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Abstract. Scatter halfspace depth is a statistical tool that allows one to quantify the
fitness of a candidate covariance matrix with respect to the scatter structure of a probability
distribution. The depth enables simultaneous robust estimation of location and scatter, and
nonparametric inference on these. A handful of remarks on the definition and the properties
of the scatter halfspace depth are provided. It is argued that the currently used notion of
this depth is well suited especially for symmetric random vectors. The scatter halfspace
depth closely relates to an appropriate distance of matrix-generated ellipsoids from an upper
level set of the (location) halfspace depth function. Several modifications and extensions to
the scatter halfspace depth are considered, with their theoretical properties outlined.
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1. Introduction: The depth of points and matrices

In recent years, the idea of depth functions has attracted considerable attention

in mathematical statistics. We consider the halfspace depth proposed by Tukey [12]

and extensions of this function to scatter matrices.

1.1. Location halfspace depth. For P(Rd), the collection of Borel probability

measures on Rd, and X ∼ P ∈ P(Rd), the halfspace depth of x ∈ Rd with respect

to (w.r.t.) P is given as the minimum P -probability of a halfspace that contains x:

(1.1) hD(x;P ) = inf
u∈Sd−1

P(u⊤X 6 u⊤x),

where S
d−1 stands for the unit sphere in Rd. For P given, the depth (1.1) acts

as a centrality index of x. The higher hD(x;P ) is, the more centrally located the
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point x is w.r.t. the mass of P . The maximum value Π(P ) = sup
x∈Rd

hD(x;P ) can

be seen as an indicator of the degree of symmetry of P ([8], Section 4), with more

symmetric distributions attaining Π(P ) closer to 1/2. It is, however, not true that

only symmetric distributions attain depth 1/2. For instance, Π(P ) > 1/2 for all

P ∈ P(R), where the depth is maximized at the usual (univariate) median of P .

More generally, regions of the form

(1.2) Pδ = {x ∈ R
d : hD(x;P ) > δ} for δ ∈ (0,Π(P )]

are a collection of nested compact convex sets that naturally induce a P -dependent

ordering on Rd, and can be recognized as a generalization of quantiles to multivariate

probability distributions. In particular, the halfspace median

(1.3) xP = Cen({x ∈ R
d : hD(x;P ) = Π(P )}),

the centroid1 of the set of maximizers of hD(·;P ), generalizes the median to Rd.

In geometry, ideas closely related to hD are known at least since the early 1900’s.

A prominent concept equivalent to the depth (1.1) is that of floating bodies, pioneered

by Dupin [2] in 1822. Take a convex bodyK ⊂ R
d—a compact, convex set in Rd with

nonempty interior. Since the uniform probability measure PK on K is an element

of P(Rd), we identify K with PK . Given δ > 0, the floating body of K is defined

as the set K[δ] ⊂ K such that all the supporting hyperplanes to K[δ] cut off a set of

volume δ vold(K) from K, for vold(K) the volume of K. If the floating body exists,

it can be shown to coincide with the central region (1.2) of PK . Thus, the central

regions (1.2), and by extension the depth (1.1), generalize floating bodies to arbitrary

probability measures. A comprehensive survey of these connections is [8]. We will

draw from these relations throughout the paper, and obtain analogous insights into

the geometric representation of the scatter halfspace depth.

1.2. Scatter halfspace depth. One way to look at the halfspace depth (1.1) is

to consider it to be a gauge of appropriateness of x as a location parameter of P . In

this context, hD is sometimes also called the location halfspace depth. The halfspace

median (1.3) certainly is a reasonable location parameter. The next natural step

is the extension of this idea to the scatter structure of multivariate distributions,

recently pursued in [1] and [9]. For given X ∼ P ∈ P(Rd) and T (introduced below),

1We denote the centroid of a set K ⊂ R
d by Cen(K). For K of positive volume, the

centroid is the expectation of the uniform probability distribution on K. We also write
Cen({x}) = x for x ∈ R

d.
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the depth of a symmetric, positive definite d× d matrix Σ (we write also Σ ∈ Pd) is

proposed to be evaluated by

(1.4) shD(Σ;P )

= inf
u∈Sd−1

min
{
P
(
|u⊤(X − TP )| 6

√
u⊤Σu

)
,P

(
|u⊤(X − TP )| >

√
u⊤Σu

)}
.

This depth is called the scatter halfspace depth of Σ w.r.t. P . In (1.4), T : P(Rd) →
R

d : P 7→ TP is an affine equivariant location functional, that is a measurable map

such that TPA,b
= ATP + b for any A ∈ Rd×d nonsingular and b ∈ Rd, where PA,b is

the distribution of AX + b. Examples of affine equivariant location functionals are

the expected value, the centre of symmetry, or the halfspace median (1.3). However,

in connection with the depth only the halfspace median has been considered in [9]

since the other two functionals may be undefined for general distributions. Any

matrix Σ that maximizes shD(·;P ) over Pd is called a scatter median of P .

It is instructive to see what form shD takes for univariate distributions. There,

the scatter halfspace depth of σ2 > 0 w.r.t. X ∼ P ∈ P(R) is

shD(σ2;P ) = min{P(|X − TP |2 6 σ2),P(|X − TP |2 > σ2)}.

If T is the (univariate) median and the support of P is connected, the scatter median

of P is the squared median absolute deviation, (the square of) a well-known robust

scale functional, with the maximum depth being at least 1/2.

In this note we are concerned with the geometry behind the mapping shD, in the

same way as the geometry of hD was studied in [8]. We discuss the general definition

of shD, and interpret the depth (1.4) in terms of probabilities of halfspaces and float-

ing bodies. We draw connections with the theory of approximation of convex bodies

by ellipsoids. Numerous minor modifications of the depth (1.4) are suggested. These

appear to aid the geometric intuition behind the concept, and possess more conve-

nient theoretical properties, but at the same time do not lose any of the benefits of

the original scatter halfspace depth. We conclude the present note with an important

discussion about multivariate symmetry of measures in connection with shD.

Assumption. To avoid technical nuances, in the sequel we consider only distri-

butions P ∈ P(Rd) that are continuous in the sense that all hyperplanes attain null

P -probability. This assumption is by no means necessary, but it will greatly facilitate

our exposition.
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2. Properties of the scatter halfspace depth

2.1. Centring: The choice of the location functional. Just as for the lo-

cation halfspace depth, there are only few types of multivariate distributions whose

scatter halfspace depth was computed exactly in the literature. The most impor-

tant cases are the elliptically symmetric distributions2 and K-symmetric distribu-

tions3 [6]. All these measures are centrally symmetric4 around a unique point θ ∈ Rd.

Therefore, for each such P , its centre of symmetry TP = θ is the unique affine in-

variant location functional [5], and there is no ambiguity in the choice of T in (1.4).

The situation is different for general probability measures. If P is not symmetric,

it is natural to employ the halfspace median (1.3). Nevertheless, it appears that

especially for asymmetric distributions, it may be beneficial to consider also other

location functionals. One further reasonable functional that fits the framework of

scatter halfspace depth will be introduced in Section 3.

2.2. Symmetrization. To get some intuition for the geometric meaning of shD,

we explore the sets whose probabilities are compared in (1.4). First, note that these

sets are complementary in the sense that, up to the common boundary hyperplanes

{x ∈ Rd : u⊤(x − TP ) = ±
√
u⊤Σu}, whose probabilities are supposed to be zero,

they decompose Rd. Thus, it is enough to analyse only the first term in the minimum

in (1.4). For any c > 0 the region

Su,c = {x ∈ R
d : |u⊤(x− TP )| 6 c}

is the closed slab between two parallel hyperplanes whose unit normal is u, in the

same distance c from the central point TP . Thus, min{P (Su,c), 1 − P (Su,c)} =

1/2 − |1/2 − P (Su,c)| is a measure of deviation of the probability of the slab Su,c

from 1/2. The distance c =
√
u⊤Σu = ‖Σ1/2u‖, of course, depends on both Σ and u.

This will be discussed in detail in Section 2.3.

Geometrically, in (1.4) we therefore

⊲ consider the collection of all slabs {Su,
√
u⊤Σu}u∈Sd−1 centred at TP whose width

is controlled by a given function of u and Σ, and

2We say that P ∈ P(Rd) is spherically symmetric if it is invariant with respect to orthog-
onal transformations. P is said to be elliptically symmetric if it is a nonsingular affine
image of a spherically symmetric distribution. For details see [3].

3 For an origin-symmetric convex body K, the measure P ∈ P(Rd) is said to be K-

symmetric if its characteristic function ψ(t) depends on t ∈ R
d only through its

Minkowski functional ‖t‖K = inf{λ > 0: t ∈ λK}.
4A distribution X ∼ P ∈ P(Rd) is said to be centrally symmetric around θ ∈ R

d if

X − θ
d
= −(X − θ), with

d
= standing for “is equal in distribution”.
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⊲ search for a direction u, where the probability of a slab deviates the most from 1/2.

The absolute value in (1.4) means that any potential asymmetries of P around TP

are disregarded. Consider the two halfspaces in Rd complementary to Su,c

(2.1) H−
u,c = {x ∈ R

d : u⊤(x− TP ) 6 −c},
H+

u,c = {x ∈ R
d : u⊤(x− TP ) > c}.

The fact that P (H−
u,c) 6= P (H+

u,c) does not affect the depth of Σ at all, as in (1.4)

only P (Su,c) = 1− (P (H−
u,c)+P (H+

u,c)) is considered. These remarks are formalized

in the following theorem.

Theorem 2.1. For X ∼ P ∈ P(Rd), denote by P 1 ∈ P(Rd) the distribution of

2TP − X , and by P 2 ∈ P(Rd) the distribution of the mixture of X and 2TP − X

with equal mixing proportions. Then

shD(Σ;P ) = shD(Σ;P 1) = shD(Σ;P 2) ∀Σ ∈ Pd.

P r o o f. We may assume that TP = 0. Directly from (1.4) we have

shD(Σ;P ) = inf
u∈Sd−1

min
{
P
(
|u⊤X | 6

√
u⊤Σu

)
,P

(
|u⊤X | >

√
u⊤Σu

)}

= inf
u∈Sd−1

min
{
P
(
|−u⊤X | 6

√
u⊤Σu

)
,P

(
|−u⊤X | >

√
u⊤Σu

)}

= shD(Σ;P 1) = inf
u∈Sd−1

1
2

(
min

{
P
(
|u⊤X | 6

√
u⊤Σu

)
,P

(
|u⊤X | >

√
u⊤Σu

)}

+min
{
P
(
|−u⊤X | 6

√
u⊤Σu

)
,P

(
|−u⊤X | >

√
u⊤Σu

)})
= shD(Σ;P 2).

�

The scatter depth (1.4) can therefore be seen to act on the symmetrized mea-

sures P 2 from Theorem 2.1, instead of the original ones. This, of course, does not

affect the analysis of scatter patterns of centrally symmetric distributions ([1], [9]),

but it does limit the overall resolution of the depth in terms of its discrimination

between different measures. A related concern connects with the halfspace depth

characterization problem [7]. If a (location) depth is intended to serve as a gener-

alization of quantiles, the knowledge of the depth of all points of the sample space

w.r.t. P should fully determine P . Theorem 2.1 shows that the scatter halfspace

depth does not recognize asymmetric distributions. Therefore, it may be worth-

while to relax the implicit symmetry in (1.4) by considering the probabilities of the

halfspaces (2.1) separately. This will be done in Section 3.
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2.3. The special role of ellipticity. Elliptically symmetric distributions play

a crucial role in the theory of depth. They form an invariance class for the location

halfspace depth (1.1), as the depth contours (and floating bodies) of any such dis-

tribution P are ellipsoids of the same centre and shape as the scatter ellipsoid that

governs the geometry of P .

To any central point µ ∈ Rd and a shape matrix Σ ∈ Pd it is possible to assign

a nondegenerate ellipsoid

K(µ,Σ) =
{
x ∈ R

d :
√
(x− µ)⊤Σ−1(x− µ) 6 1

}
,

sometimes called the Mahalanobis ellipsoid, with centre µ and shape Σ. For µ

and Σ taken to be a location and a scatter parameter, respectively, of an elliptically

symmetric P ∈ P(Rd), K(µ,Σ) may be used to visualise P .

The expression c =
√
u⊤Σu from (1.4) that appears in (2.1) naturally relates with

the support function of the set K(µ,Σ). Recall that for a convex body K ⊂ Rd, the

support function of K is defined as

hK : S
d−1 → R : u 7→ sup{u⊤x : x ∈ K}.

It has a nice geometric interpretation—hK(u) is the signed distance from the origin

to a hyperplane with normal u that supports K, see Fig. 1. For ellipsoids we get

hK(µ,Σ)(u) = u⊤µ+
√
u⊤Σu.

The orthogonal distance c from the centre TP to a boundary hyperplane of a slab

Su,c is given by u⊤(X − TP ) 6
√
u⊤Σu, or equivalently by u⊤X 6 hK(TP ,Σ)(u).

This offers an attractive alternative formulation to shD. One computes the depth

of Σ ∈ Pd as 1/2 minus the largest deviation of the probability of a slab between

the two parallel hyperplanes supporting K(TP ,Σ) from 1/2 (see Fig. 1). Now we

recognize the special role played by ellipsoids in (1.4). Likewise, this makes it easy

to accommodate also geometric shapes and convex bodies different from ellipsoids

into shD, the only modification being the replacement of the support function of an

ellipsoid
√
u⊤Σu by a support function of another body. Such replacements are quite

natural in the context ofK-symmetric distributions, such as the multivariate Cauchy

distribution with independent marginals studied in [9]. There, it is convenient to

consider the support function of the convex body

K◦ = {x ∈ R
d : x⊤y 6 1 ∀ y ∈ K}

that is polar to K to detect deviations from the K-symmetry of P . For more details

we refer to [6] and Sections 1.6.1 and 1.7.1 from [11]. Note that a polar body to
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Figure 1. Left: A slab Su,c (region between dashed lines) in the direction u (arrow) from
TP = 0 (cross) that corresponds to Σ ∈ Pd (ellipse). The P -probability of all
such slabs is compared with 1/2 in the computation of (the symmetrized) shD
in (1.4). Right: A floating body P1/4 (brown) and the slab between two parallel
supporting hyperplanes of the ellipse and P1/4, respectively, (coloured region);
see Theorem 3.1.

an ellipsoid is an ellipsoid. Therefore, our theory is consistent with the well-known

fact that the K-symmetric probability measures for K an ellipsoid are exactly the

elliptically symmetric distributions.

3. Generalized scatter halfspace depth

Let T be an affine equivariant location functional. Typically, we mean the half-

space median (1.3); another option will be considered below. In accordance with the

discussion from Section 2, consider the asymmetric version of the scatter depth of

Σ ∈ Pd w.r.t. X ∼ P ∈ P(Rd)

(3.1) s̃hD(Σ;P ) = 2
(

1
4 − sup

u∈Sd−1

∣∣1
4 − P(u⊤(X − TP ) >

√
u⊤Σu)

∣∣
)
+
,

where x+ is the positive part of x ∈ R. If X ∼ P is centrally symmetric about TP ,

we have 2P(u⊤(X − TP ) >
√
u⊤Σu) = P(|u⊤(X − TP )| >

√
u⊤Σu) and

s̃hD(Σ;P ) = inf
u∈Sd−1

(
1
2 −

∣∣ 1
2 − P(|u⊤(X − TP )| >

√
u⊤Σu)

∣∣
)
= shD(Σ;P ).

For asymmetric distributions, s̃hD is a depth different from shD. Take, for instance,

d = 1. In that case, the depth reduces for σ > 0 to

s̃hD(σ2;P ) = 2
(
1
4 −max

{∣∣ 1
4 − P(X > TP + σ)

∣∣,
∣∣ 1
4 − P(X 6 TP − σ)

∣∣})
+
.
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Here, we see why the positive part in (3.1) is necessary. For very asymmetric distri-

butions, the probability P(X > TP + σ) may exceed5 1/2.

Our motivation for writing the supremum in (3.1) comes from an interesting ob-

servation connecting the depth shD with the floating body of P .

Theorem 3.1. Let P ∈ P(Rd) be such that the central region P1/4 is a floating

body, i.e. each supporting hyperplane of P1/4 cuts off a halfspace of P -probability 1/4.

Then

(3.2) sup
u∈Sd−1

∣∣1
4 − P

(
u⊤(X − TP ) >

√
u⊤Σu

)∣∣ = dP (K(TP ,Σ), P1/4),

where dP is a pseudometric in the space of convex bodies given by

dP (K,L) = sup
u∈Sd−1

P(u⊤X ∈ [hK(u), hL(u)]).

In the last formula, by [a, b] we mean the interval between a and b even if b < a. If,

in addition, the support of P is Rd, dP is a metric.

P r o o f. If P1/4 is a floating body, P(u
⊤X > hP1/4

(u)) = 1/4 for each u ∈ S
d−1

since the hyperplane {x ∈ Rd : u⊤x = hP1/4
(u)} supports P1/4. This gives the first

part of the statement.

To verify that dP is a (pseudo)metric, we need to show its nonnegativity, symmetry

and verify the triangle inequality. The first two conditions are obviously satisfied.

For the triangle inequality, take convex bodies K,L,M ⊂ Rd. Take ε > 0 small and

find a direction v ∈ S
d−1 such that P(v⊤X ∈ [hK(v), hL(v)]) > dP (K,L) − ε. We

may assume that hK(v) 6 hL(v). If M satisfies hM (v) 6 hK(v), necessarily

dP (K,M) + dP (M,L) > dP (M,L) = sup
u∈Sd−1

P(u⊤X ∈ [hM (u), hL(u)])

> P(v⊤X ∈ [hM (v), hL(v)]) > P(v⊤X ∈ [hK(v), hL(v)]) > dP (K,L)− ε.

A similar inequality can be shown if hM (v) > hL(v). In the remaining situation

when hK(v) < hM (v) < hL(v), we write

dP (K,M) + dP (M,L) > P(v⊤X ∈ [hK(v), hM (v)]) + P(v⊤X ∈ [hM (v), hL(v)])

= P(v⊤X ∈ [hK(v), hL(v)]) > dP (K,L)− ε.

In all three cases, these inequalities are true for any ε > 0, and taking a limit as

ε → 0 allows us to conclude.

5 Take, for example, TP the expected value and P extremely skewed.
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The equality of the support functions of convex bodies is equivalent with the

equality of the bodies ([11], Section 1.7.1). This means that for any pair of distinct

K,L ⊂ Rd we can find u ∈ S
d−1 where the support functions differ, and the condition

on the support of P guarantees that the P -mass of the slab between the supporting

hyperplanes of K and L in direction u is nonnull. Thus, necessarily dP (K,L) > 0.

�

Theorem 3.1 gives a valuable insight into the geometry of shD—in regular situ-

ations when the 1/4-floating body of P exists, the depth (3.1) is just a monotone

transform of the distance of the Mahalanobis ellipsoidK(TP ,Σ) from P1/4. In partic-

ular, the asymmetric scatter halfspace depth s̃hD attains its maximum value of 1/2

if and only if the 1/4-floating body of P is an ellipsoid centred at TP . By Dupin’s

theorem ([8], Sections 4.3.1 and 6.0.1), if the boundary of the central region P1/4

from (1.2) is smooth6, P1/4 must be a floating body of P . Therefore, for P such that

P1/4 is an ellipsoid, Theorem 3.1 is valid.

The assumption of P having a floating body is not crucial in Theorem 3.1. For

X ∼ P not satisfying this condition, an analogous result is readily available in terms

of a function q : S
d−1 → R that assigns to u ∈ S

d−1 the (univariate) 3/4-quantile

of u⊤X . The scatter halfspace depth (3.1) is in this situation a (pseudo)metric be-

tween q and hK(TP ,Σ) in the space of real-valued functions defined on S
d−1. Further-

more, the conclusion of the previous paragraph is still true — for P with full support,

the maximum depth (3.1) equals 1/2 if and only if P1/4 is an ellipsoid centered at TP .

In the definition (3.1) it is also possible to avoid the implicit dependence on the

halfspace median having to be the centre of the region P1/4. In connection with

floating bodies, the literature in convex geometry offers a rich collection of plausible

alternative location functionals in the form of affine invariant points [5]. A particu-

larly well suited example appears to be xP,δ = Cen(Pδ). Obviously, for δ = Π(P ) we

recover the halfspace median. Nevertheless, this more general setting directly allows

to consider in (3.1) the point TP = xP,1/4. If P1/4 is an ellipsoid, this choice assures

that the maximum scatter halfspace depth s̃hD is 1/2. In view of the preceding

discussion and Theorem 3.1, we obtain the following corollary.

Theorem 3.2. For any P ∈ P(Rd) such that Π(P ) > 1/4 and T the centroid

of P1/4, the following statements are equivalent:

(1) The central region P1/4 is an ellipsoid.

(2) sup
Σ∈Pd

s̃hD(Σ;P ) = 1/2.

6 Through each point x on the boundary of P1/4 passes a single hyperplane support-

ing P1/4.
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Note that for d = 1, the affine invariant point xP,1/4 is the mid-quartile of

P ∈ P(R), each distribution satisfies the conditions from Theorem 3.2, and a max-

imizer of s̃hD(·;P ) is the square of the semi-interquartile range of P , another well

studied scale functional.

3.1. Additional theoretical properties. The scatter depth (3.1) has many

good properties. Because for centrally symmetric distributions it coincides with

the depth (1.4), it inherits the minimax optimality under Huber’s contamination

model [1]. Due to the affine equivariance of the central regions (1.2), the depth s̃hD

is affine invariant in the sense that s̃hD(AΣA⊤;PA,b) = s̃hD(Σ;P ) for any A ∈ Rd×d

nonsingular, b ∈ Rd, and PA,b the distribution of AX+b with X ∼ P . The depth also

satisfies the property of monotonicity relative to the deepest scatter, as requested

by [9], using a proof analogous to that from [9], Theorem 3.3. By Theorem 3.2, the

depth s̃hD is Fisher consistent not only for elliptically symmetric distributions, but

for any distribution whose 1/4-floating body is an ellipsoid (centred at TP ). Finally,

for any Σ such that dP (P1/4,Σ) > 1/4 we have s̃hD(Σ;P ) = 0. In particular, if

for a sequence {Σn}∞n=1 ⊂ Pd the collection of ellipsoids K(0,Σn) is unbounded, or

approaches (in the Hausdorff distance) a set with empty interior, s̃hD(Σn;P ) → 0.

We have verified conditions (Q1)–(Q4) requested from a scatter depth in [9], and

much more.

3.2. Some issues with the scatter depth. It is important to note that there

are also difficulties with the definition of the scatter depth. Just as the original

shD, the depth s̃hD is neither quasi-concave, nor monotone, with respect to the

geodesic topology of positive definite matrices ([9], Fig. 2). This is caused by the

quadratic form u⊤Σu, a function not directly compatible with the topology of Pd,

in the definition of the depth (3.1); see also [6], Section 5. Another shortcoming

appears to be the arbitrariness of the floating body P1/4 used in formula (3.2).

The constant 1/4 is well justified for (centrally) symmetric distributions, or more

generally if Π(P ) = 1/2. For asymmetric distributions in higher dimensions, it may

however happen that the set P1/4 is empty. In that case, it is natural to consider a

depth based on the distance dP (·, Pδ) for a different choice of δ < Π(P ). Sensible

alternatives appear to be δ = Π(P )/2, or the largest δ such that the P -probability

of Pδ is 1/2. In these situations, Π(P ) and δ are typically unknown, and must be

estimated from a random sample from P .
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4. Scatter halfspace depth and the exterior Radon transform

In this final section of our note, we are concerned with a question closely related

to Theorem 3.2: Do there exist nonelliptical probability distributions P ∈ P(Rd)

whose floating bodies Pδ are ellipsoids for some δ > 0? A trivial positive answer

to this general question can be found in [6], Section 4—Pδ of any distribution P

whose restriction to C = Rd \ Pδ is elliptically symmetric is an ellipsoid. Here we

resolve a more interesting problem. We construct an example of a distribution whose

restriction to C = {x ∈ Rd : ‖x‖ > 1} is not spherically symmetric, yet Pδ = Bd, the

unit ball in Rd. This gives a nontrivial nonelliptical distribution whose maximum

scatter halfspace depth (3.1) is 1/2. This example is also interesting in its own right,

in connection with the still open homothety conjecture ([7], Section 4), a major

problem from convex geometry. The proof of the following theorem is based on an

advanced result from the theory of Radon transforms [4], [10].

Theorem 4.1. For any d = 1, 2, . . ., there exists P ∈ P(Rd) whose restriction to

C = {x ∈ Rd : ‖x‖ > 1} is not spherically symmetric, but Pδ = Bd for some δ > 0.

P r o o f. Consider the exterior Radon transform R on C that to an integrable

function f : Rd → R assigns the collection of all integrals of f over hyperplanes that

do not intersect Bd. By the singular value decomposition for the exterior Radon

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

Figure 2. Several contours of the density f from the proof of Theorem 4.1. This gives an
example of a distribution that is not spherically symmetric, but the assumptions
of Theorem 3.2 are satisfied.

transform ([10], Theorem 3.2), the null space of R is nontrivial, and surprisingly
large. In what follows we take a single bounded, nonelliptically contoured function

from the null space of R, and add a small multiple of this function to a spherically

297



symmetric density on Rd. If the resulting function is nonnegative, we may multiply

it by a constant to obtain a density of P ∈ P(Rd) with the desired property, as

follows from Fubini’s theorem.

By the decomposition from Theorem 3.2 from [10], such a function from the null

space ofR can be found in any dimension d. For d = 2, for instance, we may consider

f(x) =
1

π

( 1

‖x‖4 +
x1(x

4
1 − 10x2

1x
2
2 + 5x4

2)

‖x‖10
)
I[‖x‖ > 1], where x = (x1, x2).

For d > 2, one employs spherical harmonics to obtain analogous examples. It is

straightforward to verify that f is a density of a distribution X ∼ P ∈ P(R2), and at

the same time P(u⊤X > 1) = 1/4 for any u ∈ S
1. Therefore, the floating body P1/4

exists, and equals B2, even though f(x) is (on C) not a function of ‖x‖ only. �

A c k n ow l e d gm e n t. The author would like to thank Professor E.T.Quinto

for pointing out reference [10].
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