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Abstract. The contribution focuses on Bernoulli-like random walks, where the past events
significantly affect the walk’s future development. The main concern of the paper is there-
fore the formulation of models describing the dependence of transition probabilities on the
process history. Such an impact can be incorporated explicitly and transition probabili-
ties modulated using a few parameters reflecting the current state of the walk as well as
the information about the past path. The behavior of proposed random walks, as well as
the task of their parameter estimation, are studied both theoretically and with the aid of
simulations.
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1. Introduction

One of the most common types of a discrete random process is a random walk,

first introduced by Pearson in 1905, see [7]. There exist many variations of a random

walk with various applications to real-life problems [9], [10]. Yet there are still new

possibilities and options regarding how to alter and improve the classical random

walk and present yet another model representing different real-life events. One such

modification is the random walk with varying step size introduced in 2010 by Tur-

ban [10] which, together with the idea of self-exciting point processes [3] and the

perspective of model applications in reliability analysis and also in sports statistics,

served as an inspiration for the random walk with varying transition probabilities

The research was supported by the grant No. 18-02739S of the Grant Agency of the
Czech Republic.

DOI: 10.21136/AM.2020.0335-19 271

http://dx.doi.org/10.21136/AM.2020.0335-19


introduced by Kouřim [4], [6]. The definition of the walk falls into a rather broad

class of processes described for instance in the paper of Davis and Liu [1]. However,

other assumptions, e.g. the condition of contraction, are not fulfilled by the walk and

thus the conclusions from [1] cannot be applied.

In the present paper, the theoretical properties of the model are described and fur-

ther examined, numerical procedures of model parameters estimation are specified,

and the results are tested on generated data.

The rest of the paper is organized as follows. Sections 2 and 3 describe the prop-

erties of different versions of the model, Section 4 provides results from a simulated

model evaluation and finally Section 5 concludes the work.

2. Random walk with varying probabilities

The random walk with varying probabilities is based on a standard Bernoulli

random walk [2] with some starting transition probability p0. This probability is

then altered after each step of the walk using a coefficient λ so that the repetition of

the same step becomes less probable. Formally, it can be defined as

Definition 2.1. Let {Xn}
∞

n=1 and {Pn}
∞

n=1 be sequences of discrete random

variables, and p0 ∈ [0, 1] and λ ∈ (0, 1) constant parameters, such that the first

random variable X1 is given by

P (X1 = 1) = p0, P (X1 = −1) = 1− p0.

Further,

(2.1) P1 = λp0 +
1

2
(1− λ)(1 −X1)

and for i > 2

P (Xi = 1|Pi−1 = pi−1) = pi−1, P (Xi = −1|Pi−1 = pi−1) = 1− pi−1,

(2.2) Pi = λPi−1 +
1

2
(1− λ)(1 −Xi).

The sequence {Sn}
∞

n=0, Sn = S0+
n
∑

i=1

Xi for n ∈ N, with S0 ∈ R some given starting

position, is called a random walk with varying probabilities, with {Xn}
∞

n=1 being the

steps of the walker and {Pn}
∞

n=1 transition probabilities.
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2.1. Properties. The random walk with varying probabilities was first intro-

duced in [4] and further elaborated in [6]. Following properties of the walk were

described in these previous papers.

The value of a transition probability Pt+k at each step t + k, t, k > 0 can be

computed from the knowledge of transition probability Pt and the realization of the

walk Xt+1, . . . , Xt+k using the formula

(2.3) Pt+k = Ptλ
k +

1

2
(1 − λ)

t+k
∑

i=t+1

λt+k−i(1 −Xi).

To compute the expected value of the transition probability and the position of the

walker, following formula can be used:

(2.4) EPt = (2λ− 1)tp0 +
1− (2λ− 1)t

2

and

(2.5) ESt = S0 + (2p0 − 1)
1− (2λ− 1)t

2(1− λ)

for all t > 1. This further yields EPt →
1
2 and ESt → S0 + (2p0 − 1)/2(1− λ) for

t → ∞.

Now, to describe the walk in more detail, let us prove the following propositions.

Proposition 2.2. For all t > 1 we have

(2.6) E(Xt) = (2λ− 1)t−1(2p0 − 1).

P r o o f. Using that E(Xt|Pt−1) = 2Pt−1 − 1, the proposition can be proved

directly using (2.4) as

E(Xt) = E(E(Xt)|Pt−1) = E(2Pt−1 − 1) = 2E(Pt−1)− 1

= 2
(

(2λ− 1)t−1p0 +
1− (2λ− 1)t−1

2

)

− 1 = (2λ− 1)t−1(2p0 − 1).

�

Corollary 2.3. The distribution of Xt converges to the Bernoulli (1,−1) dis-

tribution with p = 1
2 . This Bernoulli distribution is simultaneously the stationary

distribution of the random sequence Xt.
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P r o o f. As Xt are Bernoulli (1,−1), their distributions are fully characterized

by their expectations EXt, and it holds that EXt = 2 · EPt−1 − 1. Then the first

statement of the Corollary follows from the fact that EPt →
1
2 .

Further, let EPt−1 = 1
2 be the characteristics of Xt, i.e. EXt = 0. As then

EPt = EPt−1λ+ (1− λ)/2(1− EXt) =
1
2 , therefore EXt+1 = 0 again. �

R em a r k 2.4. For p0 = 1
2 and t > 1 or λ = 1

2 and t > 2 it holds that Xt is the

stationary random sequence with the distribution given by Corollary 2.3.

Proposition 2.5. For all t > 1 we have

(2.7) Var(Pt) = (3λ2 − 2λ)tp20 +
t

∑

i=1

K(i− 1)(3λ2 − 2λ)t−i − k(t)2,

where

k(t) = EPt = (2λ− 1)tp0 +
1− (2λ− 1)t

2

and

K(t) = k(t) · (−3λ2 + 4λ− 1) + (1− λ)2.

P r o o f. To prove the proposition, several support formulas have to be derived

first. From the definition of variance it follows that

(2.8) Var(Pt) = E(P 2
t )− E(Pt)

2,

E(Pt) is given by (2.4). Therefore, in order to prove the proposition, it is sufficient

to prove the following statement:

(2.9) E(P 2
t ) = (3λ2 − 2λ)tp20 +

t
∑

i=1

K(i− 1)(3λ2 − 2λ)t−i.

To do so, let us first express the relation between E(P 2
t ) and E(P 2

t−1) and E(Pt−1).

From the definition of the expected value and the definition of the walk (2.2) it

follows

(2.10) E(P 2
t ) = E[E(P 2

t |Pt−1)] = E
[

E(λPt−1 +
1

2
(1− λ)(1−Xt))

2|Pt−1

]

.

Using that E(Xt|Pt−1) = 2Pt−1 − 1, E(X2
t ) = 1 and further that

E[(1−Xt)
2|Pt−1] = E[(1− 2Xt +X2

t )|Pt−1] = E[(2 − 2Xt)|Pt−1] = 4(1− Pt−1),

274



equation (2.10) then yields

E(P 2
t ) = E

[

λ2P 2
t−1 + λPt−1(1− λ)E(1 −Xt|Pt−1) +

1

4
(1− λ)2E((1 −Xt)

2|Pt−1)
]

= E[λ2P 2
t−1 + 2λPt−1(1− λ)(1 − Pt−1) + (1− λ)2(1− Pt−1)]

and finally

(2.11) E(P 2
t ) = E(P 2

t−1)(3λ
2 − 2λ) + EPt−1(−3λ2 + 4λ− 1) + (1− λ)2.

Statement (2.9) can be proved using mathematical induction. Based on the trivial

fact that Ep0 = p0 and E(p0)
2 = p20, for t = 1 we get

E(P 2
1 ) = (3λ2 − 2λ)1p20 +

1
∑

i=1

K(i− 1)(3λ2 − 2λ)1−i = (3λ2 − 2λ)p20 +K(0)

= (3λ2 − 2λ)p20 +
(

(2λ− 1)0p0 +
1− (2λ− 1)0

2

)

· (−3λ2+4λ− 1)+(1− λ)2

= (3λ2 − 2λ)p20 + p0(−3λ2 + 4λ− 1) + (1− λ)2,

and from (2.11) it follows that (2.9) holds for t = 1. Now for the induction step

t → t+ 1 we get by substituting (2.9) into (2.11)

E(P 2
t+1) = E(P 2

t )(3λ
2 − 2λ) + EPt(−3λ2 + 4λ− 1) + (1− λ)2

=

(

(3λ2 − 2λ)tp20 +

t
∑

i=1

K(i− 1)(3λ2 − 2λ)t−i

)

· (3λ2 − 2λ) +K(t)

= (3λ2 − 2λ)t+1p20 +

t
∑

i=1

K(i− 1)(3λ2 − 2λ)t+1−i +K(t)

= (3λ2 − 2λ)t+1p20 +

t+1
∑

i=1

K(i− 1)(3λ2 − 2λ)t+1−i

and the formula thus holds. Now substituting (2.4) and (2.9) into (2.8) yields (2.7)

and proves the Proposition. �

From Proposition 2.5 the limit behavior of Var(Pt) can be derived easily:

Corollary 2.6. For t → ∞,

(2.12) lim
t→∞

Var(Pt) =
1
2 (1− λ2)

1− 3λ2 + 2λ
−

1

4
.
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Figure 1 shows the comparison of computed theoretical values of the transition

probability expected value and its variance and the actual observed values of average

transition probability and variance for different starting probabilities p0 and memory

coefficients λ.

λ = 0.20 λ = 0.75 λ = 0.95
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Figure 1. The observed average transition probability (dotted, upper part of the figure) of
a success punishing version of the random walk and its observed variance (dashed
lines, lower part of the figure) compared to the theoretical values computed us-
ing (2.4) and Proposition 2.5 (same colors, solid lines). The values were computed
from 1000 simulated realizations of each parameter combination.

Proposition 2.7. For all t > 1 we have

(2.13) Var(Xt) = 1− (2λ− 1)2(t−1)(2p0 − 1)2.

P r o o f. The fact that Xt are Bernoulli (1,−1) implies E(X2
t ) = 1. The state-

ment then follows directly from the definition of variance and Proposition 2.2. �

Corollary 2.8. For t → ∞,

(2.14) lim
t→∞

Var(Xt) = 1.

The variance of the position of the walker was studied with the help of computer

simulations, presented in Figure 2. The simulations show that the variance grows to
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infinity with t → ∞ depending on both p0 and λ. The derivation of an exact formula

will be the subject of further studies.
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Figure 2. The observed average position of the walker (dotted, “thicker”) of a success pun-
ishing version of the random walk and its variance (dashed lines, “thinner”).
The values were computed from 1000 simulated realizations of each parameter
combination.

3. Random walk with varying transition probability—alternatives

3.1. Success rewarding model. The basic definition of the random walk (Defi-

nition 2.1) presents a success punishing model, meaning that the probability of an

event is decreased every time that event occurs. The opposite situation can be con-

sidered, where the probability of an event is increased with each event’s occurrence.

Formally, such a random walk is defined in a following manner [6]:

Definition 3.1. Let {Xn}
∞

n=1, p0 and λ be as in Definition 2.1. Further let

{Pn}
∞

n=1 be a sequence of discrete random variables given by

P1 = λp0 +
1

2
(1− λ)(1 +X1),(3.1)

Pi = λPi−1 +
1

2
(1− λ)(1 +Xi) ∀ i > 2.(3.2)

The sequence {Sn}
∞

n=0, given as in Definition 2.1, is a random walk with varying

probabilities—success rewarding.
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In this section, all variables (P,X, S) are related to the success rewarding model.

This version of the model behaves differently than the success punishing version,

which can be observed with the help of the following propositions.

Proposition 3.2. For all t > 2,

(3.3) Pt = p0λ
t +

1

2
(1− λ)

t
∑

i=1

λt−i(1 +Xi).

P r o o f. The Proposition is proved using mathematical induction. For t = 2

using (3.1) and (3.2), we find that

P2 = λP1 +
1

2
(1 − λ)(1 +X2) = λ

(

λp0 +
1

2
(1− λ)(1 +X1)

)

+
1

2
(1− λ)(1 +X2)

= p0λ
2 +

1

2
(1 − λ)

2
∑

i=1

λ2−i(1 +Xi)

which is in accordance with (3.3). Now, for the induction step t → t+ 1 we obtain

from (3.2) and the induction assumption

Pt+1 = λPt +
1

2
(1− λ)(1 +Xt+1)

= λ

(

p0λ
t +

1

2
(1− λ)

t
∑

i=1

λt−i(1 +Xi)

)

+
1

2
(1− λ)(1 +Xt+1)

= p0λ
t+1 +

1

2
(1− λ)

t
∑

i=1

λt−i+1(1 +Xi) +
1

2
(1− λ)(1 +Xt+1)

= p0λ
t+1 +

1

2
(1− λ)

t+1
∑

i=1

λt+1−i(1 +Xi).

�

Proposition 3.3. For all t > 1, E(Pt) = p0.

P r o o f. Using E(Xt|Pt−1) = 2Pt−1 − 1 and (3.2), we obtain

EPt = E[E(Pt|Pt−1)] = E
[

E(λPt−1 +
1

2
(1 − λ)(1 +Xt)|Pt−1)

]

= E
[

λPt−1 +
1

2
(1− λ)(1 + 2Pt−1 − 1)

]

= E[λPt−1 + (1 − λ)Pt−1) = E(Pt−1).
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Recursively we get

(3.4) E(Pt) = E(p0) = p0.

�

Proposition 3.4. The sequence Xt is a stationary sequence of Bernoulli random

variables with values 1,−1 and with P (Xt = 1) = p0.

P r o o f. As the distribution of Xt is fully given by E(Pt−1), the statement

follows directly from Proposition 3.3. �

Further, we can calculate the expected position of the walker at a given step t just

from the knowledge of the input parameters.

Proposition 3.5. For all t > 1,

E(St) = S0 + t(2p0 − 1).

P r o o f. As EXt+1 = E[E(Xt+1|Pt)] = E(2Pt − 1), using the result of Proposi-

tion 3.3, we get

E(St+1) = E(St +Xt+1) = ESt + E(2Pt − 1) = ESt + (2p0 − 1)

which then recursively proves the statement. �

Corollary 3.6. For t → ∞,

lim
t→∞

E(St) =











∞ p0 > 1
2 ,

0 p0 = 1
2 ,

−∞ p0 < 1
2 .

Proposition 3.7. For all t > 1,

(3.5) Var(Pt) = (2λ− λ2)tp20 + p0(1 − λ)2
t

∑

i=1

(2λ− λ2)t−i − p20.

P r o o f. The proof will be done in several steps, similarly to the proof of Propo-

sition 2.5. It is based on the definition of variance (2.8). From Proposition 3.3 it
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follows E(Pt) = p0 that and it is thus sufficient to prove that

(3.6) E(P 2
t ) = (2λ− λ2)tp20 + p0(1− λ)2

t
∑

i=1

(2λ− λ2)t−i.

The proof will be done using mathematical induction again. First observe that

(3.7) E(P 2
t ) = E[E(P 2

t |Pt−1)] = E
[

E
(

λPt−1 +
1

2
(1− λ)(1 +Xt)

)2

|Pt−1

]

= EP 2
t−1(2λ− λ2) + p0(1− λ)2,

where the facts that E[(1 + Xt)
2|Pt−1] = 4Pt−1, E[(1 + Xt)|Pt−1] = 2Pt−1 and

Proposition 3.3 were used. Now for t = 1 we get

EP 2
1 = p20(2λ− λ2) + p0(1 − λ)2 = (2λ− λ2)1p20 + p0(1− λ)2

1
∑

i=1

(2λ− λ2)1−i

and thus (3.6) holds for t = 1. For the induction step t → t + 1 we get from the

induction assumption and (3.7)

E(P 2
t+1) = EP 2

t (2λ− λ2) + p0(1 − λ)2

= ((2λ− λ2)tp20 + p0(1− λ)2
t

∑

i=1

(2λ− λ2)t−i) · (2λ− λ2) + p0(1 − λ)2

= (2λ− λ2)t+1p20 + p0(1− λ)2
t

∑

i=1

(2λ− λ2)t−i+1 + p0(1 − λ)2

= (2λ− λ2)t+1p20 + p0(1− λ)2
t+1
∑

i=1

(2λ− λ2)t+1−i.

The Proposition is then proved by substituting (3.4) and (3.6) into (2.8). �

Notice that the last sum in (3.5), after re-indexing by j = t− i, yields

t−1
∑

j=0

(2λ− λ2)j =
1− (2λ− λ2)t

1− 2λ+ λ2
.

Hence, the limit follows immediately:

Corollary 3.8. For t → ∞,

lim
t→∞

Var(Pt) = p0(1− p0).
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Proposition 3.9. For all t > 1 we have

Var(Xt) = 4p0(1− p0).

P r o o f. As E(Xt) = 2p0 − 1 and E(X2
t ) = 1 the proof follows similarly as in

Proposition 2.7 directly from the definition of variance. �

3.2. Two-parameter models. Another level of complexity can be added by

using separate λ parameters for each direction of the walk. Again, two ways of

handling success are available.

Definition 3.10. Let {Xn}
∞

n=1 and p0 be as in Definition 2.1. Further, let

λ0, λ1 ∈ (0, 1) be constant coefficients and {Pn}
∞

n=1 be a sequence of discrete random

variables given by

P1 =
1

2
[(1 +X1)λ0p0 + (1−X1)(1 − λ1(1 − p0))],(3.8)

Pi =
1

2
[(1 +Xi)λ0Pi−1 + (1−Xi)(1− λ1(1− Pi−1))] ∀ i > 2.(3.9)

The sequence {Sn}
∞

n=0, given as in Definition 2.1, is a random walk with varying

probabilities—two-parameter success punishing.

Definition 3.11. Let {Xn}
∞

n=1 and p0 be as in Definition 2.1, λ0,λ1 as in Defi-

nition 3.10 and {Pn}
∞

n=1 be a sequence of discrete random variables given by

P1 =
1

2
[(1−X1)λ0p0 + (1 +X1)(1 − λ1(1 − p0))],

Pi =
1

2
[(1−Xi)λ0Pi−1 + (1 +Xi)(1− λ1(1− Pi−1))] ∀ i > 2.

The sequence {Sn}
∞

n=0, given as in Definition 2.1, is a random walk with varying

probabilities—two-parameter success rewarding.

Derivation of model properties is not so straightforward. The development of tran-

sition probability and its variance for different starting probabilities p0 and memory

coefficient pairs [λ0, λ1] = λ̄ for the two-parameter success punishing version of the

model is shown in Figure 3. Similarly as in the single λ version of the model, the

variance seems to depend on the λ̄ pair only. The expected transition probability

seems to converge to a constant value independently on both the starting probabil-

ity p0 and the memory coefficients λ̄. This interesting property of the walk will be

the subject of a further study.
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Figure 3. The development of the observed average transition probability (dotted, upper
part of the figure) of a two-parameter success punishing version of the random
walk and its variance (dashed lines, lower part of the figure). The values were
computed from 1000 simulated realizations of each parameter combination.

3.3. Other alternatives. The presented model of a random walk can be fur-

ther developed and more versions can be derived and described. These variants

include, but are not limited to, a multidimensional walk (with either one or multi-

ple λ parameters, success rewarding or success punishing), a walk with the tran-

sition probability explicitly dependent on more than the last step, i.e. Pt(k) ∼

Pt(Xt, Xt−1, . . . , Xt−(k−1)), or a walk with λ parameter not constant, but a function

of the time t, i.e. Pt(λ(t)). Detailed properties of such walks together with their

possible applications to real life problems will be the subject of a further study.

4. Simulations

A simulation study was performed in order to verify the possible usage of the

presented model in real life situations, namely on multiple processes with relatively

few events (i.e. multiple short walks of the same kind). Such processes include for

example the recurrence of diseases (few recurrences but many patients), reliability

of machines (few failures but multiple same machines) or the modelling of sports

(few significant events in a match but multiple matches). The experiment consisted

of generating K random walks of length n, of the same walk type and parameter
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configuration, and estimating the walk type and parameter values from the generated

data. Four different tasks were considered:

(1) find λ or [λ0, λ1] (further denoted as λ̃) with known p0 and model type,

(2) find p0 with known λ̃ and model type,

(3) find p0 and λ̃ with known model type,

(4) find model type without any prior knowledge.

The following parameter values were considered for data generation: K ∈ {5, 100},

n ∈ {5, 10, 50, 100}, p0 ∈ {0.5, 0.8, 0.9, 0.99}, λ ∈ {0.5, 0.8, 0.9, 0.99} and [λ0, λ1] ∈

{[0.5, 0.8], [0.1, 0.5], [0.5, 0.99], [0.99, 0.9]}.

Tasks 1–3 were solved using the maximum likelihood estimate (MLE), see [8].

The derivation of the theoretical likelihood values is rather complicated; therefore

a numerical approach using the Python programming language and its scientific

package SciPy was applied. The Akaike Information Criterion AIC = 2k − 2 ln(L̂),

where k is the number of model parameters and L̂ is the maximal likelihood, was

then used for the last task.

Each experiment was repeated independently N = 100 times for each parameter

combination and sample characteristics were computed from the 100 parameter esti-

mates. To assess the quality of the parameter estimation (tasks 1–3), four different

evaluation criteria were tested.

(1) The true parameter value lies within the standard (1−α) two-sided confidence

interval around the mean,

(2) the true parameter value lies within the “percentile” interval, i.e. between the

100 · 1
2αth and 100(1− 1

2α)th percentile,

(3) the mean fitted parameter value lies within the “proximity” interval around the

true parameter value ω, computed as [ω − 1
2αω, ω + 1

2αω],

(4) the median fitted parameter value lies within the “proximity” interval.

To evaluate task 4, all four presented models were fitted on the set of K walks and

the AIC was computed for each one of them. The model with the lowest AIC value

was then selected. The quality of such estimation for the given walk configuration

was then assessed using the proportion of the number of correctly chosen models to

the number of analyzed walk sets N .

The above mentioned criteria serve only as an approximate tool to evaluate the

estimate’s quality, however the results show that the model can be successfully fitted

to empirical data. For K = 100, α = 0.1 and all combinations of input parameters

and walk lengths λ̃, p0 and n, 92% of all evaluation criteria (for tasks 1–3) were

successful and the correct model was found in 85% of cases (task 4). As expected,

the results are less convincing for K = 5, with only 73% of all evaluation criteria

being successful and 70% of correctly found models. An example of the parameter
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estimation evaluation can be seen in Table 1 (there just task 1), and an example

of the model type identification results (task 4) can be observed in Table 2. Both

tables contain only a brief illustration of results due to space limitations. Full results

of all evaluation setups, i.e. combinations of input parameters λ̃ and p0, number of

observed walks K and their different lengths n as well as several values of parameter

α can be found in the GitHub repository (see the last paragraph of the paper).

type mean st. dev. median percentile

K = 100 n = 5 SP 0.505 0.043 0.504 [0.439, 0.576]

SR 0.502 0.033 0.503 [0.451, 0.549]

SP2 0.505 0.060 0.501 [0.399, 0.606]

SR2 0.491 0.047 0.490 [0.415, 0.564]

n = 100 SP 0.499 0.008 0.499 [0.484, 0.511]

SR 0.502 0.022 0.502 [0.460, 0.535]

SP2 0.502 0.012 0.502 [0.478, 0.521]

SR2 0.498 0.026 0.501 [0.452, 0.535]

K = 5 n = 5 SP 0.468 0.155 0.495 [0.214, 0.690]

SR 0.489 0.214 0.499 [0.000, 0.830]

SP2 0.462 0.209 0.464 [0.139, 0.780]

SR2 0.521 0.211 0.527 [0.123, 0.923]

n = 100 SP 0.493 0.037 0.494 [0.419, 0.554]

SR 0.485 0.102 0.496 [0.391, 0.624]

SP2 0.497 0.056 0.498 [0.405, 0.586]

SR2 0.461 0.173 0.513 [0.001, 0.655]

Table 1. The table shows an example of task 1 evaluation results, with true parameter
values λ = 0.5 or λ0 = 0.5 (and corresponding λ1 = 0.8), and p0 = 0.5, α = 0.1.
The mean of parameter estimates and its standard deviation and the median of
parameter estimates and the corresponding “percentile” interval are presented.
SP stands for success punishing, SR for success rewarding, the number 2 denotes
the model with two λ parameters.

K n SP SR SP2 SR2

100 5 83% 80% 100% 100%

100 86% 88% 100% 100%

5 5 84% 85% 42% 34%

100 82% 80% 100% 93%

Table 2. The table shows model estimation success rate. Notation and parameter configu-
ration is the same as in Table 1.
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Longer walks show generally better results when finding the coefficients λ̃ espe-

cially for the success rewarding version of the model (as seen for example in row 10

in Table 1), while the performance of finding correct p0 seems independent on the

walk’s length. This is not surprising, as the parameter p0 affects mostly the first few

steps of the walk, while λ̃ play their role thorough the entire course of the walk. As

expected, tasks 1–2 show better results than task 3, as there are less parameters to

estimate.

5. Conclusion

This work follows up on the recent results on random walks with varying probabil-

ities. It describes and proves certain properties of such a walk, while other properties

have been studied with the help of numerical methods. The study also shows the

results of the maximum likelihood and AIC based estimations of model parameters

and types using optimization procedures. The method has been successfully tested

on a set of randomly generated data. The presented model has also many possible

uses in real life applications. Such a type of random walk describes especially well

processes where either a single or just a small number of events can significantly af-

fect the future development of the process. Such processes can be found in reliability

analysis, medical as well as econometric studies, and very often in sports model-

ing. The authors recently presented a study where the success rewarding model was

applied to predict the in-play development of a Grand Slam tennis matches with

compelling results when used for live betting against a bookmaker [5].

The source code containing all functionality mentioned in this article is freely avail-

able as open source at GitHub (https://github.com/tomaskourim/amistat2019).
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