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Abstract. Partial orderings and measures of information for continuous univariate ran-
dom variables with special roles of Gaussian and uniform distributions are discussed. The
information measures and measures of non-Gaussianity including the third and fourth cu-
mulants are generally used as projection indices in the projection pursuit approach for the
independent component analysis. The connections between information, non-Gaussianity
and statistical independence in the context of independent component analysis is discussed
in detail.
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1. Introduction

In the engineering literature, independent component analysis (ICA) [12], [23] is

often described as a search for the uncorrelated linear combinations of the original

variables that maximize non-Gaussianity. The estimation procedure then usually has

two steps. First, the vector of principal components is found and the components

are standardized to have zero means and unit variances, and second, the vector is

further rotated so that the new components maximize a selected measure of non-

Gaussianity. It is then argued that the components obtained in this way are made

as independent as possible or that they display the components with maximal infor-

mation. In [12], for example, a heuristic argument is given that, according to the

central limit theorem, weighted sums of independent non-Gaussian random variables

are closer to Gaussian than the original ones. In this paper, we discuss and clarify the
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somewhat vague connections between non-Gaussianity, independence and notions of

information in the context of the independent component analysis.

In Section 2 we first introduce descriptive measures for location, dispersion, skew-

ness and kurtosis of univariate random variables with some discussion of correspond-

ing partial orderings. In this part of the paper we assume that the considered

univariate random variable x has a finite mean E(x) and variance Var(x), cumu-

lative distribution function F and continuously differentiable probability density

function f . Skewness, kurtosis and other cumulants of the standardized variable

(x − E(x))/
√

Var(x) are often used to measure non-Gaussianity of the distribution

of x. The most popular measures of statistical information are the differential entropy

H(f) = −
∫

f(x) log(f(x)) dx and the Fisher information in the location model, that

is, J(f) =
∫

f(x)[f ′(x)/f(x)]2 dx. These and other information measures with re-

lated partial orderings and their use as measures of non-Gaussianity are discussed in

the latter part of Section 2.

The multivariate independent components model is discussed in Section 3. It

is then assumed that, for a p-variate random vector x, there is a linear operator

A ∈ R
p×p such that Ax has independent components. Under certain assumptions,

the projection pursuit approach can be used to find the rows of A one-by-one while

various information measures as well as cumulants are used as projection indices. In

Section 3 the connections between non-Gaussianity, independence and information

in this context are discussed in detail. The paper ends with some final remarks in

Section 4.

2. Some characteristics of a univariate distribution

2.1. Location, dispersion, skewness and kurtosis. We consider a continu-

ous random variable x with the finite mean E(x), finite variance Var(x), density

function f and cumulative density function F . Location, dispersion, skewness and

kurtosis are often considered by defining the corresponding measures or functionals

for these properties. Location and dispersion measures, write T (x) and S(x), are

functions of the distribution of x and defined as follows.

Definition 2.1.

(1) T (x) ∈ R is a location measure if T (ax+ b) = aT (x) + b for all a, b ∈ R.

(2) S(x) ∈ R+ is a dispersion measure if S(ax+ b) = |a|S(x) for all a, b ∈ R.

Clearly, if T is a location measure and x is symmetric around µ, then T (x) = µ

for all location measures. For squared dispersion measures S2, Huber [10] considered

the concepts of additivity, subadditivity and superadditivity. These concepts appear
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to be crucial in developing tools for the independent component analysis and are

defined as follows.

Definition 2.2. Let S2 be a squared dispersion measure.

(1) S2 is additive if S2(x+ y) = S2(x) + S2(y) for all independent x and y.

(2) S2 is subadditive if S2(x+ y) 6 S2(x) + S2(y) for all independent x and y.

(3) S2 is superadditive if S2(x+ y) > S2(x) + S2(y) for all independent x and y.

The mean E(x) and the variance Var(x) are important and most popular location

and squared dispersion measures. It is well known that Var(x+y) = Var(x)+Var(y)

for independent x and y, and E(x + y) = E(x) + E(y) is true even for dependent x

and y. These additivity properties are highly important in certain applications and

in fact characterize the mean and variance among continuous measures as follows.

Theorem 2.1.

(1) Let a location measure T be additive and weakly continuous at N(0, 1), that is,

zn →d z ∼ N(0, 1) implies that T (zn) → T (z) = 0. Then T (x) = E(x) for all x

with finite second moments.

(2) Let a squared dispersion measure S2 be additive and continuous at N(0, 1),

that is, zn →d z ∼ N(0, 1) implies that S2(zn) → S2(z) > 0. Then S2(x) =

S2(z)Var(x) for all x with finite second moments.

The weak continuity of a statistical functional is a popular and crucial assumption

for finding a consistent estimate of the population value, for example. Let x1, . . . , xn

be a random sample of size n from the distribution F and Fn(x) = n−1
n
∑

i=1

1xi6x be

the sample cumulative distribution function. If T is weakly continuous at F then T

at Fn is a consistent estimate of T at F as Fn converges in distribution to F . In

Theorem 2.1 we in fact need the weak continuity only at the Gaussian distribution,

see the proof in Section 5.

The comparison of different location measures T1 and T2, and dispersion mea-

sures S1 and S2 provides measures of skewness and kurtosis as

Sk(x) =
T1(x) − T2(x)

S(x)
and Ku(x) =

S2
1(x)

S2
2(x)

.

Classical measures of skewness and kurtosis proposed in the literature can be written

in this way. Note that both the measures are affine invariant in the sense that

Sk(ax+ b) = sgn(a)Sk(x) and Ku(ax+ b) = Ku(x).
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If x has a symmetric distribution, then Sk(x) = 0. In the literature, kurtosis measures

are aimed to measure the peakedness and/or the heaviness of the tails of the density

of x but, as we will see in Section 2.3, Ku(x) as defined here may be a global

measure of deviation from the normality and has also been used as an affine invariant

information measure for some special choices of the dispersion measures S1 and S2.

Moment and cumulant generating functions defined as

E[etx] =

∞
∑

k=0

µkt
k/k! and logE[etx] =

∞
∑

k=0

κkt
k/k!,

respectively, generate classical measures, i.e., moments E(x) = µ1(x) and Var(x) =

µ2(x−µ1(x)), and cumulants κ3(x
st) and κ4(x

st) where xst = (x− E(x))/
√

Var(x).

The cumulants κk for all k = 1, 2, . . . are additive as logE[etx] is additive and

κ
2/k
k (x− E(x)), k = 2, 3, . . ., are subadditive squared dispersion measures which

follows from the Minkowski inequality, see [10]. Another class of measures is given

by the quantiles qu = F−1(u), 0 < u < 1, with the corresponding measures such as

q1/2, q1−u − qu,
qu + q1−u − 2q1/2

q1−u − qu
, and

q1−u − qu
q1−v − qv

, 0 < u < v <
1

2
.

These quantile based measures provide robust alternatives to moment based mea-

sures. To our knowledge, the quantile based location and squared dispersion mea-

sures, however, lack the additivity, subadditivity or superadditivity properties as

defined in Definition 2.2. As proven later in Theorem 3.2, the squared dispersion

measures, which are either subadditive or superadditive, can be used to find inde-

pendent components. The use of quantile based measures in independent component

analysis is therefore questionable.

An alternative approach when discussing and comparing certain distribution prop-

erties, such as location, dispersion, skewness and kurtosis, is to define the correspond-

ing partial orderings of such measures. For continuous x and y with the cumulative

distribution functions F and G, write ∆(x) = G−1(F (x))− x. The function ∆(x) is

called a shift function of x as x when shifted by ∆(x) has the distribution of y. The

transformation x 7→ x+∆(x) is also known as the (univariate) Monge-Kantorovich

optimal transport map. Using the function ∆, we can naturally define the following

partial orderings [3], [4], [32], [25].

(1) Location ordering: ∆ is positive.

(2) Dispersion ordering: ∆ is increasing.

(3) Skewness ordering: ∆ is convex.

(4) Kurtosis ordering: ∆ is concave-convex.
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Papers [3], [4], [25] then stated that, in addition to the affine equivariance and

invariance properties, the measures of location, dispersion, skewness and kurtosis

should be monotone with respect to the corresponding orderings. For example, if

one needs to order the random variables x and y in the location sense, one can

proceed by checking whether the corresponding ∆ function is positive. For finding

monotone measures in the dispersion case, for example, ∆ is increasing if and only if

E[C(x− E(x))] 6 E[C(y − E(y))] for all convex C,

which is also called the dilation order. It implies, for example, that the measures

(E[|x − E(x)|k])1/k, k > 1, are monotone dispersion measures. Now that we have

defined various partial orderings of random variables with respect to location, dis-

persion, kurtosis and skewness, we consider ordering random variables with respect

to the amount of information they carry.

2.2. Information and discrete distributions. Consider a discrete ran-

dom variable with k possible values (‘alphabets’) with probabilities listed in

p = (p1, . . . , pk). Write p(1) 6 . . . 6 p(k) for the ordered probabilities. It is

sometimes presumed that a distribution p is informative if it can provide ‘surprises’

with very small pi’s. On the other hand, people often claim that p is informative if

the result of the experiment is known with a high probability, that is, if only one

or few values have high pi’s. These somewhat naive characterizations suggest the

following well-known partial ordering for discrete distributions [19].

Definition 2.3. Majorization: p ≺ q if
j
∑

i=1

p(i) >
j
∑

i=1

q(i), j = 1, . . . , k. Then p

is said to be majorized by q.

Majorization is nothing but a dispersion ordering (and a dilation order) for the dis-

crete distributions with k equiprobable values p1, . . . , pk in [0, 1] with the mean 1/k.

Then, according to [26],

p ≺ q ⇔ p = qL with some doubly stochastic matrix L

⇔
k

∑

i=1

C(pi) 6

k
∑

i=1

C(qi) for all continuous convex C.

The doubly stochastic matrix L is a matrix with non-negative elements such that

all row sums and all column sums equal one. The doubly stochastic operator L is

then in fact a convex combination of permutations; p is obtained from q by this

‘smoothing’ and is therefore less informative. Further, for all p,

(1/k, . . . , 1/k) ≺ p ≺ (0, . . . , 0, 1)

and, for simple mixtures, p ≺ q ⇒ p ≺ λp+ (1 − λ)q ≺ q, 0 6 λ 6 1.

315



We can now give the following definition.

Definition 2.4. Let p = (p1, . . . , pk) list the probabilities of k possible values of

a discrete random variable, that is, p1, . . . , pk ∈ [0, 1],
k
∑

i=1

pi = 1. A measure M(p)

is an information measure if it is monotone with respect to majorization.

Note that, as (p1, . . . , pk) ≺ (p(1), . . . , p(k)) ≺ (p1, . . . , pk), the definition implies

that the information measures are invariant under permutations of the probabilities

in (p1, . . . , pk). The equivalent conditions for majorization then suggest quantities

such as

H(p) = −
k

∑

i=1

log(pi)pi, H∗(p) =
k
∑

i=1

p2i and H∗∗(p) = p(k),

and −H , H∗ and H∗∗ are monotone information measures that easily extend to

continuous and multivariate cases. Shannon’s entropy [29], −
k
∑

i=1

log2(pi)pi, is often

seen as a measure of ability to compress the data (e.g. lower bound for the expected

number of bits to store the data).

2.3. Some information measures for continuous distributions. Consider

next a continuous random variable x with the continuously differentiable probability

density function f and finite variance Var(x). The three measures from the discrete

case straightforwardly extend in the continuous case to

H(x) = − E[log f(x)] = −
∫ ∞

−∞

f(x) log f(x) dx,

H∗(x) = E[f(x)] =

∫ ∞

−∞

f2(x) dx, and

H∗∗(x) = sup
x

f(x) = f(xmode), if the mode xmode exists.

The Fisher information in the location model f(· − µ) at µ = 0 given by

J(x) =

∫ ∞

−∞

f(x)
(f ′(x)

f(x)

)2

dx

is also often used as an information measure [16].

The measure H(x) is popular in the literature and known as the differential en-

tropy. Under certain restrictions, the measure has the following maximizers [7]. For

the distributions on R with a fixed variance, H(x) is maximized if x has a normal

distribution. For the distributions on R+ with a fixed mean, H(x) is maximized

at the exponential distribution. For the distributions on a finite interval, H(x) is
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maximized at the uniform distribution on that interval. Note that, in the Bayesian

analysis, these three distributions are often used as priors that reflect ‘total igno-

rance’. An interesting connection between the Fisher information and the differential

entropy can be found in [1].

We next show that the three straightforward extensions H , H∗, and H∗∗ as well as

the Fisher information J provide squared dispersion measures as in Definition 2.1 but

with an interesting additional invariance property. First note that the measures are

invariant under the location shift of the distribution but not under the rescaling of

the variable. Recall that information as stated for discrete distributions is invariant

under the permutations of the probabilities in (p1, . . . , pk). All permutations consist

of successive pairwise exchanges of two probabilities. In the continuous case, similar

elemental probability density transformations may be constructed as follows. For all

a < a+∆ < b < b+∆ and density function f , write

fa,b,∆(x) =











f(x), x ∈ R− [a, a+∆]− [b, b+∆],

f(b+ (x− a)), x ∈ [a, a+∆],

f(a+ (x− b)), x ∈ [b, b+∆].

The transformation allows the manipulation of the properties of the distribution in

many ways. The transformation can, for example, be used to move some probability

mass from the centre of distribution to the tails and in this way to manipulate the

variance and the kurtosis of the distribution. As far as we know, this transformation

has not been discussed in the literature yet. It is surprising that the information

measures H , H∗, H∗∗, and J provide dispersion measures which are invariant under

these transformations.

Theorem 2.2. The entropy power e2H(x) and measures [H∗(x)]−2, [H∗∗(x)]−2

and [J(x)]−1 are squared dispersion measures that are invariant under the transfor-

mations f → fa,b,∆. The measures e
2H(x) and [J(x)]−1 are superadditive.

2.4. Affine invariant information measures. We now further discuss the

properties of the dispersion measures from Theorem 2.2 and, to find affine invariant

information measures, consider the ratios of the variance to these squared dispersion

measures. The ratio of the variance to the entropy power, that is, Var(x)e−2H(x),

is minimized at the normal distribution [7]. In a neighbourhood of a normal dis-

tribution, the negative entropy −H(x) possesses an interesting approximation using

third and fourth cumulants. Paper [13] showed that the negative differential entropy

for the density f(x) = ϕ(x)(1 + ε(x)), where ϕ is the density of N(0, 1) and ε is

a well-behaved “small” function that satisfies E[ε(z)zk] = 0, z ∼ N(0, 1), k = 0, 1, 2,

can be approximated by 1
2

∫

ϕ(x)ε2(x) dx ≈ 1
12 (κ

2
3(x) +

1
4κ

2
4(x)).
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Next, [H∗(x)]−2 is a (squared) dispersion measure, and therefore [H∗(x)]2 Var(x)

provides an affine invariant information measure. For symmetric distributions, it

preserves the concave-convex kurtosis ordering of van Zwet and 12[H∗(x)]2 Var(x) is

in fact the efficiency of the Wilcoxon rank test with respect to the t-test. Also,

for symmetric distributions, 4[H∗∗(x)]2 Var(x) is a kurtosis measure in the van

Zwet sense and simultaneously the efficiency of the sign test with respect to the

t-test. We also mention that, if Q(x) = E[f(F−1(u))/ϕ(Φ−1(u))] with u ∼ U(0, 1),

then Q−2(x) is a squared dispersion measure and Q2(x)Var(x) is the efficiency of

the van der Waerden test with respect to the t-test in the symmetric case. By

the Chernoff-Savage theorem, it attains its minimum 1 at the normal distribution.

See [6], [9].

Finally, the information measure Var(x)J(x) > 1 is minimized at the normal

distribution. In the location estimation problem in the symmetric case, Var(x)J(x)

is also the asymptotic relative efficiency of the maximum likelihood estimate of the

symmetry centre with respect to the sample mean [28].

2.5. Information orders for continuous distributions. We next outline how

to construct partial orderings for information in the univariate continuous case as

an extension to the discrete case. Let first x be a continuous random variable with

density f on (0, 1). If m(y) = µ{u : f(u) > y} where µ is the Lebesgue measure,
then the function f↓(u) = sup{y : m(y) > u}, u ∈ (0, 1), provides the decreasing

rearrangement of f . Note that any density function on (0, 1) can be approximated by

a simple density function f(x) =
k
∑

i=1

αiχAj
(x), where α1 < α2 < . . . < αk, A1, . . . , Ak

are disjoint Lebesque-measurable sets on (0, 1) and χA is the characteristic function

of set A. Then

m(y) =

k
∑

i=1

βiχBi
(y) and f↓(u) =

k
∑

i=1

αiχ[βi−1,βi)(u),

where βi =
i
∑

j=1

µ(Aj), Bi = [αi+1, αi) for i = 1, 2, . . . , k, and β0 = αk+1 = 0. For

a better insight on how the decreasing rearrangement f↓ is constructed, see Figure 1.

For more details and examples, see e.g. [15].

Using the decreasing rearrangement we can give the following definitions.

Definition 2.5. Let f and g be density functions on the interval (0, 1). Then g

has more information than f , write f ≺ g, if
∫ u

0

f↓(v) dv 6

∫ u

0

g↓(v) dv ∀u ∈ (0, 1).
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0 β1 β2 β3
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α3
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α1

f↓

Figure 1. A simple function f (left), corresponding function m (middle) and decreasing
rearrangement f↓ (right).

Definition 2.6. Let F(0,1) be the set of density functions f on the interval (0, 1).

Then M(0,1) : F(0,1) → R is an information measure if it is monotone with respect

to the partial ordering from Definition 2.5

The distribution with minimum information is the uniform distribution on (0, 1).

Information measures are easily found, see [27], as f ≺ g if and only if

∫ 1

0

C(f(u)) du 6

∫ 1

0

C(g(u)) du for all continuous convex functions C.

Ryff [27] also discusses how to construct linear operators L for which f = Lg ≺ g

when f ≺ g.

Consider next a continuous random variable x on R with a pdf f . To find a location

and a scale-free version of the density, Staudte [30] proposed the transformation

f(x), R ∋ x 7→ f∗(u) =
f(F−1(u))

H∗(x)
, u ∈ (0, 1).

Then f∗, called the probability density quantile (pdQ), is a probability density func-

tion on (0, 1) which is invariant under linear transformations of the original vari-

able x [30]. It is also true that, for a given f∗, the original f is known up the

location and scale. Using this density transformation, the definition of an invariant

information measure for densities on R can be given as follows.

Definition 2.7. Let FR be a set of density functions f on R and let M(0,1) :

F(0,1) → R be an information measure for distributions on (0, 1). Then MR : f →
M(0,1)(f

∗) is an information measure in the set FR.
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Note thatMR is not an extension ofM(0,1) meaning that f ∈ F(0,1) does not imply

that MR(f) = M(0,1)(f). MR is invariant under rescaling of f while M(0,1) is not.

Applying Definition 2.7 and choosing convex C(u) = − log(u) and C(u) = log(u)u,

we get location and scale invariant information measures for f such as

exp

{

−2

∫

log(f∗(u)) du

}

= e2H(x)[H∗(x)]2

and

exp

{

4

∫

log(f∗(u))f∗(u) du

}

= e−2H(f2/H∗(x))[H∗(x)]−2,

which attain their minimum at the uniform distribution and are invariant under the

transformations f 7→ fa,b,∆. For more details, see e.g. [31].

To replace the transformation f 7→ f∗ by a transformation to densities on (0, 1)

for which the minimum information is attained at any density g, one can use the

following adjustment.

Theorem 2.3. Let x and y be random variables on R with the probability density

functions f and g and cumulative distribution functions F and G, respectively. Then

f : g(u) =
f(G−1(u))

g(G−1(u))

is a density function on (0, 1) and its differential entropy −H(f : g) > 0 is the

Kullback-Leibler (KL) divergence between the distributions of x and y.

Let again x have a density f and let ϕ and Φ be the pdf and the cdf of a normal

distribution with the mean E(x) and variance Var(x). Then one can show, using

similar arguments as in [30], that

f : ϕ(u) =
f(Φ−1(u))

ϕ(Φ−1(u))
, u ∈ (0, 1),

is a location and scale-free density and information measures from Definition 2.6

applied to the set of densities f̃ = f : ϕ attain their minima when f has a normal

distribution. A collection of information measures is given by
∫

C(f̃(u)) du with

continuous and convex functions C and then we get, for example, again

exp

{

2

∫

log(f̃(u))f̃(u) du

}

= (2πe)e−2H(x) Var(x).

We next provide examples of the probability density functions f , f∗, and f̃ when f

is the density of the Gaussian, Laplace, lognormal and uniform distributions. Also
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a mixture of two Gaussian distributions denoted by GMM(µ1, µ2, σ1, σ2, w) is con-

sidered with the densities wϕµ1,σ1
(x) + (1 − w)ϕµ2,σ2

(x), 0 6 w 6 1. Figure 2 then

shows the impact of the transformations f → f∗ and f → f̃ in these cases.
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Figure 2. Comparison of f , f∗, and f̃ for five distributions.
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Table 1 provides for the same distributions the power entropies e2H(·) and H∗(·)−2

for f , f∗, and f̃ . Note that the information measures applied to f are not invariant

under rescaling of x as opposed to f∗ and f̃ . For example, for the settings we use

in Table 1, the normal and lognormal densities have the same power entropy just by

accident and the equality is not generally true.

Distribution e2H(f) e2H(f∗) e2H(f̃) H∗(f)−2 H∗(f∗)−2 H∗(f̃)−2

N(0, 1) 17.079 0.824 1.000 12.566 0.750 1.000

Laplace(1) 29.556 0.680 0.887 16.000 0.719 0.783

Lognormal(0,1) 17.079 0.642 0.308 7.622 0.537 0.186

U(0, 1) 1.000 1.000 0.703 1.000 1.000 0.567

GMM(0, 4, 1, 2, 0.4) 100.000 0.862 0.855 78.000 0.792 0.756

Table 1. The power entropy and the [H∗]−2 measure for some continuous distributions and
their transformations.

For better understanding of the measures, we illustrate the behavior of eH(·) and

H∗(·)−2 in the GMMmodel with four fixed parameters and one parameter that varies

in turn. In Figure 3 both information measure curves are plotted in the corresponding

graphs to compare the shapes of the curves as well as the occurrences of the extreme

values. The curves for f̃ with varying location and scale seem natural since minimum

information is attained as GMM gets “closer” to the normal distribution. Results

for f∗ and varying location seem strange in a sense. One would expect a decreasing

behaviour of both measures when the distance in means increases, as is the case for f̃ ,

while the result for f in all three cases could simply be explained by the decrease

in information as a result of the increase in overall variance of the mixture. The

functions eH(·) and H∗(·)−2 seem to behave almost proportionally in all cases. In

cases of f∗ and f̃ , where the majorization is well defined, such behaviour is indeed

expected, as the reciprocals of both eH(·) and H∗(·)−2 are information measures for

both f∗ and f̃ . However, further investigations into this matter will be conducted

in the future.

3. Independent component analysis

In this section we discuss independent component analysis from a projection pur-

suit point of view, and motivate the application of the above considered information

and dispersion measures as projection indices when estimating the independent com-

ponents.
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(a) GMM(0, µ2, 1, 1, 0.5) where µ2 varies.
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(b) GMM(0, 2, 1, σ2, 0.5) where σ2 varies.
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Figure 3. Power entropy and [H∗]−2 for different GMMs when always one parameter varies.
The left vertical axis corresponds to power entropy and the right axis to [H∗]−2.
The left panel gives the measures for f , the middle one for f∗ and the right one
for f̃ . Horizontal axis: (a) µ2, (b) σ2 and (c) w.

3.1. Some preliminaries. In this section we consider multivariate random vari-

ables. For a p-variate random vector x with finite second moments, the mean vec-

tor and covariance matrix are E(x) ∈ R
p and Cov(x) ∈ R

p×p, respectively. Let

Cov(x) = UDU
′ be the eigenvector-eigenvalue decomposition of the covariance

matrix. Then Cov(x)−1/2 := UD
−1/2

U
′ and x

st = Cov(x)−1/2(x − E(x)) stan-

dardizes x, that is, E(xst) = 0 and Cov(xst) = Ip. The set of p × r, r 6 p,

matrices with orthonormal columns is denoted by Op×r. Thus U ∈ Op×r implies

U
′
U = Ir. The set of p × p diagonal matrices with positive diagonal elements is
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denoted by Dp×p. If U ∈ Op×p and D ∈ Dp×p then x → Ux and x → Dx, x ∈ R
p,

are a rotation operator and a componentwise rescaling operator, respectively. Let

A ∈ R
p×q be a matrix with rank r 6 min{p, q}. Then the linear operator A may

be written as (singular value decomposition, SVD) A = UDV
′ =

r
∑

i=1

diuiv
′
i, where

U = (u1, . . . ,ur) ∈ Op×r, V = (v1, . . . ,vr) ∈ Oq×r , and D ∈ Dr×r.

3.2. Elliptical model and independent components model. Let x be a p-

variate vector with the full-rank covariance matrix Cov(x). We say that x has

a spherical distribution if there exists µ such that (x−µ) ∼ U(x−µ) for all orthog-

onal U. In the following we first define the elliptical and independent components

distributions (see, for example, [23], [24] for more details).

Definition 3.1. Let x ∈ R
p be a p-variate random vector.

(1) x has an elliptical distribution if there exists a nonsingular A ∈ R
p×p such that

Ax has a spherical distribution.

(2) x has an independent components distribution if there exists a nonsingular A ∈
R

p×p such that Ax has independent components.

We next provide some results on how the matrix A can be found in different cases.

Theorem 3.1. Let x be a p-variate random vector with a full-rank covariance

matrix Cov(x) = UDU
′. Then we have the following:

(1) [VD
−1/2

U
′]x has uncorrelated components for all orthogonal V.

(2) If x has an elliptical distribution, [VD
−1/2

U
′]x has a spherical distribution for

all orthogonal V.

(3) If x has an independent components distribution, [VD
−1/2

U
′]x has independent

components for some choice(s) of orthogonal V.

(4) If x has both an elliptical distribution and an independent components distribu-

tion then [VD
−1/2

U
′]x has independent Gaussian components for all orthogo-

nal V, that is, x has a multivariate Gaussian distribution.

3.3. Projection pursuit and independent component analysis. Let x have

an independent components distribution such that z = Ax + b is standardized

(E(z) = 0 and Cov(z) = Ip) and has independent components. Theorem 3.1 then

implies that A = V
′ Cov(x)−1/2 where the rotation matrix V can be chosen as

V = (V1,V2) separating non-Gaussian independent components in V
′
1 Cov(x)

−1/2
x

and Gaussian independent components in V
′
2 Cov(x)

−1/2
x. Note that V2 is only

unique up to right multiplication by an orthogonal matrix. A generally accepted
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strategy is to find V1 = (v1, . . . ,vq) ∈ Op×q such that the components of V′
1x

st

are ‘as non-Gaussian as possible’. The Gaussian part V′
2 Cov(x)

−1/2
x is thought to

be just the noise part and, for other components, it is argued that the sum of inde-

pendent random variables is ‘more Gaussian’ than the original variables. The noise

interpretation of the Gaussian part may be motivated by the following. A random

vector has a multivariate normal distribution if and only if all linear combinations

of the marginal variables have univariate normal distributions, that is, there are no

‘interesting’ directions. The normal distribution is the only distribution for which

all third and higher cumulants are zero. As seen before, a Gaussian distribution

is the distribution with the poorest information among distributions with the same

variance (highest entropy, smallest Fisher information). For a thorough discussion

of Gaussian distributions, see [14].

Let D(x) then be the projection index, i.e., the functional that is used to measure

non-Gaussianity. In the one-by-one projection pursuit approach the first direction

v1 (v
′
1v1 = 1) maximizes D(v′

1x
st), the second direction v2 is orthogonal to v1

(v′
2v2 = 1,v′

2v1 = 0) and maximizes D(v′
2x

st) and so on. After finding v1, . . . ,vj−1,

we optimize the Lagrangian function

L(v;λj1, . . . , λjj) = D(v′
x
st)− λjj(v

′
v − 1)−

j−1
∑

i=1

λjiv
′
vi.

Then vj solves the (estimation) equation
(

Ip −
j−1
∑

i=1

viv
′
i

)

T(v) = (T(v)′v)v, where

T(v) = ∂D(v′
x
st)/∂v. From the computational point of view, this suggests a fixed-

point algorithm. The estimation equation also provides a way to find the limiting

distribution of the estimate, since the estimate is obtained when the theoretical

multivariate distribution is replaced by the empirical one. See, for example, [20],

[21], [22] and references therein for more details.

The following questions naturally arise. How should one choose the projection

index D(x) to find the independent components? Are the independent components

provided by the most informative directions as has been often stated in the literature?

These questions are partially answered by the following.

Theorem 3.2. Let z = Ax + b = (z1, . . . , zp)
′ be the vector of standardized

independent components.

(1) Let D(x) be a subadditive squared dispersion measure. Then D(v′
x
st) 6

maxj D(zj).

(2) Let D(x) be a superadditive squared dispersion measure. Then D(v′
x
st) >

minj D(zj).
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Based on Theorem 3.2 and the discussion above we can now end the paper with

the following conclusions. If D(x) is subadditive then it can be used as a projection

index. For example the cumulants κ
2/(2k+1)
2k+1 (x) and κ

2/(2k+2)
2k+2 (x), k = 1, 2, . . ., when

calculated for standardized distributions, provide squared dispersion measures that

are subadditive. Therefore they can be used as projection indices. For superaddi-

tive D(x), the functional (D(x))−1 is a valid projection index as (D(v′
x
st))−1 6

maxj(D(zj))
−1. As seen before, the entropy power eH(x) and the inverse of the

Fisher information J−1(x) are superadditive squared dispersion measures. Note that

in both cases D(v′
x
st) is in fact a ratio of two squared dispersion functions, and the

projection index measures the deviation from Gaussianity using a skewness, kurtosis

or information measure. As mentioned in Section 3.3, 1
12 (κ

2
3(x) +

1
4κ

2
4(x)) provides

an approximation of negative differential entropy in a neighborhood of the Gaussian

distribution and is a valid projection index as well. For further discussion, see [10].

Note also that one of the most popular ICA procedures in the engineering commu-

nity, the so called fast ICA, uses a projection index of the form D(x) = |E[C(x)]|,
where C is such a function that if z ∼ N(0, 1) then E[C(z)] = 0. Examples of valid

choices of C are C(z) = z3 and C(z) = z4 − 3 providing again the third and fourth

cumulants, respectively. Many other indices have been used; for example [35] discuss

how to choose C when the marginal distributions are Gaussian mixtures. Entropy

related suggestions for projection pursuit indices are given by [11], [8], [17], [2] just

to name a few, while the usage of Fisher information has been discussed in [18], [33],

for example.

4. Final remarks

The usage of various information criteria is popular in independent component

analysis. The connections between notions of information and statistical indepen-

dence, and the special role of the Gaussian distribution have been discussed in detail

in the paper. We also introduced new ideas and partial orderings for information

which utilize transformed location and scale-free probability density functions. In

independent component analysis with unknown marginal densities, the estimation of

the value of the adapted information measure in a given direction is highly challeng-

ing and it has to be done again and again when applying the fixed-point algorithm

for the correct direction. Substantial research is therefore still needed for these tools

to be of practical value.
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5. Appendix: The Proofs

P r o o f of Theorem 2.1. Let x1, . . . , xn be a random sample from a distribution

of x with the mean value E(x) and variance Var(x). By the central limit theorem,

zn =
1√
n

n
∑

i=1

xi − E(x)
√

Var(x)
→d z ∼ N(0, 1).

Therefore, by additivity and affine equivariance,

T (zn) =

√

n

Var(x)
(T (x)− E(x)) → 0 and S2(zn) =

S2(x)

Var(x)
→ S2(z)

and the result follows. For similar results in the multivariate case, see [34]. �

P r o o f of Theorem 2.2. The invariances of the measures H(x), H∗(x), H∗∗(x)

and J(x) under location shifts f(x) → f(x + b) and sign change f(x) → f(−x)

follow easily from their definitions and from the definition of the Riemann integral.

To show that the measures H(x), H∗(x), H∗∗(x), and J(x) are invariant under the

transformation f 7→ fa,b,∆ observe that

f |R−[a,a+∆]−[b,b+∆] = fa,b,∆|R−[a,a+∆]−[b,b+∆], f |[a,a+∆] = fa,b,∆|[b,b+∆],

f |[b,b+∆] = fa,b,∆|[a,a+∆].

Since the measures H(x), H∗(x), H∗∗(x), and J(x) are defined as transformations

of
∫

g(f(x)) dx for some function g, where f is the pdf of x, and as the Riemann

integral is a functional which is additive over an area of integration, the entropy

power e2H(x) and measures [H∗(x)]−2, [H∗∗(x)]−2, and [J(x)]−1 are invariant under

the transformations f → fa,b,∆.

We therefore have only to consider the rescaling f(x) → (1/a)f(x/a) with a > 0.

Then H(ax) = −
∫

(1/a)f(x/a) log((1/a)f(x/a)) dx = −
∫

f(x) log((1/a)f(x)) dx =

H(x) + log(a) and therefore e2H(ax) = a2eH(x). In a similar way one can show

that [H∗(ax)]−2 = a2[H∗(x)]−2 and also easily [H∗∗(ax)]−2 = a2[H∗∗(x)]−2. As

f ′(x) → (1/a2)f ′(x/a) one further shows that [J(ax)]−1 = a2[J(x)]−1. Thus all four

measures are scale equivariant and therefore squared dispersion measures. �

P r o o f of Theorem 2.3. The ratio f : g is indeed a density function, since it is

trivially nonnegative and

∫ 1

0

(f : g)(u) du =

∫ 1

0

f(G−1(u))

g(G−1(u))
du =

∫ ∞

−∞

f(x) dx = 1
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with the substitution x = G−1(u). Similarly,

−H(f : g) =

∫ 1

0

(f : g)(u) log((f : g)(u)) du =

∫ ∞

−∞

f(x) log
f(x)

g(x)
dx = D(f ||g).

�

P r o o f of Theorem 3.1. (1) Let V be orthogonal. As Cov([VD
−1/2

U
′]x) =

VD
−1/2

U
′ Cov(x)UD

−1/2
V

′ = VV
′ = Ip, the components of [VD

−1/2
U

′]x are

uncorrelated.

(2) Assume that Ax is spherical with A = VCW
′ rescaled so that Cov(Ax) = Ip.

As ACov(x)A′ = Ip, then Cov(x) = (A′
A)−1 andWC

−2
W

′ = UDU
′. Therefore,

W = U and C = D
−1/2 and we can conclude that [VD

−1/2
U

′]x is spherical for any

orthogonal V. (If x is spherical then Vx is spherical for all orthogonal V.)

(3) Let Ax with A = VCW
′ have independent and standardized components so

that Cov(Ax) = Ip. As in (2), A must be VD
−1/2

U
′ but now for some V only.

(It is not true that if x has independent standardized components then Vx has

independent components for any choice of V.)

(4) Based on (2) and (3), there exists anA = VD
−1/2

U
′ such thatAx has a spher-

ical distribution with independent components. Then by the Maxwell-Hershell the-

orem, Ax has a multivariate normal distribution. For the proof of the Maxwell-

Hershell theorem, see e.g. Proposition 4.11 in [5]. �

P r o o f of Theorem 3.2. Let z = Ax + Pb = (z1, . . . , zp)
′ be a vector of stan-

dardized independent components. By Theorem 3.1, z = Vx
st with some orthogo-

nal V. If u′
u = 1 then also (Vu)′(Vu) = 1 and therefore D(u′

x
st) = D(u′

Vz) 6
∑

(V′
u)2iD(zi) 6 maxj D(zj) for a subadditive squared dispersion measure D and

D(u′
x
st) = D(u′

Vz) >
∑

(V′
u)2iD(zi) > minj D(zj) for a superadditive squared

dispersion measure D. �
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