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Abstract. We present new goodness-of-fit tests for the exponential distribution based
on equidistribution type characterizations. For the construction of the test statistics, we
employ an L

2-distance between the corresponding V-empirical distribution functions. The
resulting test statistics are V-statistics, free of the scale parameter.
The quality of the tests is assessed through local Bahadur efficiencies as well as the

empirical power for small and moderate sample sizes. According to both criteria, for many
common alternatives, our tests perform better than the integral and Kolmogorov-type tests
based on the same characterizations.

Keywords: goodness-of-fit; asymptotic efficiency; V-statistics; characterization; test for
exponentiality
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1. Introduction

The exponential distribution is one of the most frequently used distributions in

probability and statistics. It appears in survival analysis, reliability theory, and many

other domains. Therefore, numerous tests for testing the hypothesis of exponentiality

based on various ideas have been proposed and studied.

The exponential distribution possesses a substantial amount of characteriza-

tions, see, e.g., [10], [8], [1], [16]. As a result, many tests for exponentiality have

been developed using some of these characterizations, see, for instance, [19], [20],

[9], [6], [14], [15], [13]. Most of these characterizations use the equidistribution
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of two statistics, namely ω1 equals in distribution ω2 if and only if the parent

statistics has the exponential distribution with an unknown scale or location para-

meter.

A straightforward way to use an equidistribution-type characterization is to con-

sider the difference of the U-empirical or V-empirical distribution functions (df’s)

generated by two statistics ω1 and ω2, which should be small under the null hypoth-

esis of exponentiality.

There are several approaches for building a test statistic based on such a differ-

ence. One way is to integrate with respect to the usual empirical df. The resulting

integral statistic can be reduced to some U-statistic which is asymptotically normal

and usually has sufficiently high efficiency in the Bahadur sense against common

alternatives. The disadvantage of such a test statistic is that it cannot be consistent

against any alternative.

Another possibility is to take the maximum of modulus of the difference of U- or

V-empirical df’s. In this way we obtain statistics of the Kolmogorov type. These

statistics are consistent with respect to any alternative but usually have relatively low

Bahadur efficiency in comparison to the integral-type statistics. This is the common

shortcoming of the Kolmogorov-type statistics, see [17].

The aim of the present paper is to introduce test statistics of ω2-type, namely those

based on the integrated squared difference of V-empirical df’s, and to study their

asymptotic properties. Such statistics are very natural and they are also consistent

against any alternative. However, for a long time the quadratic statistics have not

been used in the theory of tests based on characterizations. The reason for this is

that such statistics lead to V-statistics with complicated degenerate kernels. The

limiting distribution as well as the calculation of the Bahadur efficiency depend

on the spectrum of a Fredholm integral operator with such a kernel. Due to the

complexity of these kernels, the spectrum and even the first eigenvalue (which is

only necessary for the calculation of Bahadur efficiency) can hardly be found by

analytical methods.

However, there are many methods for solving Fredholm integral equations numeri-

cally, see, e.g., [21]. Due to the exponentiality of the underlying distribution, we may

reduce the interval of integration to a bounded one. Using a standard quadrature

method on the finite interval with a large number of equidistant nodes, we arrive at

the evaluation of eigenvalues of some large matrix instead of the integral operator.

The modern packages like Wolfram Mathematica allow to calculate the first eigen-

values of a matrix with sufficient accuracy. This method in the context of symmetry

testing was already used in [4]. In this paper this idea is used for the calculation

of the Bahadur efficiency of quadratic tests when testing exponentiality on the basis

of its two well-known characterizations. We build corresponding quadratic tests and
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calculate their local Bahadur efficiency against common alternatives, which turns to

be reasonably high.

The structure of the paper is as follows. We formulate the so-called Puri-Rubin

and Desu characterizations of exponentiality and construct the corresponding test

statistics in Section 2. They turn to be V-statistics with complicated but bounded

kernels. In the same section we study asymptotic properties of the new statistics.

Section 3 is dedicated to calculations of the local Bahadur efficiency of the new tests.

We also provide the description of the procedure for an approximate evaluation of

the first eigenvalue of the integral operators related to the kernels of V-statistics

built above. We present the values of simulated powers for our tests against a set

of common alternatives in Section 4, while Section 5 contains some discussion of the

results.

2. Test statistic

Consider the following characterizations from [22] and [7], respectively.

Characterization 2.1 (Puri-Rubin (1970)). Let X1 and X2 be two independent

copies of a random variable X with probability density function f(x). Then X and

|X1 −X2| have the same distribution if and only if f(x) = λe−λx, x > 0, for some

λ > 0.

Characterization 2.2 (Desu (1971)). Let X1, X2, . . . , Xm be m independent

copies of a non-degenerate random variableX with distribution function F (x). Then

for each m, mmin{X1, . . . , Xm} and X have the same distribution if and only if

F (x) = 1− e−λx, x > 0, for some λ > 0.

Let X1, X2, . . . , Xn be independent and identically distributed (i.i.d.) non-nega-

tive random variables with an unknown absolutely continuous distribution func-

tion F . In view of Characterization 2.1 and Characterization 2.2 for m = 2, we

propose two novel, Cramér-von Mises-type test statistics

WP

n =

∫ ∞

0

(

1

n

n
∑

i=1

I{Xi < t} − 1

n2

n
∑

i,j=1

I{|Xi −Xj | < t}
)2

dFn(t),(2.1)

WD

n =

∫ ∞

0

(

1

n

n
∑

i=1

I{Xi < t} − 1

n2

n
∑

i,j=1

I{2min{Xi, Xj} < t}
)2

dFn(t)(2.2)

for testing the composite hypothesis of exponentiality H0 : F (x) = 1− e−λx, x > 0,

λ > 0. After integration, these statistics turn out to be V-statistics of order 5, i.e.,
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we have

W I

n =
1

n5

∑

i1,i2,i3,i4,i5

ΦI(Xi1 , Xi2 , Xi3 , Xi4 , Xi5), I ∈ {P ,D},

where ΦI is a symmetric function of its arguments.

We consider large values of our statistics to be significant. Notice that under the

null hypothesis both test statistics are scale free.

2.1. Asymptotic properties. The symmetric kernels of WP
n and W

D
n are given

by

ΦP(X1, . . . , X5)

=
1

5!

∑

π(5)

(I{|Xi1 −Xi2 | < Xi5}I{|Xi3 −Xi4 | < Xi5}

+ I{Xi1 < Xi5}I{Xi2 < Xi5} − 2I{Xi1 < Xi5}I{|Xi2 −Xi3 | < Xi5}),
ΦD(X1, . . . , X5)

=
1

5!

∑

π(5)

(I{2min(Xi1 , Xi2) < Xi5}I{2min(Xi3 , Xi4) < Xi5}

+ I{Xi1 < Xi5}I{Xi2 < Xi5} − 2I{Xi1 < Xi5}I{2min(Xi2 , Xi3) < Xi5}),

where π(5) is the set of all permutations {i1, i2, i3, i4, i5} of the set {1, 2, 3, 4, 5}.
It can be shown that the first projections of the kernels of our two test statistics

are equal to zero. The second projection is defined as

ϕI

2 (s, t) = E(ΦI(X1, X2, X3, X4, X5)|X1 = s,X2 = t), I ∈ {P ,D}.

After some calculations, one can obtain that the second projections of the kernels ΦP

and ΦD are given by

ϕP

2 (s, t) =
1

30
+

3

10
(e−2s−t + e−s−2t)− 3

20
(e−2t + e−2s)− 16

15
e−s−t

+
1

15
e−min(s,t)(2 − 3min(s, t)) +

1

30
e−max(s,t)(19− 6min(s, t)),

ϕD

2 (s, t) =
8

75
+

2

25
(e−5s + e−5t) +

2

15
(e−3s + e−3t)

− 1

20
(e−2s + e−2t)− 1

10
(e−s + e−t) +

2

15
(e−

3
2
t − e−3s)I{t 6 2s}

− 1

10
((1 − e−s)I{t 6 s}+ (1− e−t)I{s 6 t})

+
2

15
(e−

3
2
s − e−3t)I{s 6 2t} − 1

5
e−4min(s,t).
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The following theorem presents the asymptotic distribution of the considered tests

statistics under the null hypothesis.

Theorem 2.1. Let X1, . . . , Xn be an i.i.d. sample with the distribution function

F (x) = 1− e−λx, x > 0 for some λ > 0. Then

(2.3) nW I

n
d→ 10

∞
∑

k=1

δIkZ
2
k ,

I ∈ {P ,D}, where d→ denotes convergence in distribution, {δk}, k = 1, 2, . . . ,

is the sequence of eigenvalues of the integral operator AI defined by AIq(x) =
∫∞

0
ϕI
2 (x, y)q(y)e

−y dy, and Zk, k = 1, 2, . . . , are independent standard normal vari-

ables.

P r o o f. Since the kernel Φ is bounded and degenerate, the result follows from the

theorem for the asymptotic distribution of U-statistics with degenerate kernels [12],

Corollary 4.4.2 and the Bönner and Kirschner [3] formula connecting U- and V-

statistics, see also [12], §1.3. �

3. Local Bahadur efficiency

Let G = {G(x; θ), θ > 0} be a family of alternative distribution functions such
that G(x; 0) is exponential and the regularity conditions for V-statistics with weakly

degenerate kernels from [18], Assumptions WD are satisfied. For close alternatives

from G, the absolute local Bahadur efficiency for any sequence {Tn} of test statistics
is defined as

eff(T ) = lim
θ→0

cT (θ)

2K(θ)
,

where cT (θ) is the Bahadur exact slope, a function proportional to the exponential

rate of decrease of the test size when the sample size increases, and K(θ) is the mini-

mal Kullback-Leibler distance from the alternative to the class of null hypotheses.

The Bahadur exact slopes are defined as follows. Suppose that under an alter-

native the sequence {Tn} of test statistics converges in probability to some finite
function b(θ). Suppose also that the large deviations limit

lim
n→∞

n−1 lnPH0
(Tn > t) = −f(t)

exists for any t in an open interval I, on which f is continuous and {b(θ), θ > 0} ⊂ I.

Then the Bahadur exact slope is

(3.1) cT (θ) = 2f(b(θ)).
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For more details on the Bahadur theory we refer to [2] and [17].

Theorem 3.1. For the statistic W I
n , I ∈ {P ,D}, and a given alternative density

g(x; θ) from G, the local Bahadur exact slope is given by

cIW (θ) =
1

δI1

∫ ∞

0

∫ ∞

0

ϕI

2 (x, y)g
′

θ(x; 0)g
′

θ(y; 0) dxdy · θ2 + o(θ2), θ → 0,

where δI1 is the largest eigenvalue of the integral operator A
I defined by AIq(x) =

∫∞

0 ϕI
2 (x, y)q(y)e

−y dy.

The proof of this theorem follows from [18], Theorem 4.

To calculate the efficiency one needs to find δI1 , the largest eigenvalue. Since we

cannot obtain this eigenvalue analytically, we use the following approximation (see

also [4]).

First, we consider the “symmetrized” operator

(3.2) A
I
q(x) =

∫ ∞

0

ϕI

2 (x, y)q(y)e
−x/2 · e−y/2 dy,

which has the same spectrum as the operator AI .

Next, let us consider the “truncated” T I operator on the set of real functions with

support [0, B] defined by

T Iq(x) =

∫ ∞

0

ϕI

2 (x, y)q(y)e
−x/2 · e−y/2I(y 6 B)(1 − e−B)−1 dy.

For a sufficiently large B, the operators T I and A
I
differ on a set of a negligible

measure.

The sequence of symmetric linear operators defined by (m+1)× (m+1) matrices

M (m) = ‖m(m)
i,j ‖, 0 6 i 6 m, 0 6 j 6 m, where

(3.3) m
(m)
i,j = ϕI

2

(Bi

m
,
Bj

m

)
√

eBi/m − eB(i+1)/m ·
√

eBj/m − eB(j+1)/m · 1

1− e−B
,

converges in norm to T I when m → ∞. The operators T I and M (m) are symmetric

and self-adjoint, and the norm of their difference tends to zero as m tends to infinity.

Using the perturbation theory, see [11], Theorem 4.10, page 291, we obtain that

the spectra of these two operators are at the distance that tends to zero. Hence,

δ
(m)
1 —the sequence of the largest eigenvalues of M (m)—must converge to δI1 (B), the

largest eigenvalue of T I . When B goes to ∞, the eigenvalue δI1 (B) approaches δI1 .

Hence, for B large enough, δI1 (B) and δI1 coincide up to a desired number of digits.
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We apply this approximation procedure for B = 10. The values for different m

are presented in Table 1. The calculations were performed using the Wolfram Math-

ematica 11.0 software.

m 1000 2000 3000 4000 5000 6000

δP1 6.11 · 10−3 6.05 · 10−3 6.03 · 10−3 6.02 · 10−3 6.01 · 10−3 6.01 · 10−3

δD1 4.37 · 10−3 4.42 · 10−3 4.44 · 10−3 4.45 · 10−3 4.46 · 10−3 4.46 · 10−3

Table 1. The largest eigenvalue of M (m).

We consider the following four classes of alternatives

⊲ a Weibull distribution with density

(3.4) g(x; θ) = e−x1+θ

(1 + θ)xθ , θ > 0, x > 0;

⊲ a gamma distribution with density

(3.5) g(x; θ) =
xθe−x

Γ(θ + 1)
, θ > 0, x > 0;

⊲ a linear failure rate (LFR) distribution with density

(3.6) g(x; θ) = e−x−θx2/2(1 + θx), θ > 0, x > 0;

⊲ a mixture of exponential distributions with negative weights (EMNW(β)) with

density

g(x; θ) = (1 + θ)e−x − θβe−βx, θ ∈
(

0,
1

β − 1

]

, x > 0.

In Table 2 we present the absolute local Bahadur efficiencies of our tests accompa-

nied with the local Bahadur efficiencies of integral and Kolmogorov-type tests based

on the same two characterizations whose statistics are given below:

IPn =

∫ ∞

0

(

1

n

n
∑

i=1

I{Xi < t} − 1

n2

n
∑

i,j=1

I{|Xi −Xj | < t}
)

dFn(t);

DP

n = sup
t>0

∣

∣

∣

∣

1

n

n
∑

i=1

I{Xi 6 t} − 1

n2

n
∑

i,j=1

I{|Xi −Xj | 6 t}
∣

∣

∣

∣

;

IDn =

∫ ∞

0

(

1

n

n
∑

i=1

I{Xi < t} − 1

n2

n
∑

i,j=1

I{min(Xi, Xj) < t}
)

dFn(t);

DD

n = sup
t>0

∣

∣

∣

∣

1

n

n
∑

i=1

I{Xi 6 t} − 1

n2

n
∑

i,j=1

I{2min(Xi, Xj) 6 t}
∣

∣

∣

∣

.
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Bahadur efficiencies of these tests can be found in [5].

Weibull Gamma LFR EMNW(3)

IPn 0.821 0.788 0.337 0.949

DP
n 0.437 0.448 0.192 0.591

WP
n 0.733 0.719 0.308 0.891

IDn 0.697 0.790 0.149 0.746

DD
n 0.158 0.174 0.073 0.247

WD
n 0.485 0.544 0.138 0.600

Table 2. Absolute local Bahadur efficiency.

We can notice that the new tests have reasonable to high efficiencies and are

always more efficient than the corresponding Kolmogorov-type tests, while slightly

less efficient but comparable to the integral-type tests. In addition, the tests based

on the Puri-Rubin characterization are more efficient than those based on the Desu

characterization.

4. Power study

The empirical sizes and the powers of our tests are estimated by the Monte

Carlo method with 10 000 replicates at the level of significance 0.05. The set of

alternatives—commonly used in the literature—is given as

⊲ a Weibull W(θ) distribution with density

g(x; θ) = e−xθ

θxθ−1, θ > 0, x > 0;

⊲ a gamma Γ(θ) distribution with density

g(x; θ) =
xθ−1e−x

Γ(θ)
, θ > 0, x > 0;

⊲ a half-normal HN distribution with density

g(x) =

√

2

π

e−x2/2, x > 0;

⊲ a uniform U distribution with density

g(x) = 1, 0 6 x 6 1;
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⊲ a Chen’s CH(θ) distribution with density

g(x; θ) = 2θxθ−1ex
θ
−2(1−ex

θ

), x > 0;

⊲ a linear failure rate LF(θ) distribution with density

g(x; θ) = e−x−θx2/2(1 + θx), θ > 0, x > 0;

⊲ a modified extreme value EV(θ) distribution with density

g(x; θ) =
1

θ
e(1−ex)/θ+x, x > 0;

⊲ a log-normal LN(θ) distribution with density

g(x; θ) =
1

x
√
2πθ2

e−(log x)2/(2θ2), x > 0;

⊲ a Dhillon DL(θ) distribution with density

g(x; θ) =
θ + 1

x+ 1
(log(x+ 1))θe−(log(x+1))θ+1

, x > 0.

The results are shown in Table 3 (sample size of 20) and in Table 4 (sample

size of 50). In most cases the tests based on the Puri-Rubin characterization are

more powerful. The noticeable exceptions are heavy-tailed alternatives (Γ(0.4) and

W(0.7)), in which case the tests based on the Desu characterization are superior.

It is important to notice that the integral-type and Cramér-von Mises-type tests

have similar power, however we recommend the latter, taking into account their

consistency.

A
lt
.

E
x
p
(1
)

W
(1
.4
)

Γ
(2
)

H
N

U C
H
(0
.5
)

C
H
(1
)

C
H
(1
.5
)

L
F
(2
)

L
F
(4
)

E
V
(1
.5
)

L
N
(0
.8
)

L
N
(1
.5
)

D
L
(1
)

D
L
(1
.5
)

W
(0
.7
)

Γ
(0
.4
)

IPn 5 46 60 28 77 0 21 88 38 52 54 43 0 33 77 0 0

DP
n 5 38 52 23 65 0 16 76 30 42 44 47 1 32 69 0 0

WP
n 5 47 60 27 75 2 20 61 35 50 55 48 0 34 76 2 0

IDn 5 39 56 19 49 46 15 74 27 38 37 57 5 37 77 20 65

DD
n 5 23 34 13 42 0 8 49 15 23 23 39 3 24 50 1 0

WD
n 5 27 42 15 45 0 11 86 20 30 30 44 3 27 59 1 5

Table 3. Percentage of rejected hypotheses for n = 20.
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A
lt
.

E
x
p
(1
)

W
(1
.4
)

Γ
(2
)

H
N

U C
H
(0
.5
)

C
H
(1
)

C
H
(1
.5
)

L
F
(2
)

L
F
(4
)

E
V
(1
.5
)

L
N
(0
.8
)

L
N
(1
.5
)

D
L
(1
)

D
L
(1
.5
)

W
(0
.7
)

Γ
(0
.4
)

IPn 5 85 96 56 99 14 41 100 72 89 90 86 0 69 99 1 37

DP
n 5 75 91 46 98 23 29 99 60 78 83 90 9 67 98 7 51

WP
n 5 85 95 54 99 16 38 100 69 86 90 89 1 70 99 2 44

IDn 5 74 94 37 83 94 24 99 51 72 68 95 18 74 99 64 99

DD
n 5 47 69 23 87 9 15 89 33 49 50 75 3 50 88 5 20

WD
n 5 59 82 29 86 69 19 96 41 60 61 90 15 60 96 24 88

Table 4. Percentage of rejected hypotheses for n = 50.

5. Conclusions

In this paper we proposed a new class of characterization based exponentiality

tests of Cramér-von Mises-type. We derived their asymptotic distributions, and cal-

culated, for the first time for such a class of tests, their local Bahadur efficiencies

against some common alternatives. It turned out that our new tests have much higher

local Bahadur efficiencies than the Kolmogorov type tests based on the same char-

acterization and the tests comparable to the corresponding integral type statistics.

Taking into account their consistency against all fixed alternatives, they are good

candidates to be considered in a battery of exponentiality tests. This conclusion is

backed up by the power study in small sample size cases.

A c k n ow l e d g em e n t. We would like to thank the anonymous referee and

editor for their useful remarks that improved the paper.
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