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Abstract. The changepoint estimation problem of a common change in panel means
for a very general panel data structure is considered. The observations within each panel
are allowed to be generally dependent and non-stationary. Simultaneously, the panels are
weakly dependent and non-stationary among each other. The follow up period can be
extremely short and the changepoint magnitudes may differ across the panels accounting
also for a specific situation that some magnitudes are equal to zero (thus, no jump is
present in such case). We introduce a novel changepoint estimator without a boundary
issue meaning that it can estimate the change close to the extremities of the studied time
interval. The consistency of the nuisance-parameter-free estimator is proved regardless
of the presence/absence of the change in panel means under relatively simple conditions.
Empirical properties of the proposed estimator are investigated through a simulation study.

Keywords: panel data; changepoint; change in means; estimation; dependence; non-
stationarity; call options; non-life insurance
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1. Introduction and aims

A typical panel data structure in empirical economics usually assumes independent

panels, which are used to represent a set of multiple units (e.g. countries, companies,

or different financial markets). These units are a priori assumed to be indepen-

dent among each other. The main focus is placed either on detection of a possible

changepoint [5], [12], [2] or estimation of an unknown changepoint location [1], [13].

Sometimes, the assumption of independent units is not realistic. Dependence is then

traditionally modeled by additional stochastic terms, which are implemented in a lin-
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ear form that is common across all panels. The key interest is, again, to detect or to

estimate the potential changepoints [10], [6], [4], [8].

In more complex situations, however, the linear form of dependence across panels

is quite limiting and other approaches are needed to properly take into account the

complexity of the underlying mechanism, which generates the available data. Such

situations are common, for instance, for various financial markets, where individ-

ual panels represent financial values for some sort of commodity with an implicit

form of natural ordering. For example, a set of panels for time developments of the

intrinsic values of options with specific strikes—option values. Such scenario with

non-stationary panels is also considered in Maciak et al. [9], where the focus is on

the changepoint detection. In this paper, we consider the same structure of the un-

derlying model, although, the main interest is on the consistent estimation of the

unknown common changepoint without any prior knowledge whether a changepoint

is present in the panel data or not. On one hand, dependent and non-stationary

panels with possibly an extremely short follow-up period allow for huge flexibility of

the model. On the other hand, the presented estimation method is completely nui-

sance parameter free, which makes it effortlessly applicable. In addition, the model

formulation also allows for a situation, where only some of the panels are subject to

a change while there is no change in the remaining panels.

From the practical point of view, the proposed methodology can be applied to call

options, where the option intrinsic values Yi,t for a specific strike (panel) i = 1, . . . , N

are observed repeatedly over several trading days t = 1, . . . , T . Thus, the panels are

naturally ordered by the corresponding options’ values. A standard approach with

linearly dependent panels is not appropriate as it cannot truly capture the underlying

panel complexity. Another application can be taken from non-life insurance, where

associations in many countries unite several insurance companies. Claim amounts

paid by every insurance company each year are collected into a common database.

The total (cumulative) claim amount Yi,t paid by insurance company i (ordered with

respect to the received premium) in year t can be viewed as panel data.

The changepoint model assumed for the scenarios described above is

(1.1) Yi,t = µi + δib{t > τ} + εi,t, i = 1, . . . , N, t = 1, . . . , T,

where µi ∈ R are the panel-specific mean parameters, τ ∈ {1, . . . , T } is some common
changepoint time (same for all considered panels) with the corresponding jump mag-

nitudes δi ∈ R. Thus, if there is some common changepoint in model (1.1) present at

the time τ < T , then the corresponding panel-specific means change from µi before

the change to µi + δi after the change. This formulation also allows for a specific

case where δi = 0, meaning no jump is present for some given panel i. The panel-

specific disturbances {εi,t}t are general sequences of random errors. The length of
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the follow-up period, T , is supposed to be fixed and not depending on the number

of panels N .

2. Changepoint estimator

Various consistent estimators of the changepoint in panel data are proposed in,

e.g. [10], [1], or [2], but all under the circumstances that the change occurred for

sure. Although in our case, we do not know whether a change has occurred or not.

Therefore, we propose the following idea: If the panel means change somewhere

inside {1, . . . , T − 1}, let the estimate select this break point; if there is no change
in panel means, the estimator points out the very last time point T with probability

going to one. In other words, the value of the changepoint estimator can be T ,

meaning no change. This is in contrast to several previous works, where T is not

reachable. Peštová and Pešta [13] have already constructed a desirable changepoint

estimator applicable without the knowledge whether the change occurred for sure.

Their estimator indeed has not the boundary issue, but it assumes independence

across the panels as well as a form of stationarity within the panels. Our intention

here is to overcome such restrictive conditions.

The common changepoint τ in panel data can be estimated as

(2.1) τ̂N := arg max
t=1,...,T

UN (t),

where

(2.2) UN (t) =





1

t(T − t)

N∑

i=1

t∑

u=1

T∑

v=t+1

(Yi,u − Yi,v)
2, t < T ;

2

(T − 1)2

N∑

i=1

T∑

v=2

v−1∑

u=1

(Yi,u − Yi,v)
2, t = T.

Assumption A1. The vectors εi ≡ [εi,1, . . . , εi,T ]
⊤ are zero mean α-mixing,

where the mixing coefficients satisfy
∞∑
i=1

{α(ε◦, i)}χ/(2+χ) < ∞ for some χ > 0,

Var εi,t = σ2
i > 0, and sup

i∈N

E |εi,t|4+2χ < ∞ for all t ∈ {1, . . . , T }.

Note that the panels of errors εi are neither independent nor identically dis-

tributed. Moreover, there is no prescribed form of stationarity assumed within the

panel. Such universal assumptions on the random errors strengthen our forthcom-

ing result. The sequence {εi,t}Tt=1 can be viewed as some complete fragment of

a non-stationary but homoscedastic process. Furthermore, non-stationarity across

the panels {εi}Ni=1 is allowed as well.
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Assumption A2. Let sup
i∈N

|δi| < ∞.

Assumption A3. Let ςi = min
u,v∈{1,...,T}

E εi,uεi,v and ςi = max
u,v∈{1,...,T}

E εi,uεi,v.

For

τ < T, lim
N→∞

1√
N

[{
1− 2τ(T − τ)

(T − 1)2

} N∑

i=1

δ2i −
2

T − 1

N∑

i=1

(σ2
i − ςi)

]
= ∞

and

lim
N→∞

1√
N

N∑

i=1

δ2i = ∞.

For

τ = T, lim
N→∞

1√
N

( N∑

i=1

(σ2
i − ςi)−

T − 1

2

N∑

i=1

δ2i

)
= ∞.

Assumptions A2 and A3 control trade-off between the size of breaks, the number

of panels, and the variability of errors. They may be considered as detectability

assumptions, because they basically specify the value of signal-noise ratio for finding

the consistent estimator.

Theorem 2.1 (Consistency). Under Assumptions A1–A3, lim
N→∞

P[τ̂N = τ ] = 1.

P r o o f. For t < T and with respect to Assumption A1, let us calculate

(2.3) EUN (t) =
1

t(T − t)

N∑

i=1

t∑

u=1

T∑

v=t+1

E(εi,u + δib{u > τ} − εi,v − δib{v > τ})2

=
1

t(T − t)

N∑

i=1

t∑

u=1

T∑

v=t+1

(E ε2i,u + E ε2i,v − 2E εi,uεi,v + δ2i b{v > τ > u})

= 2
N∑

i=1

(σ2
i − ci) + ∆T

t,τ

N∑

i=1

δ2i ,

where

∆T
t,τ =





T − τ

T − t
, t 6 τ

τ

t
, t > τ

and ci =
1

t(T − t)

t∑

u=1

T∑

v=t+1

E εi,uεi,v.

Similarly for t = T we have

(2.4) EUN(t) =
2T

T − 1

N∑

i=1

(σ2
i − ci) +

2τ(T − τ)

(T − 1)2

N∑

i=1

δ2i .
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Let us define

Xi :=





1

t(T − t)

t∑

u=1

T∑

v=t+1

(Yi,u − Yi,v)
2, t < T ;

2

(T − 1)2

T∑

v=2

v−1∑

u=1

(Yi,u − Yi,v)
2, t = T.

Bradley [3], Theorem 5.2(a) provides α(X◦, i) 6 α(ε◦, i) and, thus by Assump-

tion A1,

(2.5) 0 6

∞∑

i=1

{α(X◦, i)}χ/(2+χ) 6

∞∑

i=1

{α(ε◦, i)}χ/(2+χ) < ∞.

If t < T , then

(2.6) sup
i∈N

E |Xi|2+χ 6
1

t(T − t)

t∑

u=1

T∑

v=t+1

sup
i∈N

E |(Yi,u − Yi,v)
2|2+χ

=
1

t(T − t)

t∑

u=1

T∑

v=t+1

sup
i∈N

E |(εi,u − εi,v)
2

− 2(εi,u − εi,v)δib{v > τ > u}+ δ2i b{v > τ > u}|2+χ

6
31+χ

t(T − t)

t∑

u=1

T∑

v=t+1

{
sup
i∈N

E |(εi,u − εi,v)
2|2+χ

+ 22+χ sup
i∈N

|δi|2+χ sup
i∈N

E |εi,u − εi,v|2+χ + sup
i∈N

|δi|4+2χ
}
< ∞

by Assumptions A1, A2, and by Pešta [11], Lemma A.3. If t = T , then

(2.7) sup
i∈N

E |Xi|2+χ 6

( T

T − 1

)2+χ 2

T (T − 1)

T∑

v=2

v−1∑

u=1

E |(Yi,u − Yi,v)
2|2+χ

=
2T 1+χ

(T − 1)3+χ

T∑

v=2

v−1∑

u=1

sup
i∈N

E |(εi,u − εi,v)
2

− 2(εi,u − εi,v)δib{v > τ > u}+ δ2i b{v > τ > u}|2+χ

6
2(3T )1+χ

(T − 1)3+χ

T∑

v=2

v−1∑

u=1

{
sup
i∈N

E |(εi,u − εi,v)
2|2+χ

+ 22+χ sup
i∈N

|δi|2+χ sup
i∈N

E |εi,u − εi,v|2+χ + sup
i∈N

|δi|4+2χ
}
< ∞

again by Assumptions A1, A2, and by Pešta [11], Lemma A.3.
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Relations (2.5), (2.6) and (2.7) together with Lin and Lu [7], Lemma 1.2.4 imply

(2.8) |Cov(Xk, Xk+i)| 6 10‖Xk‖2+χ‖Xk+i‖2+χ{α(X◦, i)}χ/(2+χ)

6 10
(
sup
i∈N

E |Xi|2+χ
)2/(2+χ)

{α(ε◦, i)}χ/(2+χ)

for all i, k ∈ N. The Jensen’s inequality yields EX2
i 6 [E |Xi|2+χ]2/(2+χ) for all i ∈ N.

According to (2.5), (2.6), (2.7) and (2.8), we get

(2.9) Var
N∑

i=1

Xi =
N∑

i=1

VarXi +
N∑

i=1

N∑

j=1
j 6=i

Cov(Xi, Xj)

6 N sup
i∈N

EX2
i + 10

(
sup
i∈N

E |Xi|2+χ
)2/(2+χ) N∑

i=1

N∑

j=1
j 6=i

{α(X◦, |i− j|)}χ/(2+χ)

6 N
(
sup
i∈N

E |Xi|2+χ
)2/(2+χ)

+ 20N
(
sup
i∈N

E |Xi|2+χ
)2/(2+χ) ∞∑

i=1

{α(ε◦, i)}χ/(2+χ)

6 Nκ(χ, t, τ, T ),

where κ(χ, t, τ, T ) is a constant independent of N .

The Chebyshev inequality provides UN (t) − EUN (t) = OP

(√
VarUN (t)

)
as

N → ∞. Since the index set {1, . . . , T } is finite and τ is finite as well, then (2.9)

implies

max
16t6T

VarUN (t) 6 NK(χ, T ),

where K(χ, T ) is a constant not depending on N . Thus, we also have uniform

stochastic boundedness, i.e.,

max
16t6T

|UN (t)− EUN (t)| = OP(
√
N), N → ∞.

With respect to (2.3) and (2.4), one has

UN(τ) − UN (t) = UN (τ) − EUN (τ) − [UN (t)− EUN(t)] + EUN (τ) − EUN (t)

> − 2 max
16r6T

|UN (r)− EUN (r)| + EUN (τ) − EUN (t)

= − 2 max
16r6T

|UN (r)− EUN (r)|

+
2[b{τ = T, t < T } − b{τ < T, t = T }]

T − 1

N∑

i=1

(σ2
i − ci)

+
[
b{τ < T } −∆T

t,τb{t < T } − 2τ(T − τ)

(T − 1)2
b{t = T }

] N∑

i=1

δ2i
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for each t ∈ {1, . . . , T }. Particularly, previous inequality holds for τ̂N . Note that
τ̂N = argmaxt UN (t). Hence, UN (τ) − UN (τ̂N ) 6 0. Therefore,

2√
N

max
16r6T

|UN (r) − EUN (r)|

>
2[b{τ = T, τ̂N < T } − b{τ < T, τ̂N = T }]

T − 1

1√
N

N∑

i=1

(σ2
i − ci)

+
[
b{τ < T } −∆T

τ̂N ,τ b{τ̂N < T } − 2τ(T − τ)

(T − 1)2
b{τ̂N = T }

] 1√
N

N∑

i=1

δ2i .

Note that 0 6 ∆T
t,τ 6 1 for all t, τ ∈ {1, . . . , T − 1} and ∆T

t,τ = 1 if and only if

t = τ . Moreover, 2τ(T − τ)/(T − 1)2 < 1 for all τ ∈ {1, . . . , T }. Firstly, if τ < T ,

then

(2.10)
2√
N

max
16r6T

|UN (r) − EUN (r)|

> − 2

T − 1
b{τ̂N = T } 1√

N

N∑

i=1

(σ2
i − ci)

+
[
1−∆T

τ̂N ,τ b{τ̂N < T } − 2τ(T − τ)

(T − 1)2
b{τ̂N = T }

] 1√
N

N∑

i=1

δ2i

= b{τ > τ̂N}
[
(1−∆T

τ̂N ,τb{τ̂N < T }) 1√
N

N∑

i=1

δ2i

]

+ b{τ < τ̂N}
[
b{τ̂N < T }(1−∆T

τ̂N ,τ )
1√
N

N∑

i=1

δ2i

+ b{τ̂N = T }
({

1− 2τ(T − τ)

(T − 1)2

} 1√
N

N∑

i=1

δ2i −
2

T − 1

1√
N

N∑

i=1

(σ2
i − ci)

)]
.

The left-hand side of (2.10) is OP(1) as N → ∞. Thus, the right-hand side of (2.10)
and Assumption A3 give P[τ̂N = τ ] → 1 as N → ∞. Secondly, if τ = T , then

(2.11)

2√
N

max
16r6T

|UN (r)− EUN (r)| > b{τ̂N < T } 1√
N

(
2

T − 1

N∑

i=1

(σ2
i − ci)−

N∑

i=1

δ2i

)
.

Since expression in (2.11) is OP(1) as N → ∞, we have P[τ̂N = τ ] → 1 as N → ∞
due to Assumption A3. �
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3. Simulation experiment

For a common abrupt change in panel means, a simulation study is performed in

order to study the finite sample properties of the proposed consistent changepoint

estimator. Particularly, the estimator’s empirical distributions—visualized through

histograms—are of interest. A similar simulation scenario setup to Peštová and

Pešta [13] is chosen. Random samples of panel data (2000 each time) are generated

from the changepoint model (1.1). In order to demonstrate the performance of the

estimator in the case of small panel size, the panel length is set to T = 10. The

number of panels is N = 2, 5, 10, 20, 50.

The random row error vectors are simulated in a non-stationary way as εi =

[εi,1, . . . , εi,T ] = 0.3εi−1b{i 6 N/2}+ 0.7εi−1b{i > N/2}+ εi with a burn-in period

of 50 row vectors (thrown away). Here, the row innovations εi = [εi,1, . . . , εi,T ] are

generated as three time series: iid, AR(1), and GARCH(1,1) sequences. The coef-

ficient of the considered AR(1) process is ϕ = 0.3. The GARCH(1,1) process has

coefficients α0 = 1, α1 = 0.1 and β1 = 0.2. In all three sequences, the innovations

of εi,t’s (i.e., innovations of elements of the row innovations) are obtained as iid

random variables from a standard normal N(0, 1) or Student t5 distribution multi-

plied by a suitable constant in order that the errors possess common variance for all

panels, i.e., σi = σ for all i. For the AR(1) and GARCH(1,1), we throw away again

a burn-in period having length 50. All possible combinations of the above mentioned

settings are produced as Monte Carlo simulation scenarios. A selection of the results

is provided below.

At first, the impact of the dependence structure and the errors’ distribution on

the changepoint estimator is examined. Figure 1 contains six different structures of

model disturbances, where N = 20, τ = 8 (depicted by the dotted vertical line),

σ = 0.2, and 100% of the panels are subject to change of the size δi ∼ U [0, 2] (i.e.,

the breaks are uniformly and independently distributed on [0, 2]).

One may conclude that the precision of our changepoint estimator is satisfac-

tory even for relatively small number of panels regardless of the errors’ structure.

Innovations with lighter tails yield more precise estimators than innovations with

heavier tails (i.e., Subfigures 1a, 1c, 1e vs. Subfigures 1b, 1d, 1f). It can be noticed

that the GARCH(1,1) errors’ model gives the worst estimator’s precision from three

dependence structures.

The proposed estimator works reasonably for various locations of the unknown

changepoint as demonstrated in Figure 2. Being particular, various values of

the changepoint (again depicted by the dotted vertical line) are chosen (τ =

1, 2, 5, 8, 9, 10). Now, N = 20, σ = 0.2, 75% of the panels have a change of the

size δi ∼ U [0, 2], and the panel disturbances’ innovations are AR(1) with N(0, 1)
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1 2 3 4 5 6 7 8 9 10
0.0
0.2
0.4
0.6
0.8
1.0

(a) iid, N(0, 1)

1 2 3 4 5 6 7 8 9 10
0.0
0.2
0.4
0.6
0.8
1.0

(b) iid, t5

1 2 3 4 5 6 7 8 9 10
0.0
0.2
0.4
0.6
0.8
1.0

(c) AR(1), N(0, 1)

1 2 3 4 5 6 7 8 9 10
0.0
0.2
0.4
0.6
0.8
1.0

(d) AR(1), t5

1 2 3 4 5 6 7 8 9 10
0.0
0.2
0.4
0.6
0.8
1.0

(e) GARCH(1,1), N(0, 1)

1 2 3 4 5 6 7 8 9 10
0.0
0.2
0.4
0.6
0.8
1.0

(f) GARCH(1,1), t5

Figure 1. Histograms of τ̂N—various panel disturbances’ distributions and structures
(τ = 8, T = 10, N = 20, σ = 0.2, 100% of the panels with the change size
δi ∼ U [0, 2]).

innovations. Let us recall that τ = 10 corresponds to the ‘no change’ situation. And

indeed, the empirical distribution of the estimator coherently concentrates at the

last time point T .

The impact of the number of panels (N = 2, 5, 10, 20) is investigated in Figure 3

We set the panel disturbances’ innovations as AR(1) with t5 innovations, τ = 9,

σ = 0.2, and 50% of the panels have a change δi ∼ U [0, 2]. The precision of τ̂N

improves markedly as N increases. If a higher number of panels (i.e., N = 50)

is considered, then 100% precision is achieved. Longer panels were generated as

well (e.g. T = 25; not presented here). Then as expected, the estimator’s precision

increases as the panel size gets bigger.

The effect of panel variability on the estimator’s performance is shown in Fig-

ure 4. Various values of the variance parameter are taken into account (σ =

0.1, 0.2, 0.5, 1.0). Here, τ = 1, N = 10, all of the panels have a change δi ∼ U [0, 2],

and the panel disturbances’ innovations come from GARCH(1,1) with N(0, 1) inno-

vations. It is noticeable that the more volatile observations, the less precise change-

point estimator. If the panel’s variability (under the assumed dependency) is too
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1 2 3 4 5 6 7 8 9 10
0.0
0.2
0.4
0.6
0.8
1.0

(a) τ = 1

1 2 3 4 5 6 7 8 9 10
0.0
0.2
0.4
0.6
0.8
1.0

(b) τ = 2

1 2 3 4 5 6 7 8 9 10
0.0
0.2
0.4
0.6
0.8
1.0

(c) τ = 5

1 2 3 4 5 6 7 8 9 10
0.0
0.2
0.4
0.6
0.8
1.0

(d) τ = 8

1 2 3 4 5 6 7 8 9 10
0.0
0.2
0.4
0.6
0.8
1.0

(e) τ = 9

1 2 3 4 5 6 7 8 9 10
0.0
0.2
0.4
0.6
0.8
1.0

(f) τ = 10

Figure 2. Histograms of τ̂N—various values of the changepoint τ (T = 10, N = 20, σ = 0.2,
75% of the panels with the change size δi ∼ U [0, 2], AR(1) errors with N(0, 1)
innovations).

1 2 3 4 5 6 7 8 9 10
0.0
0.2
0.4
0.6
0.8
1.0

(a) N = 2

1 2 3 4 5 6 7 8 9 10
0.0
0.2
0.4
0.6
0.8
1.0

(b) N = 5

1 2 3 4 5 6 7 8 9 10
0.0
0.2
0.4
0.6
0.8
1.0

(c) N = 10

1 2 3 4 5 6 7 8 9 10
0.0
0.2
0.4
0.6
0.8
1.0

(d) N = 20

Figure 3. Histograms of τ̂N—various values of N (τ = 9, T = 10, σ = 0.2, 50% of the
panels with the change size δi ∼ U [0, 2], AR(1) errors with t5 innovations).
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1 2 3 4 5 6 7 8 9 10
0.0
0.2
0.4
0.6
0.8
1.0

(a) σ = 0.1

1 2 3 4 5 6 7 8 9 10
0.0
0.2
0.4
0.6
0.8
1.0

(b) σ = 0.2

1 2 3 4 5 6 7 8 9 10
0.0
0.2
0.4
0.6
0.8
1.0

(c) σ = 0.5

1 2 3 4 5 6 7 8 9 10
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Figure 4. Histograms of τ̂N—various values of σ (τ = 1, T = 10, N = 10, 100% of the panels
with the change size δi ∼ U [0, 2], GARCH(1,1) errors with N(0, 1) innovations).

high compared to the size of the change, then it would be rather difficult to estimate

a possible change.

At last, we elaborate how different portions of the panels with a change in mean

influence the estimator’s precision in Figure 5. Four cases were considered: 25%, 50%,

75%, and 100% of the panels have a change δi ∼ U [0, 2]. The panel disturbances’

innovations are GARCH(1,1) with t5 innovations, τ = 5, and N = 20. If a relatively

high number of panels contain a change, then the changepoint estimator performs

reasonably in terms of precision.
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(d) 100%

Figure 5. Histograms of τ̂N—various portion of the panels with the change size δi ∼ U [0, 2]
(τ = 5, T = 10, N = 20, GARCH(1,1) errors with t5 innovations).
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