is supposed to be homogeneous Markov chain. Thus, our model captures, not only, the stochastic regime-switching behavior, but also the periodicity (deterministic regime-switching behavior) hidden in the autocovariance structure of some economic series in general, and of financial time series in particular. Another feature of our model, which cannot be reproduced by with the \(\text{PGARCH} \) formulation [1], is time-varying skewness. However, this flexibility is unfortunately undermined by a path dependence problem which complicates the parameter estimation process (see Hamilton and Susmel, [30]).

As in the mixture \(\text{PGARCH} \) framework (see Hamdi and Souam [27]), another specification which differ from (4) for the conditional variance can be considered. In this specification, each regime-specific conditional variance depends only on its own lag, that is,

\[
\begin{cases}
\epsilon_t = \sqrt{h_t} \eta_t, & t \in \mathbb{Z} \\
 h_t = \sum_{k=1}^{d} \omega_t(k) 1(\Delta_t = k) + \sum_{i=1}^{q} \sum_{k=1}^{d} \alpha_{t,i}(k) \epsilon_{t-i}^2 1(\Delta_t = k) + \sum_{j=1}^{p} \sum_{k=1}^{d} \beta_{t,j}(k) h_{t-j}^k 1(\Delta_t = k).
\end{cases}
\]

The idea behind this formulation is to model \(d \) parallel periodic \(\text{GARCH} \) processes and the Markov chain determines which process is selected at each time. In addition, the current regime in the lagged variance term is thus preserved. This is, in our view, somewhat artificial to tackle the issue of eliminating the path-dependence problem by forcing the past volatilities to be in the same regime of the current volatility. Actually, the regime of our process can change between \(t-1 \) and \(t-p \). In our opinion, model (4) appears to be the most natural formulation of \(\text{MS-PGARCH} \) processes. To rewrite our proposed model (4) in a simple form, we make the following notations.

Let

\[
\omega_t(\Delta_t) := \sum_{k=1}^{d} \omega_t^k 1(\Delta_t = k),
\]

\[
\alpha_{t,i}(\Delta_t) := \sum_{k=1}^{d} \alpha_{t,i}^k 1(\Delta_t = k),
\]

\[
\beta_{t,j}(\Delta_t) := \sum_{k=1}^{d} \beta_{t,j}^k 1(\Delta_t = k),
\]

and

\[
h_{t-j} := \sum_{l=1}^{d} h_{t-j}^l 1(\Delta_{t-j} = l),
\]

then model (4) can be written as

\[
\begin{cases}
\epsilon_t = \sqrt{h_t} \eta_t, \\
h_t = \omega_t(\Delta_t) + \sum_{i=1}^{q} \alpha_{t,i}(\Delta_t) \epsilon_{t-i}^2 + \sum_{j=1}^{p} \beta_{t,j}(\Delta_t) h_{t-j}, & t \in \mathbb{Z}.
\end{cases}
\]

In what follows, we consider that the processes \(\eta_t \) and \(\Delta_t \) are assumed to be independent. In addition, \(\Delta_t \) is a homogenous, stationary, irreducible and aperiodic
Markov chain. The stationary probabilities of \(\Delta_t \) are denoted by \(\pi(k) = P(\Delta_1 = k) \),
the transition probability matrix is denoted by \(\mathbb{P} \) and written in the following way
\[
\mathbb{P} = (p(k, l))_{k, l=1,\ldots,d} =
\begin{pmatrix}
p(1,1) & p(2,1) & \cdots & p(d,1)
p(1,2) & p(2,2) & \cdots & p(d,2)
\vdots & \vdots & \ddots & \vdots
p(1,d) & p(2,d) & \cdots & p(d,d)
\end{pmatrix},
\]
where \(p(k, l) = P(\Delta_t = l \mid \Delta_{t-1} = k) \), and the \(i \)-step transition probabilities are denoted by \(p^{(i)}(k, l) = P(\Delta_t = l \mid \Delta_{t-i} = k) \), for \(k, l \in \mathcal{E} \) and \(i \geq 1 \).

It is worth mentioning that our proposed \textit{MS-PGARCH} formulation (5) includes, as special cases, various models such as:

- If \(p = 0 \), we have
\[
\epsilon_t = \sqrt{h_t \eta_t}, \text{ and } h_t = \omega_t(\Delta_t) + \sum_{i=1}^{q} \alpha_{t,i}(\Delta_t) \epsilon_{t-i}^2, \text{ for } t \in \mathbb{Z},
\]
and the process is called a Markov-switching periodic \textit{ARCH} (in short, \textit{MS-PARCH}).

- \textit{MS-GARCH} model which can be obtained by assuming that the functions \(\omega_t(k) \), \(\alpha_{t,i}(k) \) and \(\beta_{t,j}(k) \) are constant in \(t \) (see Haas and Paolella \cite{25} for a survey of mixture and regime-switching \textit{GARCH} models).

- Mixture \textit{PGARCH} model which can be obtained by assuming that \((\Delta_t) \) is an independent process. This class of models has been proposed and studied by Hamdi and Souam \cite{28}.

- \textit{PGARCH} model, introduced by Bollerslev and Ghysels \cite{16}, which is obtained by assuming that the Markov-chain \((\Delta_t) \) has a single regime.

- Standard \textit{GARCH} model of Bollerslev \cite{15} which can be obtained assuming that the functions \(\omega_t(k) \), \(\alpha_{t,i}(k) \) and \(\beta_{t,j}(k) \) constant over time and regimes.

3. STRICT PERIODIC STATIONARITY OF \textit{MS-PGARCH} MODEL

In this section we are interested in the existence of a unique strictly periodically stationary (henceforth \textit{s.p.s.}) solution of equation (5) in the sense given, for example, by Aknouche and Guerbyenne \cite{3}. So, we derive a necessary and sufficient condition under which our process be \textit{s.p.s.} The definition (5) is difficult to deal with when we want to study the probabilistic properties of the \textit{MS-PGARCH} model written in this form. For this reason, it will be useful to rewrite the model (5) in an equivalent Markovian representation. Along the lines of the work drawn up by Aknouche and Guerbyenne \cite{3} for random coefficient periodic autoregressions, we consider the following representation...
$z_t = A_t z_{t-1} + b_t,$

where z_t and b_t are random vectors of dimension $r = p + q$ defined as follows

$$z_t = \left(\epsilon_t^2, \epsilon_{t-1}^2, \ldots, \epsilon_{t-q+1}^2, h_t, h_{t-1}, \ldots, h_{t-p+1} \right)' ,$$

$$b_t = \left(\omega_t (\Delta_t) \eta_t^2, \omega_t (\Delta_t), 0_1 \times (q-1), \omega_t (\Delta_t), 0_1 \times (p-1) \right)' ,$$

and A_t is a square random matrix of dimension r, such that

$$A_t = \begin{pmatrix}
\alpha_{t,1:q-1} (\Delta_t) \eta_t^2 & \alpha_{t,q} (\Delta_t) \eta_t^2 & \beta_{t,1:p-1} (\Delta_t) \eta_t^2 & \beta_{t,q} (\Delta_t) \eta_t^2 \\
\mathbf{I}_{q-1} & 0_{(q-1) \times 1} & 0_{(q-1) \times (p-1)} & 0_{(q-1) \times 1} \\
\alpha_{t,1:q-1} (\Delta_t) & \alpha_{t,q} (\Delta_t) & \beta_{t,1:p-1} (\Delta_t) & \beta_{t,q} (\Delta_t) \\
0_{(p-1) \times (q-1)} & 0_{(q-1) \times 1} & \mathbf{I}_{p-1} & 0_{(p-1) \times 1}
\end{pmatrix},$$

where $\alpha_{t,1:q} (\Delta_t) = (\alpha_{t,1} (\Delta_t), \ldots, \alpha_{t,q} (\Delta_t))$ and $\beta_{t,1:p} (\Delta_t) = (\beta_{t,1} (\Delta_t), \ldots, \beta_{t,p} (\Delta_t))$. Here, \mathbf{I}_n and $0_{n \times m}$ are, respectively, the $n \times n$ identity matrix and the $n \times m$ matrix whose elements are zeros. Note that there exists a one-to-one correspondence between the solutions (ϵ_t) of (5) and the positive solutions (z_t) of (6).

As in many periodic time series models (e.g., Aknouche and Guerbyenne [3]; Hamdi and Souam [28]), the main tool for studying strict periodic stationarity is the top Lyapunov exponent associated with independent and periodically distributed $(i.p.d.)$ random matrices. Let $\| \cdot \|$ be an arbitrary norm operator in $M_{r \times r} (\mathbb{R})$, the space of real matrices of dimension r. Then, the top Lyapunov exponent associated with the $i.p.d.$ sequence of matrices $A =: \{ A_t, t \in \mathbb{Z} \}$ is defined by

$$\gamma^S (A) := \inf_{n \in \mathbb{N}^*} \frac{1}{n} \mathbb{E} \left\{ \log \| A_n S A_{n-1} \ldots A_1 \| \right\} ,$$

whenever $\sum_{s=1}^S \mathbb{E} \left(\log^+ \| A_s \| \right) < \infty$, where for $x > 0$, $\log^+(x) = \max (\log(x), 0)$.

We state now the following theorem that provides a necessary and sufficient condition ensuring the existence of a unique $s.p.s.$ solution of (5) which is also periodically ergodic.

Theorem 3.1. Model (5) admits a nonanticipative $s.p.s.$ solution given by the first component of

$$z_t = b_t + \sum_{i=1}^\infty \left(\prod_{j=0}^{i-1} A_{t-i} \right) b_{t-j}, \ t \in \mathbb{Z},$$

if and only if $\gamma^S (A)$ given by (7) is strictly negative, where the series (8) converges almost surely for all $t \in \mathbb{Z}$. Moreover, this solution is unique and periodically ergodic.

Proof. The proof is similar to that of Aknouche and Guerbyenne (3; Theorem 2.1 and Remark 2.1) and hence it will be omitted.

Remark 3.2. We give the reduced conditions obtained in some special cases, which coincides with some known results in literature.
1. It is well known that for $S = 1$, $\gamma^S (A)$ defined in (7) reduces to the definition of the top Lyapunov exponent for i.i.d. matrices (Bougerol and Picard [17])

$$\gamma (A) = \inf_{n \in \mathbb{N}^*} \mathbb{E} \left\{ \frac{1}{t} \| A_t A_{t-1} \ldots A_1 \| \right\}.$$

Thus, the non-periodic model (5) (when $S = 1$), admits a unique nonanticipative strictly stationary and ergodic solution if and only if $\gamma (A) < 0$. Note that this condition is the same one obtained by Francq et al. (2001, Theorem 1) for non-periodic MS-GARCH models.

2. If $d = 1$, the previous theorem coincides with the result provided in Aknouche and Bibi (2, Theorem 1) for the strict periodic stationarity of PGARCH models.

3. When the process (Δ_t) is an i.i.d. random variables sequence, the previous theorem coincides with the result stated in Hamdi and Souam (28, Theorem 1) for the case of mixture periodic GARCH models.

4. EXISTENCE AND CALCULATION OF HIGHER ORDER MOMENTS OF A MS-PGARCH PROCESS

It is important to know whether the s.p.s. solution has moments of higher order. In this section, one is interested in conditions ensuring finiteness of higher order moments, the most important case being finiteness of $\mathbb{E} (\epsilon_t^2)$ and $\mathbb{E} (\epsilon_t^4)$, under which we study the autocovariance structure of the squared MS-PGARCH process.

4.1. Conditions of existence of higher order moments

It may be pointed out that if the symmetry assumption is made on the distribution of (η_t), the odd-order moments of (ϵ_t) are null when they exist. In this section, only even-order moments are considered. Before stating the result ensuring the existence of moments of orders $2m$, where m is a strictly positive integer, we give some notations that we will need afterwards. Denote by $\rho (A)$ the spectral radius of any square matrix A. Let \otimes denote the Kronecker product. For any matrix A and any strictly positive integer m, let $A [m]$ be the Kronecker power $A \otimes A \otimes \cdots \otimes A$ of m factors.

Recall that, a matrix A in $\mathcal{M}_{n \times m} (\mathbb{R})$ is said to be positive (resp. strictly positive), that we note $A \succeq 0$ (resp. $A > 0$), if no element of A is negative (resp. negative or null). For two matrices A and B of the same size, the notation $A \succeq B$ (resp. $A > B$) means that $A - B$ is a positive matrix (resp. $A - B$ is strictly positive).

Let us define $A_t [m] (k)$ as the conditional expectation of the matrix $A_t [m]$ given Δ_t equal to k. We similarly define the function $b_t [m]$ by $b_t [m] (\cdot) = \mathbb{E} \left[b_t [m] \big| \Delta_t = \cdot \right]$. Let us also define the following matrices

$$\mathbb{P}_{f_t} = \begin{pmatrix} p (1, 1) f_t (1) & \cdots & p (d, 1) f_t (1) \\ \vdots & \ddots & \vdots \\ p (1, d) f_t (d) & \cdots & p (d, d) f_t (d) \end{pmatrix} \quad \text{and} \quad \Pi_{f_t} = \begin{pmatrix} \pi (1) f_t (1) \\ \vdots \\ \pi (d) f_t (d) \end{pmatrix},$$
for any periodic function $f_t : \mathcal{E} \to \mathcal{M}_{n \times n'}(\mathbb{R})$, where n and n' are strictly positive integers.

Theorem 4.1. Suppose that $\mathbb{E} \left(\eta^2 \right) < \infty$ and

$$\rho \left(\prod_{s=0}^{S-1} \mathbb{P}_{\Delta_{s-s}} \right) < 1,$$

(9)

then, for all $t \in \mathbb{Z}$, the series defined by (8) converges in \mathcal{L}^m and the process $\{\epsilon_t, t \in \mathbb{Z}\}$, defined as the first component of $\{z_t, t \in \mathbb{Z}\}$, is s.p.s. and admits moments up to order m.

Conversely, if $\prod_{s=0}^{S-1} \mathbb{P}_{\Delta_{s-s}}$ is irreducible and $\rho \left(\prod_{s=0}^{S-1} \mathbb{P}_{\Delta_{s-s}} \right) \geq 1$, then the model (5) has no s.p.s. solution such that $\mathbb{E} \left(\epsilon^2 \right) < \infty$.

Proof. The proof is an adaptation of that provided in Francq and Zakoïan (20, Theorem 1) to the periodic case.

(i) Let

$$z_t = \sum_{k=0}^{\infty} z_{t,k},$$

(10)

with $z_{t,0} = b_t$ and $z_{t,k} = \left(\prod_{l=0}^{k-1} A_{t-l} \right) b_{t-k}$, for $k \geq 1$.

By the fact that the matrices $A_t, \ldots, A_{t+k-1}, b_{t-k}$ are independent conditional on Δ_t, we have

$$\mathbb{E} \left[z_{t,k} \right] = \mathbb{E} \left[A_t^{[m]} A_{t-1}^{[m]} \ldots A_{t+k-1}^{[m]} b_{t-k}^{[m]} \right]$$

$$= \mathbb{E} \left[\mathbb{E} \left[A_t^{[m]} A_{t-1}^{[m]} \ldots A_{t+k-1}^{[m]} b_{t-k}^{[m]} | \Delta_t, \ldots, \Delta_{t-k} \right] \right]$$

$$= \mathbb{E} \left[A_t^{[m]} (\Delta_t) A_{t-1}^{[m]} (\Delta_{t-1}) \ldots A_{t+k-1}^{[m]} (\Delta_{t+k-1}) b_{t-k}^{[m]} (\Delta_{t-k}) \right].$$

Let $t = s + S\tau$ and $k = \nu + S\delta$ such that $\tau \in \mathbb{Z}$, $\delta \in \mathbb{N}$ and $s, \nu \in \{1, 2, \ldots, S\}$. Using the relation (7) given in Aliat and Hamdi (4, Lemma 1), we obtain

$$\mathbb{E} \left(z_{t,k} \right) = \mathbb{I}_{r^m} \left(\prod_{l=0}^{S-1} \mathbb{P}_{\Delta_{s-l}} \right)^{\delta} \left(\prod_{l=0}^{\nu-1} \mathbb{P}_{\Delta_{s-l}} \right) \mathbb{I}_{s^m},$$

(11)

where $\mathbb{I}_n = (I_1, \ldots, I_n)$ is a $n \times nd$ matrix.

Let $\|\cdot\|$ denote the matrix norm such that $\|A\| = \sum_{i,j} |a_{i,j}|$, where $a_{i,j}$ denotes the
generic element of a matrix A. Using some Kronecker product properties, we get

$$\|z_{t,k}\|_{L^m} = \left(\mathbb{E} \left[\|z_{t,k}\|^m \right] \right)^{1/m}$$

$$= \left(\| \mathbb{E} \left[z_{t,k}^m \right] \| \right)^{1/m}$$

$$= \left\| \mathbb{E} \left[\prod_{l=0}^{S-1} \mathbb{P}_{\lambda_{l,t}} \delta \left(\prod_{l=0}^{s-1} \mathbb{P}_{\lambda_{l,t}} \right) \Pi_{\mathbb{E}_{\lambda_{t,s}}} \right] \right\|^{1/m}$$

$$\leq \left\| \mathbb{E} \left[\prod_{l=0}^{S-1} \mathbb{P}_{\lambda_{l,t}} \right] \delta \right\|^{1/m}$$

$$\times \left\| \left(\prod_{l=0}^{s-1} \mathbb{P}_{\lambda_{l,t}} \right) \right\|^{1/m} \left\| \Pi_{\mathbb{E}_{\lambda_{t,s}}} \right\|^{1/m}.$$

If the spectral radius of the matrix $\prod_{l=0}^{S-1} \mathbb{P}_{\lambda_{l,t}}$ is strictly less than 1, then $\left\| \mathbb{E} \left[\prod_{l=0}^{S-1} \mathbb{P}_{\lambda_{l,t}} \right] \delta \right\|$ converges to zero at an exponential rate as $\delta \to \infty$. Since for all s, $\left\| \prod_{l=0}^{s-1} \mathbb{P}_{\lambda_{l,t}} \right\|$ is uniformly bounded by $\max_{1 \leq s \leq S} \left\| \left(\prod_{l=0}^{s-1} \mathbb{P}_{\lambda_{l,t}} \right) \right\|$, which is finite, then $z_t = \sum_{k=0}^{\infty} z_{t,k}$ is almost surely finite and belongs to L^m. Moreover, by the circular property of the spectral radius, it can be easily seen that

$$\rho \left(\prod_{l=0}^{S-1} \mathbb{P}_{\lambda_{l,t}} \right) = \rho \left(\prod_{s=0}^{S-1} \mathbb{P}_{\lambda_{s,t}} \right), \text{ for all } s, 1 \leq s \leq S.$$

It is clear that the norm of z_t is greater than that of its first component $\epsilon_{2,t}^2$. Hence, a sufficient condition for the existence of $\mathbb{E} (\epsilon_{2,t}^m)$ is then $\rho \left(\prod_{s=0}^{S-1} \mathbb{P}_{\lambda_{s,t}} \right) < 1.$

Furthermore, for each K, $\sum_{i=0}^{K} z_{t,k}$ is a S-periodic measurable function of the i.p.d. sequence $\{(A_t, b_t), t \in \mathbb{Z}\}$. Hence, the solution z_t is s.p.s. and periodically ergodic (see e.g. Aknouche and Guerbyenne [3]).

(ii) The proof of uniqueness is similar to that of Francq and Zakoian (20, Theorem 1) and hence omitted.

(iii) Conversely, suppose that $\mathbb{E} (\epsilon_{2,t}^m) < \infty$. From (6) the nonnegativity of all the elements of the vector z_t and the matrices A_t, we have for any $k \geq 0$

$$z_t = z_{t,0} + \cdots + z_{t,k} + A_tA_{t-1} \cdots A_{t-k}z_{t-k-1} \geq \sum_{i=0}^{k} z_{t,i}.$$
Markov-switching periodic GARCH process

Thus, \(z_t \geq \sum_{i=0}^{\infty} z_{t,i} \) and

\[
\mathbb{E} \left[z_{t}^{[m]} \right] \geq \mathbb{E} \left[\left(\sum_{k=0}^{\infty} z_{t,k} \right)^{[m]} \right] \geq \sum_{k=0}^{\infty} \mathbb{E} \left[z_{t,k}^{[m]} \right]
\]

\[
= \sum_{k=0}^{\infty} \mathbb{I}_{r} \left(\prod_{j=0}^{k-1} \mathbb{P}_{\Delta t-j}^{[m]} \right) \mathbb{P}_{2t-k}^{[m]}
\]

\[
= \sum_{\nu=0}^{S-1} \sum_{\delta=0}^{\infty} \mathbb{I}_{r} \left(\prod_{j=0}^{\nu-1} \mathbb{P}_{\Delta s-j}^{[m]} \right) \delta \left(\prod_{j=0}^{\nu-1} \mathbb{P}_{\Delta s-j}^{[m]} \right) \mathbb{P}_{2s-\nu}^{[m]}
\]

Using some nonnegative matrices properties (see e.g. Lancaster and Tismenetsky [34], Chapter 15), we get

\[
\left\| \mathbb{E} \left[z_{t}^{[m]} \right] \right\| \geq \left\| \sum_{\nu=0}^{S-1} \sum_{\delta=0}^{\infty} \mathbb{I}_{r} \left(\prod_{j=0}^{\nu-1} \mathbb{P}_{\Delta s-j}^{[m]} \right) \delta \left(\prod_{j=0}^{\nu-1} \mathbb{P}_{\Delta s-j}^{[m]} \right) \mathbb{P}_{2s-\nu}^{[m]} \right\|
\]

\[
= \sum_{\nu=0}^{S-1} \sum_{\delta=0}^{\infty} \mathbb{I}_{r} \left(\prod_{j=0}^{\nu-1} \mathbb{P}_{\Delta s-j}^{[m]} \right) \delta \left(\prod_{j=0}^{\nu-1} \mathbb{P}_{\Delta s-j}^{[m]} \right) \mathbb{P}_{2s-\nu}^{[m]}
\]

\[
\geq \frac{1}{l!} \sum_{\nu=0}^{S-1} \sum_{\delta=0}^{\infty} \left(\prod_{j=0}^{\nu-1} \mathbb{P}_{\Delta s-j}^{[m]} \right)^{l \delta} \left[\mathbb{I}_{dr} \mathbb{E} + \left(\prod_{j=0}^{\nu-1} \mathbb{P}_{\Delta s-j}^{[m]} \right) \mathbb{P}_{2s-\nu}^{[m]} \right]^{l \delta}
\]

\[
\geq \frac{Sc}{l!} \sum_{\delta=0}^{\infty} \left(\prod_{j=0}^{\nu-1} \mathbb{P}_{\Delta s-j}^{[m]} \right)^{l \delta}
\]

where \(c \) is the smallest element of

\[
\left[\mathbb{I}_{dr} \mathbb{E} + \left(\prod_{j=0}^{\nu-1} \mathbb{P}_{\Delta s-j}^{[m]} \right) \right]^{l \delta} \left(\prod_{j=0}^{\nu-1} \mathbb{P}_{\Delta s-j}^{[m]} \right) \mathbb{P}_{2s-\nu}^{[m]}
\]

and \(l \) is a fixed strictly positive integer. Finally, it is easy to see that since \(\mathbb{E} \left[\epsilon_t^{2m} \right] < \infty \), we also have \(\left\| \mathbb{E} \left[z_{t}^{[m]} \right] \right\| < \infty \) and consequently the condition [9] must hold which completes the proof of the theorem.
Remark 4.2.

1. Note that, if there exist only one regime, i.e. \(d = 1 \), the condition (9) is reduced to
\[
\rho \left(\prod_{s=0}^{S-1} \mathbb{E} \left(A^{[m]}_{S-s} \right) \right) < 1.
\]
This condition is the same obtained by Aknouche and Bentarzi ([11], Proposition 3.1) and Bibi and Aknouche ([10], Theorem 4.2), in the case of PGARCH models.

2. When \(S = 1 \), the condition (9) can be reduced to
\[
\rho \left(\mathbb{P} \left(A^{[m]} \right) \right) < 1,
\]
with \(A^{[m]}(\cdot) = \mathbb{E} \left(A^m_{t}\left| \Delta_t = \cdot \right. \right) \). This condition was established in Francq and Zakoïan ([20], Theorem 1) for non-periodic MS-GARCH models.

3. In the case where \((\Delta_t)\) is a sequence of i.i.d. random variables, the condition (9) can be written as follows
\[
\rho \left(\prod_{s=0}^{S-1} \mathbb{P} \left(A^{[m]}_{S-s} \right) \right) < 1,
\]
where \(A^{[m]}(\cdot) = \mathbb{E} \left(A^m_t \left| \Delta_t = \cdot \right. \right) \), and the variable \(Z^{(k)}_t \) (for \(k = 1, \ldots, d \)) is equal to 1 means that the observation \(\epsilon_t \) comes from the \(k \)th component of the mixture. This condition is the one obtained by Hamdi and Souam ([28], Theorem 2) for the mixture periodic GARCH models.

4.2. Calculation of moments

In this section, we will characterize explicitly the moments for the MS-PGARCH model (4). Suppose that (9) holds and \(\mathbb{E} (\eta^{2m}_t) < \infty \). It can be shown that
\[
(A_t z^{[m]}_{t-1} + b_t^{[m]})^{[m]} = \sum_{l=0}^{m} \sum_{l_i \in \{0,1\}} \left\{ \left(A^l_{t}^{[1]} \otimes b^{[1-l_1]}_t \right) \otimes \cdots \otimes \left(A^l_{t}^{[m]} \otimes b^{[1-l_m]}_t \right) \right\} z^{[1]}_{t-1},
\]
and by taking the expectation with respect to \(\Delta_t = k \), we get
\[
\pi(k) \mathbb{E} \left(z^{[m]}_t \bigg| \Delta_t = k \right) = \pi(k) b_t^{[m]}(k) + \pi(k) \sum_{l=1}^{m-1} \sum_{l_i \in \{0,1\}} \sum_{j=1}^d \left\{ \left(A^l_{t}^{[1]}(k) \otimes b^{[1-l_1]}_t(k) \right) \otimes \cdots \otimes \left(A^l_{t}^{[m]}(k) \otimes b^{[1-l_m]}_t(k) \right) \right\} \times \mathbb{E} \left(z^{[1]}_{t-1} \bigg| \Delta_{t-1} = j \right) p(j,k) \pi(j) + \pi(k) A^l_{t}^{[m]}(k) \sum_{j=1}^d \mathbb{E} \left(z^{[m]}_{t-1} \bigg| \Delta_{t-1} = j \right) p(j,k) \pi(j).
\]
As in the *MS-PARMA* model (Aliat and Hamdi [4]), let us consider the \(dr^m \)-variate \(S \)-periodic vectors

\[
M_{t,m} = \begin{pmatrix}
M_{t,m} (1) \\
\vdots \\
M_{t,m} (d)
\end{pmatrix}
\] := \begin{pmatrix}
\pi (1) \mathbb{E} \left(z_t^{[m]} \mid \Delta_t = 1 \right) \\
\vdots \\
\pi (d) \mathbb{E} \left(z_t^{[m]} \mid \Delta_t = d \right)
\end{pmatrix}
and \(C_{t,m} = \begin{pmatrix}
c_m (1) \\
\vdots \\
c_m (d)
\end{pmatrix},
\]

where

\[
c_m (k) = \pi (k) b_t^{[m]} (k) + \pi (k) \sum_{l=1}^{m-1} \sum_{i=1}^{d} \left\{ \left(A_t^{[l]} (k) \otimes b_t^{[1-l]} (k) \right) \otimes \cdots \otimes \left(A_t^{[l]} (k) \otimes b_t^{[1-l]} (k) \right) \right\} \mathbb{E} \left(z_t^{[l]} \mid \Delta_{t-1} = j \right) p (j, k) \pi (j),
\]

from which we can easily show that

\[
M_{t,m} = C_{t,m} + \mathbb{P}_{A_t^{[m]}} M_{t-1,m}.
\]

After \(S - 1 \) successive replacements in the latter equation and taking into account the periodicity of \(M_{t,m} \), we get

\[
M_{t,m} = \sum_{i=0}^{S-1} \left(\prod_{j=0}^{i-1} \mathbb{P}_{A_t^{[m]}} \right) C_{t-i,m} + \left(\prod_{j=0}^{S-1} \mathbb{P}_{A_t^{[m]}} \right) M_{t,m},
\]

and as a result, we obtain

\[
M_{t,m} = \left[I_{r^m} - \left(\sum_{i=0}^{S-1} \left(\prod_{j=0}^{i-1} \mathbb{P}_{A_t^{[m]}} \right) \right) \right]^{-1} \left(\sum_{i=0}^{S-1} \left(\prod_{j=0}^{i-1} \mathbb{P}_{A_t^{[m]}} \right) C_{t-i,m} \right).
\]

From the definitions of \(M_{t,m} \) and \(z_t \), the unconditional moments \(\mathbb{E} (\epsilon_t^{2m}) \) can be obtained as

\[
\mathbb{E} (\epsilon_t^{2m}) = H_m I_{r^m} M_{t,m},
\]

where \(H_n = (1, 0_{1 \times (n-1)}) \) is a row-vector of size \(n \) with 1 in the first position and zero elsewhere.

4.3. Autocovariances of the squares of a MS-PGARCH

To calculate the autocovariances of the squares of the *MS-PGARCH* model (5), we can use its Markovian representation (6). In the following, we shall show how to compute these autocovariances explicitly.

Suppose that \(\rho \left(\prod_{s=0}^{S-1} \mathbb{P}_{A_t^{[2]} \mid S_{s-s}} \right) < 1 \) and \(\mathbb{E} (\eta_t^2) < \infty \). It is easy to see that for all \(h \geq 0 \), we have

\[
z_t \otimes z_{t-h} = (A_t \otimes I_r) (z_{t-1} \otimes z_{t-h}) + (b_t \otimes I_r) z_{t-h},
\]
and for \(k = 1, 2, \ldots, d, \)

\[
\pi (k) \mathbb{E} \left[z_t \otimes z_{t-h} \mid \Delta_t = k \right] = \sum_{j=1}^{d} \Upsilon_t (k) \mathbb{E} \left[z_{t-1} \otimes z_{t-h} \mid \Delta_{t-1} = j \right] p (j, k) \pi (j)
\]

\[
+ \sum_{j=1}^{d} \Xi_t (k) \mathbb{E} \left[z_{t-h} \mid \Delta_{t-h} = j \right] p^{(h)} (j, k) \pi (j),
\]

where \(\Upsilon_t (\cdot) = A_{t}^{[1]} (\cdot) \otimes I_r \) and \(\Xi_t (\cdot) = b_{t}^{[1]} (\cdot) \otimes I_r \). Hence, we obtain the following system

\[
W_{h}^{(t)} = \begin{cases}
M_{t,2} & \text{if } h = 0,
\mathbb{P}_{\Upsilon_t} W_{h-1}^{(t-1)} + \mathbb{P}_{\Xi_t} M_{t-h,1} & \text{if } h \geq 1,
\end{cases} \tag{12}
\]

where \(W_{h}^{(t)} = (\pi (1) \mathbb{E} \left[z_t \otimes z_{t-h} \mid \Delta_t = 1 \right], \ldots, \pi (d) \mathbb{E} \left[z_t \otimes z_{t-h} \mid \Delta_t = d \right]) \), \(t, h \in \mathbb{Z} \). Consequently, we get for all \(h \in \mathbb{N} \)

\[
\mathbb{E} \left[z_t \otimes z_{t-h} \right] = \sum_{k=1}^{d} W_{h}^{(t)} (k).
\]

Finally, the autocovariance function of lag \(h \) and period \(s \) of the squares of a \(MS-PGARCH \) process defined by (5) is given by

\[
\gamma_{t,2,h}^{(t)} = H_r \mathbb{I}_r \sigma_{t}^{(t)} W_{h}^{(t)} - (H_r \mathbb{I}_r M_{t,1}) (H_r \mathbb{I}_r M_{t-h,1}). \tag{13}
\]

5. STUDY OF THE \(MS-PGARCH_{S} (1, 1) \)

5.1. Periodic stationarity and existence of higher order moments

We have already studied the periodic stationarity and we have calculated higher order moments and autocorrelations of the squares of the specification \([5] \). In this section, we shall thus concentrate on the particular \(MS-PGARCH_{S} (1, 1) \) case that allows for rather simple explicit expressions.

When \(p = q = 1 \), the model \([5] \) will be written as follows

\[
\begin{align*}
\epsilon_t &= \sqrt{h_t} \eta_t, \\
h_t &= \omega_t (\Delta_t) + \alpha_t (\Delta_t) \epsilon_{t-1}^2 + \beta_t (\Delta_t) h_{t-1}, & t & \in \mathbb{Z}.
\end{align*} \tag{14}
\]

From this representation, it is easy to see that the volatility process \(h_t \) can be written as

\[
h_t = a_t h_{t-1} + b_t, \tag{15}
\]

where \(b_t = \omega_t (\Delta_t) \) and \(a_t = \alpha_t (\Delta_t) \eta_{t-1}^2 + \beta_t (\Delta_t) \). Iterating equation \([15] \) \(l \) time and letting \(l \) goes to infinity, we thus obtain

\[
h_t = b_t + \sum_{k=1}^{\infty} \left(\prod_{i=0}^{k-1} a_{t-i} \right) b_{t-k}.
\]
For the series defined in the previous relation, to belong to L^m, it suffices that $h_{t,k} = \left(\prod_{i=0}^{k-1} a_{t-i} \right) b_{t-k}$ converges to zero in L^m. It is not difficult to show from the definition of $h_{t,k}$ that

$$
\mathbb{E} \left(h_{t,k}^m \right) = \mathbb{E} \left\{ \mathbb{E} \left[\left(\prod_{i=0}^{k-1} a_{t-i} \right) b_{t-k}^m \mid \Delta_t, \ldots, \Delta_{t-k} \right] \right\} = \mathbb{E} \left\{ \left(\prod_{i=0}^{k-1} a_{t-i} \right) b_{t,m} (\Delta_{t-k}) \right\} = \Pi_1 \left(\prod_{l=0}^{S-1} \mathbb{P}_{a_{s-l,m}} \right) \delta \left(\prod_{l=0}^{\nu-1} \mathbb{P}_{a_{s-l,m}} \right) \Pi_{b_{s-v,m}},
$$

where $a_{t,m} (\cdot) = \mathbb{E} (a_t^m \mid \Delta_t = \cdot)$ and $b_{t,m} (\cdot) = \mathbb{E} (b_t^m \mid \Delta_t = \cdot)$. It follows that

$$
||h_{t,k}||_{L^m} = \left(\mathbb{E} \left[||h_{t,k}||_m \right] \right)^{1/m} = \left\| \Pi_1 \left(\prod_{l=0}^{S-1} \mathbb{P}_{a_{s-l,m}} \right) \delta \left(\prod_{l=0}^{\nu-1} \mathbb{P}_{a_{s-l,m}} \right) \Pi_{b_{s-v,m}} \right\|^{1/m} \leq \left\| \Pi_1 \right\|^{1/m} \left\| \left(\prod_{l=0}^{S-1} \mathbb{P}_{a_{s-l,m}} \right) \delta \left(\prod_{l=0}^{\nu-1} \mathbb{P}_{a_{s-l,m}} \right) \right\|^{1/m} \left\| \Pi_{b_{s-v,m}} \right\|^{1/m}.
$$

If $\rho \left(\prod_{l=0}^{S-1} \mathbb{P}_{a_{s-l,m}} \right) < 1$, then $\left\| \left(\prod_{l=0}^{S-1} \mathbb{P}_{a_{s-l,m}} \right) \delta \right\|$ converges to zero at an exponential rate as $\delta \to \infty$. Since for all s, $\left\| \left(\prod_{l=0}^{\nu-1} \mathbb{P}_{a_{s-l,m}} \right) \delta \right\|$ is uniformly bounded by $\max_{1 \leq s \leq S} \left\| \left(\prod_{l=0}^{\nu-1} \mathbb{P}_{a_{s-l,m}} \right) \delta \right\|$, which is finite, then $h_t = \sum_{k=0}^{\infty} h_{t,k}$ is almost surely finite and belongs to L^m. So, we conclude that, $\rho \left(\prod_{s=0}^{S-1} \mathbb{P}_{a_{s-s,m}} \right) < 1$, is a sufficient condition for the existence of the moments up to order $2m$ of the process MS-PGARCH$_S$ (1, 1) defined in (14).

An analogous reasoning to that of part (iii) of the proof of Theorem 2, with

$$
\mathbb{E} \left(h_t^m \right) \geq \sum_{i=0}^{\infty} \Pi_1 \left(\prod_{j=0}^{i-1} \mathbb{P}_{a_{t-j,m}} \right) \Pi_{b_{t-i,m}},
$$

will lead us to conclude that in the case of MS-PGARCH$_S$ (1, 1) model, the condition, $\rho \left(\prod_{s=0}^{S-1} \mathbb{P}_{a_{s-s,m}} \right) < 1$, is also necessary.

We now compute the variance of the process $\{\epsilon_t; t \in \mathbb{Z} \}$. If $\rho \left(\prod_{s=0}^{S-1} \mathbb{P}_{a_{s-s,1}} \right) < 1$, we have

$$
\mathbb{E} \left(\epsilon_t^2 \right) = \sum_{k=1}^{d} \pi (k) \mathbb{E} \left(\epsilon_t^2 \mid \Delta_t = k \right) = \sum_{k=1}^{d} N_{t,2} (k),
$$
where \(N_{t,m} (\cdot) = \pi (\cdot) \mathbb{E} [\epsilon_t^m \mid \Delta_t = \cdot] \). From (14), we have
\[
\epsilon_t^2 = \omega_t (\Delta_t) \eta_t^2 + \alpha_t (\Delta_t) \eta_t^2 \epsilon_{t-1}^2 + \beta_t (\Delta_t) \eta_t^2 h_{t-1},
\]
and for \(k = 1, 2, \ldots, d \)
\[
\pi (k) \mathbb{E} [\epsilon_t^2 \mid \Delta_t = k] = \pi (k) \omega_t (k) + \pi (k) \alpha_t (k) \mathbb{E} [\epsilon_{t-1}^2 \mid \Delta_t = k] + \pi (k) \beta_t (k) \mathbb{E} (h_{t-1} \mid \Delta_t = k).
\]
Furthermore, since \(\mathbb{E} [h_{t-1} \mid \Delta_t = k] = \mathbb{E} [\epsilon_{t-1}^2 \mid \Delta_t = k] \), thus the previous equation can be written as follows
\[
\pi (k) \mathbb{E} [\epsilon_t^2 \mid \Delta_t = k] = \pi (k) \omega_t (k) + \pi (k) [\alpha_t (k) + \beta_t (k)] \mathbb{E} [\epsilon_{t-1}^2 \mid \Delta_t = k] = \pi (k) \omega_t (k) + \sum_{j=1}^d \alpha_{t,j} (k) \mathbb{E} [\epsilon_{t-1}^2 \mid \Delta_t = j] \ p(j,k) \pi (j),
\]
from which we obtain the following system
\[
N_{t,2} = \mathbb{P}_{\alpha,1,2} N_{t-1,2} + \Pi \omega_1,
\]
where \(N_{t,m} = (\pi (1) \mathbb{E} [\epsilon_t^m \mid \Delta_t = 1], \ldots, \pi (d) \mathbb{E} (\epsilon_t^m \mid \Delta_t = d)) \). After \(S - 1 \) successive replacements in the previous equation and taking into account the periodicity of \(N_{t,2} \), we get
\[
N_{t,2} = \left[I_d - \prod_{i=0}^{S-1} \mathbb{P}_{\alpha_t,i+1} \right]^{-1} \sum_{j=0}^{S-1} \prod_{i=0}^{j-1} \mathbb{P}_{\alpha_t,i+1} \Pi \omega_t - j. \tag{16}
\]
Therefore, the second order moment of \(\{\epsilon_t; t \in \mathbb{Z}\} \) is given by
\[
\mathbb{E} (\epsilon_t^2) = \sum_{k=1}^d N_{t,2} (k). \tag{17}
\]
On the other hand, we know that \(\epsilon_t^4 = h_t^2 \eta_t^4 \). So
\[
\epsilon_t^4 = \eta_t^4 [\omega_t (\Delta_t) + \alpha_t (\Delta_t) \epsilon_{t-1}^2 + \beta_t (\Delta_t) h_{t-1}]^2 \]
\[
= \eta_t^4 \left[\omega_t^2 (\Delta_t) + 2 \omega_t (\Delta_t) \alpha_t (\Delta_t) \epsilon_{t-1}^2 + 2 \omega_t (\Delta_t) \beta_t (\Delta_t) h_{t-1} \right. \]
\[
\left. + \alpha_t^2 (\Delta_t) \epsilon_{t-1}^4 + 2 \alpha_t (\Delta_t) \beta_t (\Delta_t) \epsilon_{t-1}^2 h_{t-1} + \beta_t^2 (\Delta_t) h_{t-1}^2 \right].
\]
Suppose that \(\rho \left(\prod_{s=0}^{S-1} \mathbb{P}_{\alpha_s,s+2} \right) < 1 \), and \(\mu_4 = \mathbb{E} (\eta_t^4) < \infty \), then
\[
\mathbb{E} (\epsilon_t^4) = \sum_{k=1}^d \pi (k) \mathbb{E} [\epsilon_t^4 \mid \Delta_t = k].
\]
But
\[
\mathbb{E} (\epsilon_t^4 \mid \Delta_t = k) = \mu_4 \left\{ \omega_t^2 (k) + 2 \omega_t (k) \alpha_t (k) \mathbb{E} [\epsilon_{t-1}^2 \mid \Delta_t = k] \right. \]
\[
+ 2 \omega_t (k) \beta_t (k) \mathbb{E} [h_{t-1} \mid \Delta_t = k] + \alpha_t^2 (k) \mathbb{E} [\epsilon_{t-1}^4 \mid \Delta_t = k] \]
\[
+ 2 \alpha_t (k) \beta_t (k) \mathbb{E} [\epsilon_{t-1}^2 h_{t-1} \mid \Delta_t = k] + \beta_t^2 (k) \mathbb{E} [h_{t-1}^2 \mid \Delta_t = k] \right\}.
\]
By reason of
\[
\mathbb{E} \left[\epsilon_t^4 | \Delta_t = k \right] = \mathbb{E} \left[h_{t-1}^2 | \Delta_t = k \right] \quad \text{and} \quad \mathbb{E} \left[h_{t-1} | \Delta_t = k \right] = \mathbb{E} \left[\epsilon_t^2 | \Delta_t = k \right],
\]
and
\[
\mathbb{E} \left[\epsilon_t^4 | \Delta_t = k \right] = \mu_4 \mathbb{E} \left[h_{t-1}^2 | \Delta_t = k \right],
\]
the conditional expectation \(\mathbb{E} \left(\epsilon_t^4 | \Delta_t = k \right) \) can be written in the following form
\[
\mathbb{E} \left[\epsilon_t^4 | \Delta_t = k \right] = \mu_4 \omega_t^2 (k) + 2 \mu_4 \omega_t (k) \{ \alpha_t (k) + \beta_t (k) \} \mathbb{E} \left[\epsilon_t^2 | \Delta_t = k \right] + \{ \mu_4 \alpha_t^2 (k) + 2 \alpha_t (k) \beta_t (k) + \beta_t^2 (k) \} \mathbb{E} \left[\epsilon_t^4 | \Delta_t = k \right].
\]
Let for \(k = 1, \ldots, d \)
\[
\phi_{t,2} (k) = 2 \mu_4 \omega_t (k) (\alpha_t (k) + \beta_t (k)) \quad \text{and} \quad \lambda_{t,2} (k) = \mu_4 \omega_t^2 (k).
\]
Using these notations, then we have
\[
\pi (k) \mathbb{E} \left[\epsilon_t^4 | \Delta_t = k \right] = \pi (k) \lambda_t (k) + \sum_{j=1}^d \phi_{t,2} (k) \mathbb{E} \left[\epsilon_t^2 | \Delta_{t-1} = j \right] p (j, k) \pi (j)
\]
\[
+ \sum_{j=1}^d \lambda_{t,2} (k) \mathbb{E} \left[\epsilon_t^4 | \Delta_{t-1} = j \right] p (j, k) \pi (j),
\]
which gives the following system
\[
N_{t,4} = \mathbb{P}_{\alpha_{t,2}} N_{t-1,4} + C_{t,2},
\]
where \(C_{t,2} = \Pi_{\lambda_{t,2}} + \mathbb{P}_{\phi_{t,2}} N_{t-1,2} \). After \(S - 1 \) successive replacements, we obtain
\[
N_{t,4} = \left[I_d - \prod_{i=0}^{S-1} \mathbb{P}_{\alpha_{t-i,2}} \right]^{-1} \sum_{j=0}^{S-1} \prod_{i=0}^{j-1} \mathbb{P}_{\alpha_{t-i,2}} C_{t-j,2}. \quad (18)
\]
Consequently, the fourth order moment of \(\{ \epsilon_t; t \in \mathbb{Z} \} \) is given by
\[
\mathbb{E} \left(\epsilon_t^4 \right) = \sum_{k=1}^d N_{t,4} (k). \quad (19)
\]
Now, let us consider the calculation of \(\mathbb{E} \left[\epsilon_t^{2m} \right] \). We have, for any positive integer \(m \geq 1 \),
\[
\epsilon_t^{2m} = \eta_t^{2m} h_t^m. \quad \text{However,}
\]
\[
h_t^m = \{ \omega_t (\Delta_t) + [\alpha_t (\Delta_t) \eta_{t-1}^2 + \beta_t (\Delta_t)] h_{t-1} \}^m
\]
\[
= \omega_t^m (\Delta_t) + \sum_{i=1}^{m-1} \binom{m}{i} \omega_t^{m-i} (\Delta_t) \left[\alpha_t (\Delta_t) \eta_{t-1}^2 + \beta_t (\Delta_t) \right]^i h_{t-1}^i
\]
\[
+ \left[\alpha_t (\Delta_t) \eta_{t-1}^2 + \beta_t (\Delta_t) \right]^m h_{t-1}^m.
\]
Under the assumption $\rho \left(\prod_{s=0}^{S-1} \mathbb{P}_{a_{S-s},m} \right) < 1$ and $\mu_{2m} = \mathbb{E} \left[\eta_t^{2m} \right] < \infty$, we have

$$
\mathbb{E} \left(\epsilon_t^{2m} \right) = \sum_{k=1}^{d} N_{t,2m} (k) = \mu_{2m} \sum_{k=1}^{d} \pi (k) \mathbb{E} \left[h_t^m \mid \Delta_t = k \right].
$$

But

$$
\mathbb{E} \left[h_t^m \mid \Delta_t = k \right] = \omega_t^m (k) + \sum_{i=1}^{m-1} \left(\begin{array}{c} m \\ i \end{array} \right) \frac{\omega_t^{m-i} (k) a_{t,i} (k)}{\mu_{2i}} \mathbb{E} \left[\epsilon_{t-1}^{2i} \mid \Delta_{t-1} = l \right] + \frac{a_{t,m}}{\mu_{2m}} \mathbb{E} \left[\epsilon_{t-1}^{2m} \mid \Delta_{t-1} = l \right],
$$

Thus,

$$
\pi (k) \mathbb{E} \left[\epsilon_t^{2m} \mid \Delta_t = k \right] = \pi (k) \mu_{2m} \omega_t^m (k) + \sum_{i=1}^{m-1} \sum_{l=1}^{d} \left(\begin{array}{c} m \\ i \end{array} \right) \frac{\mu_{2m}}{\mu_{2i}} \omega_t^{m-i} (k) a_{t,i} (k) p(l,k) \pi(l) \mathbb{E} \left[\epsilon_{t-1}^{2i} \mid \Delta_{t-1} = l \right]
$$

$$
+ \sum_{l=1}^{d} a_{t,m} p(l,k) \pi(l) \mathbb{E} \left[\epsilon_{t-1}^{2m} \mid \Delta_{t-1} = l \right],
$$

which can be stacked as follows

$$
N_{t,2m} = \mathbb{P}_{a_{t,m}} N_{t-1,2m} + C_{t,m},
$$

where

$$
C_{t,m} = \sum_{i=1}^{m-1} \sum_{l=1}^{d} \mathbb{P}_{\phi_{t,2i}} N_{t-1,2i} + \Pi_{\lambda_{t,m}},
$$

$$
\phi_{t,2i} (\cdot) = \left(\begin{array}{c} m \\ i \end{array} \right) \frac{\mu_{2m}}{\mu_{2i}} \omega_t^{m-i} (\cdot) a_{t,i} (\cdot),
$$

and

$$
\lambda_{t,m} (\cdot) = \mu_{2m} \omega_t^m (\cdot).
$$

After $S - 1$ successive replacements

$$
N_{t,2m} = \left[I_d - \prod_{i=0}^{S-1} \mathbb{P}_{a_{t-i,m}} \right]^{-1} \sum_{j=0}^{S-1} \left[\prod_{i=0}^{j-1} \mathbb{P}_{a_{t-i,m}} \right] C_{t-j,m}.
$$

Hence, the moment of order $2m$ of $\{\epsilon_t; t \in \mathbb{Z}\}$ can be computed as follows

$$
\mathbb{E} \left[\epsilon_t^{2m} \right] = \sum_{k=1}^{d} N_{t,2m} (k).
$$
Proposition 5.1. Suppose that $\mathbb{E}(\eta_t^{2m}) < \infty$. A necessary and sufficient condition under which the MS-PGARCH process defined by (14) is s.p.s. and $\mathbb{E}[\epsilon_t^{2m}] < \infty$, is given by

$$
\rho \left(\prod_{s=0}^{S-1} \mathbb{P}_{a_{S-s,m}} \right) < 1.
$$

(21)

In that case, the closed-form expression of the moment of order 2m of the process $\{\epsilon_t; t \in \mathbb{Z}\}$, for any positive integer $m \geq 1$, is given by

$$
\mathbb{E}(\epsilon_t^{2m}) = \sum_{k=1}^{d} N_{t,2m}(k),
$$

where $N_{t,2m}$ can be obtained from (20). Therefore, the variance and the kurtosis of the distribution of $\epsilon_{s+\tau S}$ are

$$
\sigma_{\epsilon}^{(s)2} := \mathbb{E}(\epsilon_{s+\tau S}^{2}) = \sum_{k=1}^{d} N_{s+\tau S,2}(k), \ s = 1, 2, \ldots, S,
$$

and

$$
\kappa_{\epsilon}^{(s)} := \frac{\mathbb{E}(\epsilon_{s+\tau S}^{4})}{[\mathbb{E}(\epsilon_{s+\tau S}^{2})]^2} = \frac{\sum_{k=1}^{d} N_{s+\tau S,4}(k)}{\left[\sum_{k=1}^{d} N_{s+\tau S,2}(k)\right]^2}, \ s = 1, 2, \ldots, S.
$$

Remark 5.2.

1. When $S = 1$, then the condition (21) can be written as follows

$$
\rho(\mathbb{P}_{\Phi_m}) < 1,
$$

where $\Phi_m(\cdot) = \mathbb{E}\left[(\alpha_{1,1}(\cdot)\eta_t^2 + \beta_{1,1}(\cdot))^m\right]$ and which is the same established by Francq and Zakoian (20, Corollary 2) in the case of the non-periodic MS-GARCH models.

2. If (Δ_t) is a sequence of i.i.d. random variables, then the condition ensuring the existence of moments of order 2m of the mixture periodic GARCH model is given by

$$
\rho \left(\prod_{s=0}^{S-1} \mathbb{P}_{\Omega_{S-s,m}} \right) < 1,
$$

(22)

where $\Omega_{t,m}(\cdot) = \mathbb{E}\left[(\alpha_{t,1}(\cdot)\eta_t^2 + \beta_{t,1}(\cdot))^m\right]$. In this particular case, we can rewrite this last condition in another simpler form. Indeed, we have

$$
\prod_{s=0}^{S-1} \mathbb{P}_{\Omega_{S-s,m}} = \left(\begin{array}{cccc}
\pi(1) \mathbb{E}\left[(\alpha_{S,1}^{(1)}\eta_s^2 + \beta_{S,1}^{(1)})^m\right] & \cdots & \pi(1) \mathbb{E}\left[(\alpha_{S,1}^{(S)}\eta_s^2 + \beta_{S,1}^{(S)})^m\right] \\
\vdots & \ddots & \vdots \\
\pi(d) \mathbb{E}\left[(\alpha_{S,1}^{(d)}\eta_s^2 + \beta_{S,1}^{(d)})^m\right] & \cdots & \pi(d) \mathbb{E}\left[(\alpha_{S,1}^{(d)}\eta_s^2 + \beta_{S,1}^{(d)})^m\right]
\end{array} \right) \\
\times \left\{ \prod_{s=1}^{S-1} \sum_{k=1}^{d} \pi(k) \mathbb{E}\left[(\alpha_{S-1,s}^{(k)}\eta_{s-s}^2 + \beta_{S-1,s}^{(k)})^m\right] \right\}.
$$
Note that this last matrix is positive such that the sum of the terms of each column is constant and equal to

$$\prod_{s=0}^{S-1} \left(\sum_{k=1}^{d} \pi (k) \mathbb{E} \left[(\alpha^{(k)}_{S-s,1} \eta_{S-s}^2 + \beta^{(k)}_{S-s,1})^m \right] \right),$$

which is then an eigenvalue of $\prod_{s=0}^{S-1} \mathbb{P}_{\Omega_{S-s,m}}$ and

$$\rho \left(\prod_{s=0}^{S-1} \mathbb{P}_{\Omega_{S-s,m}} \right) = \prod_{s=0}^{S-1} \left(\sum_{k=1}^{d} \pi (k) \mathbb{E} \left[(\alpha^{(k)}_{S-s,1} \eta_{S-s}^2 + \beta^{(k)}_{S-s,1})^m \right] \right),$$

(see Horn and Johnson [32], Lemma 8.1.21, p. 521).

For $m = 1$, the condition (22) coincides with that obtained by Hamdi et Souam (28, Corollary 1) for the second order periodic stationarity of the mixture PGARCH models.

5.2. Autocovariance structure of the powers of the MS-PGARCH$_S$ (1,1) process

From [14], we clearly see that if $n \in \{0,1,\ldots,m\}$ and $m \in \mathbb{N}^*$, we have

$$\epsilon_t^{2n} \epsilon_{t-1}^{2m} = \eta_t^{2n} \left[\omega_t (\Delta_t) + \{ \alpha_t (\Delta_t) \eta_{t-1}^2 + \beta_t (\Delta_t) \} h_{t-1} \right]^{n} \epsilon_{t-1}^{2m},$$

and under the assumption that $\mathbb{E} (\eta_t^{2m}) < \infty$ and $\rho \left(\prod_{s=0}^{S-1} \mathbb{P}_{\Omega_{S-s,2m}} \right) < 1$, we obtain

$$\mathbb{E} \left(\epsilon_t^{2n} \epsilon_{t-1}^{2m} \mid \Delta_t = k \right)$$

$$= \mathbb{E} \left(\eta_t^{2n} \left[\omega_t (\Delta_t) + \{ \alpha_t (\Delta_t) \eta_{t-1}^2 + \beta_t (\Delta_t) \} h_{t-1} \right]^{n} \epsilon_{t-1}^{2m} \mid \Delta_t = k \right)$$

$$= \mathbb{E} \left(\eta_t^{2n} \left\{ \sum_{i=0}^{n} \binom{n}{i} \{ \omega_t (\Delta_t) \}^{n-i} [\alpha_t (\Delta_t) \eta_{t-1}^2 + \beta_t (\Delta_t)]^i h_{t-1}^{m+i} \eta_{t-1}^{2m} \right\} \mid \Delta_t = k \right)$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{i} \binom{n}{i} \binom{i}{j} \mathbb{E} \left(\eta_t^{2n} \{ \omega_t (\Delta_t) \}^{n-i} \{ \alpha_t (\Delta_t) \}^j \{ \beta_t (\Delta_t) \}^{i-j} \eta_{t-1}^{2(j+m)} h_{t-1}^{m+i} \right) \mid \Delta_t = k \right)$$

$$= \sum_{i=0}^{n} \xi_{n,i,m}^{(t)} (k) \mathbb{E} \left(\epsilon_{t-1}^{2(m+i)} \mid \Delta_t = k \right)$$

where the S-periodic functions $\xi_{n,i,m}^{(t)} (\cdot)$ are given by

$$\xi_{n,i,m}^{(t)} (\cdot) = \binom{n}{i} \{ \omega_t (\cdot) \}^{n-i} \sum_{j=0}^{i} \binom{i}{j} \{ \alpha_t (\cdot) \}^j \{ \beta_t (\cdot) \}^{i-j} \mu_{2(m+j)},$$

for all $i \in \{0,1,\ldots,n\}$, $n \in \{0,1,\ldots,m\}$ and $m \in \mathbb{N}^*$.

Thus, for all $k = 1,\ldots,d$, we have

$$\pi (k) \mathbb{E} \left(\epsilon_t^{2n} \epsilon_{t-1}^{2m} \mid \Delta_t = k \right) = \sum_{i=0}^{n} \sum_{l=1}^{d} \xi_{n,i,m}^{(t)} (k) \mathbb{E} \left(\epsilon_{t-1}^{2(i+m)} \mid \Delta_{t-1} = l \right) p (l, k) \pi (l),$$
from which we obtain the following system

\[
W_{1,n,m}^{(t)} = \sum_{i=0}^{n} \mathbb{P}_{\epsilon_t^{(i)}, N_{i-1,2(i+m)}},
\]

where

\[
W_{h,n,m}^{(t)} = (\pi (1) \mathbb{E} \left(\epsilon_t^{2n} \epsilon_{t-h}^{2m} \mid \Delta_t = 1 \right), \ldots, \pi (d) \mathbb{E} \left(\epsilon_t^{2n} \epsilon_{t-h}^{2m} \mid \Delta_t = d \right))', \quad t, h \in \mathbb{Z}.
\]

Moreover, we have for all \(k = 1, \ldots, d \) and all \(h > 1, m \in \mathbb{N}^* \) and \(n \in \{0, 1, \ldots, m\} \),

\[
\pi (k) \mathbb{E} \left(\epsilon_t^{2n} \epsilon_{t-h}^{2m} \mid \Delta_t = k \right)
= \pi (k) \mu_{2n} \mathbb{E} \left(h_t^{(i)} \epsilon_{t-h}^{2m} \bigg| \Delta_t = k \right)
= \pi (k) \mu_{2n} \sum_{i=0}^{n} \left(\frac{n}{i} \right) \{\omega_t (k)\}^{n-i} \mathbb{E} \left(\left[\alpha_t (k) \eta_{t-1}^{2n} + \beta_t (k) \right]^{i} h_t^{(i)} \epsilon_{t-h}^{2m} \bigg| \Delta_t = k \right)
= \pi (k) \mu_{2n} \sum_{i=0}^{n} \sum_{j=0}^{i} \left(\frac{n}{i} \right) \{\omega_t (k)\}^{n-i} \{\alpha_t (k)\}^{j} \{\beta_t (k)\}^{i-j} \mathbb{E} \left(\eta_{t-1}^{2j} h_{t-1}^{i} \epsilon_{t-h}^{2m} \bigg| \Delta_t = k \right)
= \pi (k) \sum_{i=0}^{n} \sum_{j=0}^{i} \left(\frac{n}{i} \right) \{\omega_t (k)\}^{n-i} \{\alpha_t (k)\}^{j} \{\beta_t (k)\}^{i-j} \mu_{2i} \mu_{2n} \mathbb{E} \left(\epsilon_{t-1}^{2i} \epsilon_{t-h}^{2m} \bigg| \Delta_t = k \right)
= \sum_{i=0}^{n} \sum_{l=1}^{d} \psi_{n,i}^{(t)} (k) \mathbb{E} \left(\epsilon_{t-1}^{2i} \epsilon_{t-h}^{2m} \bigg| \Delta_{t-1} = l \right) p (l, k) \pi (l),
\]

where

\[
\psi_{n,i}^{(t)} (k) = \binom{n}{i} \{\omega_t (k)\}^{n-i} \mu_{2n} \sum_{j=0}^{i} \binom{i}{j} \{\alpha_t (k)\}^{j} \{\beta_t (k)\}^{i-j} \mu_{2j}.
\]

Therefore, we obtain the following system

\[
W_{h,n,m}^{(t)} = \sum_{i=0}^{n} \mathbb{P}_{\psi_{n,i}^{(t)}, W_{h-1,i,m}^{(t-1)}}
\]

Consequently, we get for all \(h \in \mathbb{N} \)

\[
\gamma_{2m,v}^{(t)} := \text{cov} \left(\epsilon_t^{2m}, \epsilon_{t-v}^{2m} \right) = \sum_{k=1}^{d} W_{h,n,m}^{(t)} \left(k \right) - \left(\sum_{k=1}^{d} N_{t,2m} \left(k \right) \right) \left(\sum_{k=1}^{d} N_{t-h,2m} \left(k \right) \right),
\]

The following algorithm summarizes the calculation of the autocovariances of the powers of an MS-PGARCH \(S (1, 1) \) process.

Algorithm 5.3.

1. For \(s = 1, 2, \ldots, S \) compute \(N_{t,2i} \) for \(i = m, m+1, \ldots, 2m \), using \([20]\).
2. For \(s = 1, 2, \ldots, S \), \(m \in \mathbb{N}^* \) and \(n = 0, 1, \ldots, m \) calculate \(W_{1,n,m}^{(t)} \) using \([23]\).
3. For \(s = 1, 2, \ldots, S, m \in \mathbb{N}^* \), \(h > 1 \) and \(n = 0, 1, \ldots, m \), compute \(W_{h,n,m}^{(t)} \) from (24).

4. For \(s = 1, 2, \ldots, S, m \in \mathbb{N}^* \) and \(h \in \mathbb{N}^* \), compute the autocovariances of \(\{ e_{t}^{2m}, t \in \mathbb{Z} \} \) using (25).

6. ESTIMATION OF THE MS-PGARCH\(_S\) (1, 1) MODEL USING GMM METHOD

6.1. GMM estimation

The estimation of the Markov-switching PGARCH model is so hard, and this is due to the recursiveness of the conditional variance equation. Indeed, through equation (14), one can clearly see that the conditional variance depend at time \(t \) on the whole history of regimes generated by the markov chain \((\Delta_t) \) up to time \(t \). So, since the regimes are unobservable, one should to integrate over all possible regime paths to evaluate the likelihood function. Whereas, the number of possible paths grows exponentially with \(t \) and becomes quickly unmanageable. For instance, the computation of the likelihood function over a sample of length \(T \), require summation over all \(d^T \) unobserved states. Hence, the path dependence property of this class of models renders the exact calculation of the likelihood very cumbersome numerically. This prompted many authors (e.g. Gray [24]; Klaassen [33]) to propose estimation procedures based on modified versions of the non-periodic MS-GARCH model that circumvent the path dependence problem by maximum likelihood. Other authors suggested alternative estimation methods such as generalized method of moments (GMM) (Franco and Zakoïan, [21]), Bayesian MCMC methods (e.g. Bauwens et al. [7]; Henneke et al. [31]; Billio et al. [14] and Collapsing procedure (e.g. Augustyniak et al. [6]).

Since we gave the explicit expressions of the moments of the squared process and the autocovariances of its powers, we propose in this section, a generalization of the GMM procedure, proposed by Franco and Zakoïan [21], into the periodic case. Suppose that the number of regimes \(d \) and the period \(S \) are known. The unknown parameters are gathered in a vector \(\theta = \left(vec(P)', \theta_{1}^{(1)}, \ldots, \theta_{S}^{(1)}, \theta_{1}^{(2)}, \ldots, \theta_{S}^{(2)}, \ldots, \theta_{1}^{(d)}, \ldots, \theta_{S}^{(d)} \right)' \) belonging in to a parameter space \(\Theta \), where \(\theta_{S}^{(k)} = (\omega_{s}^{(k)}, \alpha_{s,1}^{(k)}, \beta_{s,1}^{(k)}) \), for \(s = 1, \ldots, S, k = 1, \ldots, d \) and \(vec \) is the usual column stacking. The true parameter value denoted by \(\theta_0 \) is unknown and should to be estimated. For this purpose, let \(\{ \epsilon_1, \ldots, \epsilon_T \mid T = NS, N \in \mathbb{N}^* \} \) be a realization of length \(T \geq l \), where \(l \) is a given lag. To estimate the unknown parameters of the model via a GMM procedure, we use the orthogonality conditions given by

\[
\mathbb{E}_{\theta_0} [H_{\tau} (\theta_0, \xi_{\tau})] = 0, \tag{26}
\]

where

\[
\xi_{\tau} = (\epsilon_{1+S}, \ldots, \epsilon_{s+S}, \epsilon_{s}, \ldots, \epsilon_{S+s+S}, \epsilon_{S+s+S-1}, \ldots, \epsilon_{1+S+s+S-1}, \ldots, \epsilon_{S+s+S-1}),
\]

\[
H_{\tau} (\theta, \xi_{\tau}) = \left(h_{1,\tau}^{(0)}, \ldots, h_{1,\tau}^{(m)}, \ldots, h_{S,\tau}^{(0)}, \ldots, h_{S,\tau}^{(m)} \right) ',
\]

with \(h_{s,\tau}^{(0)} = \epsilon_{s+S,\tau}^2 - \mathbb{E}_\theta (\epsilon_{s+S,\tau}^2) \) and \(h_{s,\tau}^{(i)} = \epsilon_{s+S,\tau}^{2i} - \mathbb{E}_\theta (\epsilon_{s+S,\tau}^{2i}) \), for \(i = 1, \ldots, m \), and \(s = \ldots, S-1, \ldots, S-1 \).
Markov-switching periodic GARCH process

1, \ldots, S. Note that \(m \) and \(l \) are chosen such that the system (26) be identifiable and the conditions of existence of moments, given by Proposition 5.1, are satisfied.

The idea behind GMM is to choose \(\theta \) so as to make the sample moment \(H_N(\theta) \) as close as possible to the population moment which equal to zero; that is, the GMM estimator \(\hat{\theta} \) is the value of \(\theta \) that minimizes

\[
Q_N(\theta) = H_N'(\theta) W_N H_N(\theta),
\]

where \(H_N(\theta) \) denote the sample average of \(H_\tau(\theta, \epsilon_\tau) \), i.e.,

\[
H_N(\theta) = \frac{1}{N - \tau_0} \sum_{\tau = \tau_0 + 1}^N H_\tau(\theta, \epsilon_\tau),
\]

and \((W_N) \) is a sequence of positive definite weighting matrices. Here \(\tau_0 \) denotes the largest integer less than or equal to \(l/S \). Finally, to estimate the unknown parameters of the model, one should compute the optimal weighting matrix \(\hat{W}_N = \hat{V}^{-1} \), using the estimator of Newey and West [36], which is defined by

\[
\hat{V} = \Omega_N(0) + \sum_{i=1}^\nu K \left(\frac{i}{\nu} \right) \{ \Omega_N(i) + \Omega_N'(i) \}
\]

where

\[
\Omega_N(i) = \frac{1}{N - \tau_0} \sum_{\tau = \tau_0 + 1+i}^N \Pi_\tau \left(\hat{\theta}, \epsilon_\tau \right) \Pi_{\tau-i} \left(\hat{\theta}, \epsilon_\tau \right),
\]

\[
\Pi_\tau \left(\hat{\theta}, \epsilon_\tau \right) = H_\tau \left(\hat{\theta}, \epsilon_\tau \right) - \frac{1}{N - \tau_0} \sum_{\tau = \tau_0 + 1}^N H_\tau \left(\hat{\theta}, \epsilon_\tau \right),
\]

and \(\nu \) is a truncation parameter which is a function of \(N \) allowed to grow slowly enough with the sample size and required to grow slower than \(\sqrt{N} \) (see Newey and West [36] for more details about the choice of \(\nu \)). For the simulation study reported in Section 6.2, we used the Bartlett kernel weight \(K(x) \) defined by \((1 - |x|) 1_{(|x| \leq 1)} \).

Hence, a GMM estimator \(\hat{\theta} \) is obtained as

\[
\hat{\theta} = \arg \min_{\theta \in \Theta} H_N'(\theta) \hat{W}_N H_N(\theta).
\]

6.2. Simulation study

In order to investigate the performance of the GMM method for parameters estimation, we carried out a simulation study based on two MS-PGARCH\(S(1, 1) \) models (\(S = 2, 4, d = 2 \) and \(\eta_t \sim N(0, 1) \)). We simulated 1000 data samples with different lengths. The sample sizes to be examined in this simulation study are 1000, 2000, 5000 and 10000. The corresponding parameter values are chosen to satisfy the condition [21] for \(m = 4 \), i.e. the existence of moments of order 8. The GMM criterion was constructed on the
basis of the expectations of the following \((19 \times S)\) variables \(\epsilon_{s+S\tau}^2\) and \(\epsilon_{s+S\tau}^{2i}\epsilon_{s+S\tau-h}^{2i}\), \(h = 1, \ldots, 8\), and \(i = 1, 2\).

In Tables 1-2 are reported the true values (TV) of the parameters of each of the considered \(MS-PGARCH_S(1, 1)\) data-generating process, the mean and the root-mean-square error (RMSE) of their estimates for the 1000 replications.

From Tables 1 and 2, we can observe that the estimates of the \(MS-PGARCH\) coefficients based on \(GMM\) model display significant biases which decrease as the sample size is increased. Unlike the non-periodic case, the transition probabilities are estimated with low accuracy. It can also be seen that the RMSEs of some parameters are relatively large but they often gradually decrease as the sample size is increased.

CONCLUSION

This article proposes a new Markov-switching periodic \(GARCH\) model, which captures both the periodicity and the regime change phenomenon of time series in conditional variance. We studied some probabilistic properties of this class of models as well as the autocovariance structure of the squared \(MS-PGARCH\) process.

As in the non-periodic model, the estimation can be done by using the \(GMM\) method. Simulation examples showed that the proposed \(GMM\) procedure does not perform well when the sample size is small to moderate. However, it does provide a good starting value for others methods. In order to improve the estimation quality, it could be interesting in a future research to develop a new approach, for example by adopting the simulated methods (Bauwens et al. [7]; Henneke et al. [31]; Augustyniak [5]; Billio et al. [14]; Augustyniak et al. [6]). It could be also interesting to see what happens if one fits a non-periodic \(MS-GARCH\) model to a periodic data.

Tab. 1. Results of a simulation study for an \(MS-PGARCH_2 (1, 1)\) model with different values of the sample size \(T\) and 1000 replications.
Markov-switching periodic GARCH process

<table>
<thead>
<tr>
<th></th>
<th>$T = 1000$</th>
<th></th>
<th>$T = 2000$</th>
<th></th>
<th>$T = 5000$</th>
<th></th>
<th>$T = 10000$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TV Mean</td>
<td>RMSE</td>
<td>TV Mean</td>
<td>RMSE</td>
<td>TV Mean</td>
<td>RMSE</td>
<td>TV Mean</td>
<td>RMSE</td>
</tr>
<tr>
<td>$p(1,1)$</td>
<td>0.95</td>
<td>0.7838</td>
<td>0.2482</td>
<td>0.8338</td>
<td>0.1619</td>
<td>0.8786</td>
<td>0.1369</td>
<td>0.9371</td>
</tr>
<tr>
<td>$p(2,1)$</td>
<td>0.10</td>
<td>0.3960</td>
<td>0.3438</td>
<td>0.1132</td>
<td>0.3521</td>
<td>0.1298</td>
<td>0.2223</td>
<td>0.1712</td>
</tr>
<tr>
<td>$\omega(1)$</td>
<td>0.60</td>
<td>0.6169</td>
<td>0.1970</td>
<td>0.6306</td>
<td>0.1741</td>
<td>0.6349</td>
<td>0.1631</td>
<td>0.6264</td>
</tr>
<tr>
<td>$\alpha(1)$</td>
<td>0.35</td>
<td>0.1772</td>
<td>0.2295</td>
<td>0.1826</td>
<td>0.1893</td>
<td>0.2393</td>
<td>0.1838</td>
<td>0.3398</td>
</tr>
<tr>
<td>$\beta(1)$</td>
<td>0.30</td>
<td>0.2845</td>
<td>0.1589</td>
<td>0.3023</td>
<td>0.1513</td>
<td>0.3164</td>
<td>0.1447</td>
<td>0.3156</td>
</tr>
<tr>
<td>$\omega(2)$</td>
<td>0.40</td>
<td>0.4438</td>
<td>0.1536</td>
<td>0.4915</td>
<td>0.1866</td>
<td>0.5080</td>
<td>0.1633</td>
<td>0.4481</td>
</tr>
<tr>
<td>$\alpha(2)$</td>
<td>0.20</td>
<td>0.1323</td>
<td>0.1886</td>
<td>0.1716</td>
<td>0.1019</td>
<td>0.1861</td>
<td>0.1403</td>
<td>0.1885</td>
</tr>
<tr>
<td>$\beta(2)$</td>
<td>0.25</td>
<td>0.2130</td>
<td>0.1462</td>
<td>0.2225</td>
<td>0.1348</td>
<td>0.1793</td>
<td>0.1334</td>
<td>0.2474</td>
</tr>
<tr>
<td>$\omega(3)$</td>
<td>0.30</td>
<td>0.3337</td>
<td>0.2137</td>
<td>0.3861</td>
<td>0.1499</td>
<td>0.3779</td>
<td>0.1506</td>
<td>0.3121</td>
</tr>
<tr>
<td>$\alpha(3)$</td>
<td>0.15</td>
<td>0.1196</td>
<td>0.1006</td>
<td>0.1282</td>
<td>0.0724</td>
<td>0.1346</td>
<td>0.0717</td>
<td>0.1396</td>
</tr>
<tr>
<td>$\beta(3)$</td>
<td>0.20</td>
<td>0.1849</td>
<td>0.1270</td>
<td>0.2032</td>
<td>0.1158</td>
<td>0.1687</td>
<td>0.1110</td>
<td>0.2013</td>
</tr>
<tr>
<td>$\omega(4)$</td>
<td>0.50</td>
<td>0.4812</td>
<td>0.2515</td>
<td>0.5278</td>
<td>0.2219</td>
<td>0.5346</td>
<td>0.2064</td>
<td>0.5028</td>
</tr>
<tr>
<td>$\alpha(4)$</td>
<td>0.22</td>
<td>0.1688</td>
<td>0.1573</td>
<td>0.2175</td>
<td>0.1481</td>
<td>0.2079</td>
<td>0.1403</td>
<td>0.2139</td>
</tr>
<tr>
<td>$\beta(4)$</td>
<td>0.35</td>
<td>0.2578</td>
<td>0.1743</td>
<td>0.3147</td>
<td>0.1393</td>
<td>0.3423</td>
<td>0.1221</td>
<td>0.3402</td>
</tr>
<tr>
<td>$\omega(5)$</td>
<td>1.50</td>
<td>0.8108</td>
<td>0.7806</td>
<td>1.2268</td>
<td>0.4268</td>
<td>1.3627</td>
<td>0.3756</td>
<td>1.4403</td>
</tr>
<tr>
<td>$\alpha(5)$</td>
<td>0.30</td>
<td>0.0914</td>
<td>0.2191</td>
<td>0.0903</td>
<td>0.2121</td>
<td>0.1115</td>
<td>0.1926</td>
<td>0.2270</td>
</tr>
<tr>
<td>$\beta(5)$</td>
<td>0.42</td>
<td>0.2983</td>
<td>0.2127</td>
<td>0.3046</td>
<td>0.1891</td>
<td>0.3339</td>
<td>0.1821</td>
<td>0.3807</td>
</tr>
<tr>
<td>$\omega(6)$</td>
<td>1.20</td>
<td>0.7466</td>
<td>0.5442</td>
<td>1.0454</td>
<td>0.3227</td>
<td>1.1345</td>
<td>0.3160</td>
<td>1.2269</td>
</tr>
<tr>
<td>$\alpha(6)$</td>
<td>0.25</td>
<td>0.0756</td>
<td>0.1811</td>
<td>0.0892</td>
<td>0.1658</td>
<td>0.0933</td>
<td>0.1604</td>
<td>0.2254</td>
</tr>
<tr>
<td>$\beta(6)$</td>
<td>0.40</td>
<td>0.2482</td>
<td>0.2247</td>
<td>0.2599</td>
<td>0.1865</td>
<td>0.2763</td>
<td>0.1953</td>
<td>0.3575</td>
</tr>
<tr>
<td>$\omega(7)$</td>
<td>0.90</td>
<td>0.5679</td>
<td>0.4316</td>
<td>0.8009</td>
<td>0.2919</td>
<td>0.8292</td>
<td>0.2863</td>
<td>0.8371</td>
</tr>
<tr>
<td>$\alpha(7)$</td>
<td>0.20</td>
<td>0.0659</td>
<td>0.1405</td>
<td>0.0795</td>
<td>0.1250</td>
<td>0.0829</td>
<td>0.1221</td>
<td>0.1696</td>
</tr>
<tr>
<td>$\beta(7)$</td>
<td>0.35</td>
<td>0.2304</td>
<td>0.1963</td>
<td>0.2123</td>
<td>0.1632</td>
<td>0.2497</td>
<td>0.1623</td>
<td>0.3178</td>
</tr>
<tr>
<td>$\omega(8)$</td>
<td>1.00</td>
<td>0.7074</td>
<td>0.4087</td>
<td>0.9409</td>
<td>0.2805</td>
<td>0.9600</td>
<td>0.2731</td>
<td>1.0216</td>
</tr>
<tr>
<td>$\alpha(8)$</td>
<td>0.27</td>
<td>0.0917</td>
<td>0.1880</td>
<td>0.0969</td>
<td>0.1779</td>
<td>0.1132</td>
<td>0.1632</td>
<td>0.2229</td>
</tr>
<tr>
<td>$\beta(8)$</td>
<td>0.45</td>
<td>0.2910</td>
<td>0.2317</td>
<td>0.3120</td>
<td>0.2120</td>
<td>0.3422</td>
<td>0.2183</td>
<td>0.3877</td>
</tr>
</tbody>
</table>

Tab. 2. Results of a simulation study for an MS-PGARCH$_4$ (1,1) model with different values of the sample size T and 1000 replications.
ACKNOWLEDGEMENTS

The authors are deeply grateful to the Associate Editor and to the referee for their careful reading, useful remarks and constructive suggestions that substantially improved the quality of the paper.

(Received February 5, 2019)

REFERENCES

Billel Aliat, RECITS Laboratory, Faculty of Mathematics, USTHB, Algiers, Algeria and Centre de Recherche en Economie Appliquée pour le Développement (CREAD), Alger. Algeria.
e-mail: aliatbillel@yahoo.fr

Fayçal Hamdi, RECITS Laboratory, Faculty of Mathematics, USTHB, Algiers. Algeria.
e-mail: fhamdi@usthb.dz