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Abstract. This paper deals with the finiteness problem of meromorphic funtions on an
annulus sharing four values regardless of multiplicity. We prove that if three admissible
meromorphic functions f1, f2, f3 on an annulus A(R0) share four distinct values regardless
of multiplicity and have the complete identity set of positive counting function, then f1 = f2
or f2 = f3 or f3 = f1. This result deduces that there are at most two admissible mero-
morphic functions on an annulus sharing a value with multiplicity truncated to level 2 and
sharing other three values regardless of multiplicity. This result also implies that there are
at most three admissible meromorphic functions on an annulus sharing four values regard-
less of multiplicities. These results are a generalization and improvement of the previous
results on finiteness problem of meromorphic functions on C sharing four values.

Keywords: meromorphic function; Nevanlinna theory; annulus

MSC 2010 : 30D35, 32H30

1. Introduction

Let D be a domain in C and let f , g be two meromorphic functions on D. Let a

be a value in C ∪ {∞} and k be a positive integer or ∞. We say that f and g share

the value a with multiplicities counted to level k if

min{ν0f−a, k} = min{ν0g−a, k} on D,

where ν0ϕ denotes the divisor of zeros of the meromorphic function ϕ and ν0ϕ−∞ is

regarded as ν01/ϕ. We will say that f and g share a regardless of multiplicities (or

share a counted with multiplicities) if k = 1 (or k = ∞).
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In 1926, Nevanlinna in [12] showed that two nonconstant distinct meromorphic

functions f and g on C cannot have the same inverse images of five distinct values and

that g is a Möbius transformation of f if they share four distinct values counted with

multiplicity. These results are called Nevalinna’s five and four values theorems. After

that, Fujimoto in [5] improved the four values theorem of Nevanlinna by proving that

there are at most two meromorphic functions on C which share four distinct values

with multiplicities truncated by level 2. This kind of results are called finiteness

theorems for meromorphic function sharing values. For the case of meromorphic

functions on C , there are many extensions of the four values theorem by many

authors (we refer the reader to [1], [2], [6], [7], [10] and [13], [14]). However, as

far as we know, there is still no finiteness theorems for the case of meromorphic

functions on doubly connected domain sharing four values, for instance on annuli

A(R0) = {z : 1/R0 < |z| < R0}, R0 ∈ (1,∞].

Recently, Khrystiyanyn and Kondratyuk (see [8], [9]) proposed the Nevanlinna

theory for meromorphic functions on annuli. By using the second main theorem for

meromorphic functions on annuli, Cao, Yi and Xu in [4] proved a uniqueness theory

of meromorphic functions on annuli sharing values. The result of Cao, Yi and Xu may

be considered as a generalization of almost all uniqueness theorems for meromorphic

functions sharing finite values in the complex plane to the case of functions on annuli.

However, in their result the functions are assumed to share at least five values. The

purpose of this paper is to study the case where the functions on annuli share only

four values regardless of multiplicity. Firstly, we give the following definition.

Let f1, . . . , fk be meromorphic functions on an annulus A(R0). We define the

“complete identity set” of f1, . . . , fk, denoted by C(f1, . . . , fk), as the set of all

points z0 satisfying one of the following two conditions:

(i) z0 is a common zero with the same multiplicities of f − f(z0) and g − g(z0),

(ii) z0 is a common pole with the same multiplicities of f and g. The funtions

f1, . . . , fk are said to have the “complete identity set of positive counting func-

tion” if the quantity N(r, C(f1, . . . , fk)) is not small with respect to some fi,

1 6 i 6 k, i.e.

N(r, C(f1, . . . , fk)) 6= Sf1(r) + . . .+ Sfk(r).

Here, the counting function N(r, C(f1, . . . , fk)) and the quantities Sfi(r) are de-

fined in Section 2. Our main result will be stated as follows.

Theorem 1.1. Let f1, f2, f3 be three meromorphic functions on an annulus

A(R0), 1 < R0 6 ∞ and let a1, a2, a3, a4 be four distinct values in C ∪{∞}. Assume

that f1, f2, f3 share a1, a2, a3, a4 regardless of multiplicities. If f1 is admissible and
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f1, f2, f3 have the identity complete set of positive counting function, then f1 = f2

or f2 = f3 or f3 = f1.

From our result above, we will show that there are at most two meromorphic

functions sharing a value with multiplicities truncated by level 2 and sharing three

other values regardless of multiplicities. For details, we have the following corollary.

Corollary 1.2. Let f1, f2, f3 be three meromorphic functions on an annulus

A(R0), 1 < R0 6 ∞ and let a1, a2, a3, a4 be four distinct values in C ∪ {∞}.

Assume that f1, f2, f3 share a1 with multiplicities counted to level 2 and share a2,

a3, a4 regardless of multiplicities. If f1 is admissible, then f1 = f2 or f2 = f3 or

f3 = f1.

With weaker assumption that the meromorphic functions share all four values

regardless of multiplicities, our main result also implies the following corollary.

Corollary 1.3. Let f1, f2, f3, f4 be four meromorphic functions on an annulus

A(R0), 1 < R0 6 ∞ and a1, a2, a3, a4 be four distinct values in C ∪ {∞}. As-

sume that f1, f2, f3, f4 share all a1, a2, a3, a4 regardless of multiplicities. If f1 is

admissible, then there are two functions among {f1, f2, f3, f4} identical to each other.

2. Some definitions and results from Nevanlinna theory on annuli

In this section, we will recall some important basic notions of Nevanlinna theory

for meromorphic functions on annuli from [11] (see also [3], [8] and [9]).

For a divisor ν on A(R0), which we may regard as a function on A(R0) with values

in Z whose support is a discrete subset of A(R0), and for a positive integerM (maybe

M = ∞), we define the counting function of ν as

n
[M ]
0 (t) =















∑

16|z|6t

min{M, ν(z)} if 1 6 t < R0,

∑

t6|z|<1

min{M, ν(z)} if
1

R0
< t < 1,

N
[M ]
0 (r, ν) =

∫ 1

1/r

n
[M ]
0 (t)

t
dt+

∫ r

1

n
[M ]
0 (t)

t
dt, 1 < r < ∞.

For brevity we will omit the character [M ] if M = ∞.

For a divisor ν and a positive integer k (maybe k = ∞), we define

ν6k(z) =

{

ν(z) if ν(z) 6 k,

0 otherwise
and ν>k(z) =

{

ν(z) if ν(z) > k,

0 otherwise.
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For a meromorphic function ϕ we define

⊲ ν0ϕ (or ν
∞
ϕ ) the divisor of zeros (or divisor of poles) of ϕ,

⊲ νϕ = ν0ϕ − ν∞ϕ ,

⊲ ν0ϕ,6k = (ν0ϕ)6k, ν
0
ϕ,>k = (ν0ϕ)>k.

Similarly, we define ν∞ϕ,6k, ν
∞
ϕ,>k, νϕ,6k, νϕ,>k and their counting functions.

For a discrete subset S ⊂ A(R0) we consider it as a reduced divisor (denoted again

by S) whose support is S, and denote by N0(r, S) its counting function. We also set

χS(z) = 0 if z 6∈ S and χS(z) = 1 if z ∈ S.

Let f be a nonconstant meromorphic function on A(R). We define

m0(r, f) =
1

2π

∫ 2π

0

log+
∣

∣

∣
f
(1

r
eiθ

)∣

∣

∣
dθ+

1

2π

∫ 2π

0

log+ |f(reiθ)| dθ−
1

π

∫ 2π

0

log+ |f(eiθ)| dθ

and

T0(r, f) = m0(r, f) +N0(r, ν
∞
f ).

Throughout this paper, we denote by Sf (r) the quantities satisfying

(i) in the case R0 = ∞,

Sf (r) = O(log(rT0(r, f)))

for r ∈ (1,∞) except for the set ∆R such that
∫

∆R
rλ−1 dr < ∞, λ > 0,

(ii) in the case R0 < ∞,

Sf (r) = O
(

log
T0(r, f)

R0 − r

)

as r → R0

for r ∈ (1, R0) except for the set ∆
′
R such that

∫

∆′

R

(R0 − r)1−λ dr < ∞, λ > 0.

The function f is said to be admissible if it satisfies

lim sup
r→∞

T0(r, f)

log r
= ∞ in the case R0 = ∞

or

lim sup
r→R0

T0(r, f)

− log(R0 − r)
= ∞ in the case 1 < R0 < ∞.

Thus, for an admissible meromorphic function f on the annulus A(R0) we have

Sf (r) = o(T0(r, f)) as r → R0 for all 1 6 r < R0 except for the set ∆R or the set ∆
′
R

mentioned above, respectively.

Lemma 2.1 (Lemma on logarithmic derivatives [3], [8], [9], [11]). Let f be a

nonzero meromorphic function on A(R0). Then for each k ∈ N we have

m0

(

r,
f (k)

f

)

= Sf (r), 1 6 r < R0.
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Theorem 2.2 (First main theorem [3], [8], [9], [11]). Let f be a meromorphic

function on A(R0). Then for each a ∈ C we have

T0(r, f) = T0

(

r,
1

f − a

)

+ Sf (r), 1 6 r < R0.

Theorem 2.3 (Second main theorem [3], [8], [9], [11]). Let f be a nonconstant

meromorphic function on A(R0). Let a1, . . . , aq, q > 3 be q distinct values in

C ∪ {∞}. We have

(q − 2)T0(r, f) 6

q
∑

i=1

N
[1]
0 (r, ν0f−ai

) + Sf (r), 1 6 r < R0.

Lemma 2.4. Let f be an admissible meromorphic function on A(R0), 1 <R06 ∞

and let a1, a2, a3 be three distinct values in C ∪ {∞}. Let g be a meromorphic

function on A(R0) such that f and g share all a1, a2, a3 regardless of multiplicities.

Then we have

T0(r, f) = O(T0(r, g)) + Sf (r) and T0(r, g) = O(T0(r, f)) + Sg(r) as r → R0.

In particular, g is admissible.

P r o o f. By Theorem 2.3 we have

T0(r, f) 6

3
∑

i=1

N
[1]
0 (r, ν0f−ai

)+Sf(r) =

3
∑

i=1

N
[1]
0 (r, ν0g−ai

)+Sf(r) 6 3T0(r, g)+Sf(r).

Similarly, we have T0(r, g) 6 3T0(r, f) + Sg(r). The lemma is proved. �

3. Some preparations

Throughout this section, let f1, f2, f3 be three meromorphic functions on A(R0)

and let a1, a2, a3, a4 be four distinct values in C \ {0} satisfying the following two

conditions:

(1) f1, f2, f3 share four values a1, . . . , a4 regardless of multiplicities,

(2) f1 is an admissible meromorphic function.

By Lemma 2.4, we see that T0(r, fk) = O(T0(r, fl))+Sfk(r), 1 6 k, l 6 3 as r → R0.

In particular, fs is admissible for every s = 1, 2, 3. Therefore the quantities Sf1(r),
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Sf2(r), Sf3(r) are equivalent, and hence we denote them by the same notation S(r).

We set

T0(r) = T0(r, f1) + T0(r, f2) + T0(r, f3).

For i ∈ {1, . . . , 4} we put F k
i = (fk − ai)/fk. Then

T0(r, F
k
i ) = T0(r, fk) + S(r).

We define

⊲ νi = {z : ν0f1−ai
(z) > 0},

⊲ νi,s, 0 6 s 6 3: the set of all points z ∈ νi satisfying that there are exactly s

values among {ν0fs−ai
(z)}3s=1 bigger than 1.

⊲ C′ = C(f1, f2, f3) \
⋃

16i64

νi, where C(f1, f2, f3) is the complete identity set of

f1, f2, f3.

Lemma 3.1. If f1, f2, f3 are distinct, then the following assertions hold:

(1) 2T0(r, fk) =
4
∑

i=1

N0(r, νi) + S(r), 1 6 k 6 3,

(2) N0(r, C
′) = S(r),

(3) N0(r, νi,s) = S(r) for all 1 6 i 6 4, 2 6 s 6 3.

P r o o f. Suppose that each fk has a reduced representation fk = (fk0 : fk1),

where fk0, fk1 are holomorphic functions without common zero. For k, l ∈ {1, 2, 3},

k 6= l, we have

N0(r, C
′) +

4
∑

i=1

N0(r,min{ν0fk−ai
, ν0fl−ai

})

6 N0(r, fk0fl1 − fk1fl0) =
1

2π

∫ 2π

0

log |fk0fl1 − fk1fl0| dθ

6
1

2π

∫ 2π

0

log(|fk0|
2 + |fk1|

2)1/2 dθ +
1

2π

∫ 2π

0

log(|fl0|
2 + |fl1|

2)1/2 dθ

6
1

2π

∫ 2π

0

log
( |fk0|2

|fk1|2
+ 1

)1/2

dθ +
1

2π

∫ 2π

0

log |fk1| dθ

+
1

2π

∫ 2π

0

log
( |fl0|2

|fl1|2
+ 1

)1/2

dθ +
1

2π

∫ 2π

0

log |fl1| dθ

= m0(r, fk) +N0(r, ν
∞
fk
) +m0(r, fl) +N0(r, ν

∞
fl
) = T0(r, fk) + T0(r, fl).

Therefore

(3.1) N0(r, C
′) +

4
∑

i=1

∑

16k<l63

N0(r,min{ν0fk−ai
, ν0fl−ai

}) 6 2T0(r).
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It is easy to see that for every z ∈ νi =
3
⋃

s=0
νi,s we have

∑

16k<l63

min {ν0fk−ai
(z), ν0fl−ai

(z)}

>























min{1, 1}+min{1, 1}+min{1, 1} = 3 if z ∈ νi,0,

min{1, 1}+min{1, 2}+min{1, 2} = 3 if z ∈ νi,1,

min{1, 2}+min{1, 2}+min{2, 2} = 4 if z ∈ νi,2,

min{2, 2}+min{2, 2}+min{2, 2} = 6 if z ∈ νi,3.

Then we have

∑

16k<l63

min{ν0fk−ai
(z), ν0fl−ai

(z)} > 3χνi,0 + 3χνi,1 + 4χνi,2 + 6χνi,3

= 3χνi + χνi,2 + 3χνi,3 .

This yields that

∑

16k<l63

N0(r,min{ν0fk−ai
, ν0fl−ai

}) > 3N0(r, νi) +N0(r, νi,2) + 3N0(r, νi,3).

From (3.1) we have

(3.2) 2T0(r) >

4
∑

i=1

(3N0(r, νi) +N0(r, νi,2) + 3N0(r, νi,3)).

On the other hand, by the second main theorem we have

(3.3) 2T0(r, fk) 6

4
∑

i=1

N
[1]
0 (r, νi) + S(r), 1 6 k 6 3.

Summing-up both sides of (3.3) over all 1 6 k 6 3, we obtain

(3.4) 2T0(r) 6 3

4
∑

i=1

N
[1]
0 (r, νi) + S(r).

Then, combining (3.2), (3.3) and (3.4), we easily see that

T0(r, fk) 6

4
∑

i=1

N
[1]
0 (r, νi) + S(r), 1 6 k 6 3,

N0(r, νi,2) + 3N0(r, νi,3) = S(r), 1 6 i 6 4,

N0(r, C
′) = S(r).

This obviously implies the conclusions of the lemma. �
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Now we recall the Cartan’s auxiliary function (see [5], Definition 3.1). Let F , G, H

be three nonzero meromorphic functions, we define Cartan’s auxiliary function by

(3.5) Φ(F,G,H) := F ·G ·H ·

∣

∣

∣

∣

∣

∣

1 1 1

1/F 1/G 1/H

(1/F )′ (1/G)′ (1/H)′

∣

∣

∣

∣

∣

∣

= F
( (1/H)′

1/H
−

(1/G)′

1/G

)

+G
( (1/F )′

1/F
−

(1/H)′

1/H

)

+H
((1/G)′

1/G
−

(1/F )′

1/F

)

.

It is easy to see that for every meromorphic function h we have the property

Φ(hF, hG, hH) = h · Φ(F,G,H).

Lemma 3.2. If f1, f2, f3 are distinct, then Φ(F
1
i , F

2
i , F

3
i ) 6≡ 0 for every 1 6 i 6 4.

P r o o f. Suppose contrarily that Φ(F 1
i , F

2
i , F

3
i ) = 0 for an index i ∈ {1, . . . , 4}.

We have

0 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1

1

F 1
i

1

F 2
i

1

F 3
i

( 1

F 1
i

)′ ( 1

F 2
i

)′ ( 1

F 3
i

)′

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

1

F 2
i

−
1

F 1
i

1

F 3
i

−
1

F 1
i

( 1

F 2
i

−
1

F 1
i

)′ ( 1

F 3
i

−
1

F 1
i

)′

∣

∣

∣

∣

∣

∣

∣

=
( 1

F 2
i

−
1

F 1
i

)( 1

F 3
i

−
1

F 1
i

)′

−
( 1

F 3
i

−
1

F 1
i

)( 1

F 2
i

−
1

F 1
i

)′

.

It follows that
1/F 3

i − 1/F 1
i

1/F 2
i − 1/F 1

i

= λ ∈ C ,

i.e.
1/(f3 − ai)− 1/(f1 − ai)

1/(f2 − ai)− 1/(f1 − a1)
= λ.

Since f1, f2, f3 are supposed to be distinct, λ 6∈ {0, 1} and

(1− λ)
1

f1 − ai
+ λ

1

f2 − ai
=

1

f3 − ai
.

Then for every z ∈ A(R0), one has ν0fs−ai
(z) = ν0ft−ai

(z) > ν0f l−ai
(z) with

a permutation (s, t, l) of (1, 2, 3). We consider the meromorphic function ϕ =

(f2 − ai)/(f1 − ai).
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Suppose that ϕ = constant, i.e. (f2 − ai)/(f1 − ai) = a ∈ C \ {0, 1}. Then
⋃

j 6=i

νj = ∅. Therefore

T0(r, f1) 6
∑

j 6=i

N0(r, ν
0
f1−aj

) + S(r) = S(r).

This contradicts the fact that f1 is admissible.

Then ϕ is not constant. We see that if z is a zero of some functions among

{ϕ, 1/ϕ, ϕ + λ/(1 − λ)}, then z is zero of only one function among them and

ν0fs−ai
(z) = ν0ft−ai

(z) > ν0f l−ai
(z), and hence z ∈ νi,2 ∪ νi,3. Then by the second

main theorem and by Lemma 3.2 we have

T0(r, ϕ) 6 N
[1]
0 (r, ν0ϕ) +N

[1]
0 (r, ν01/ϕ) +N

[1]
0 (r, ν0ϕ+λ/(1−λ)) + S(r)

6 N0(r, νi,2) +N0(r, νi,3) + S(r) = S(r).

On the other hand, again by the second main theorem we have

T0(r, ϕ) > N0(r, ν
0
ϕ−1) + S(r) >

4
∑

j=1, j 6=i

N
[1]
0 (r, ν0f1−aj

) + S(r) > T0(r, f1) + S(r).

Therefore we have T0(r, f1) = S(r). This contradicts the fact that f1 is admissible.

Then the supposition is untrue and the lemma is proved. �

Lemma 3.3. Let i be an index in {1, . . . , 4} and let Φ := Φ(F 1
i , F

2
i , F

3
i ). If f1,

f2, f3 are distinct, then

N0(r, νi,0) + 2

4
∑

j 6=i, j=1

N
[1]
0 (r, νj) 6 N0(r, ν

0
Φ) 6 T0(r) + S(r).

P r o o f. Without loss of generality we may assume that i = 1. From Lemma 3.2

we see that Φ 6≡ 0.

a) We prove the first inequality of the lemma. Let S = ν1,0 ∪
4
⋃

j=2

νj . For a fixed

point z0 ∈ S, we consider the following two cases.

Case 1 : Suppose that z0 ∈ ν1,0. Then there exists a neighborhood U of z0 such

that all F k
1 /(z − z0), 1 6 k 6 3 are nowhere zero holomorphic functions on U . We

rewrite the function Φ on U as

Φ = (z − z0)Φ
( F 1

1

z − z0
,

F 2
1

z − z0
,

F 3
1

z − z0

)

.
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Then, it yields that

ν0Φ(z0) > ν0(z−z0)
(z0) = 1 = χν1,0(z0) +

4
∑

j=2

χνj (z0).

Case 2 : Suppose that z0 ∈ νt with t > 1. We rewrite the function Φ as

Φ = F 1
1 · F 2

1 · F 3
1

∣

∣

∣

∣

∣

∣

∣

∣

1

F 2
1

−
1

F 1
1

1

F 3
1

−
1

F 1
1

( 1

F 2
1

−
1

F 1
1

)′ ( 1

F 3
1

−
1

F 1
1

)′

∣

∣

∣

∣

∣

∣

∣

∣

= F 1
1 · F 2

1 · F 3
1

∣

∣

∣

∣

∣

∣

∣

∣

a1(f2 − f1)

(f2 − a1)(f1 − a1)

a1(f3 − f1)

(f3 − a1)(f1 − a1)
( a1(f2 − f1)

(f2 − a1)(f1 − a1)

)′ ( a1(f3 − f1)

(f3 − a1)(f1 − a1)

)′

∣

∣

∣

∣

∣

∣

∣

∣

= (z − z0)
2F 1

1 · F 2
1 · F 3

1

×

∣

∣

∣

∣

∣

∣

∣

∣

a1(f2 − f1)

(z − z0)(f2 − a1)(f1 − a1)

a1(f3 − f1)

(z − z0)(f3 − a1)(f1 − a1)
( a1(f2 − f1)

(z − z0)(f2 − a1)(f1 − a1)

)′ ( a1(f3 − f1)

(z − z0)(f3 − a1)(f1 − a1)

)′

∣

∣

∣

∣

∣

∣

∣

∣

.

We note that all functions a1(fk − f1)/((z − z0)(fk − a1)(f1 − a1)), k = 2, 3 are

holomorphic on a neighborhood of z0. Therefore it follows that

ν0Φ(z0) > 2ν0(z−z0)
(z0) = 2 = 2χν1,0(z0) + 2

4
∑

j=2

χνj (z0).

From the above two cases, we have

ν0Φ(z) > χνi,0 + 2

4
∑

j=1

χνj

for all z ∈ S. This implies that

N0(r, ν
0
Φ) > N0(r, ν1,0) + 2

4
∑

j=2

N0(r, νj).

Then we have the desired inequality.
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b) We prove the second inequality of the lemma. We have

N0(r, ν
0
Φ) 6 T0(r,Φ) = m0(r,Φ) +N0(r, ν

∞
Φ )

6

3
∑

s=1

m0(r, F
s
i ) +

3
∑

s=1

N0(r, ν
∞
F s

i
) +N0(r, ν

∞
Φ )−

3
∑

s=1

N0(r, ν
∞
F s

i
) + S(r)

= T0(r) +N0(r, ν
∞
Φ )−

3
∑

s=1

N0(r, ν
∞
F s

1

) + S(r).

Then it suffices for us to prove that

N0(r, ν
∞
Φ ) 6

3
∑

s=1

N0(r, ν
∞
F s

i
).

In order to prove the above inequality, it is enought to show that the inequality

(3.6) ν∞Φ 6

3
∑

s=1

ν∞F s
i

holds for every z outside an analytic subset of counting function equal to S(r).

For fixed point z0, we consider the following two cases:

Case 1 : Suppose that z0 ∈ ν1,0 ∪ ν1,1. Similarly as in Case 1 of the above part,

we see that Φ is holomorphic on a neighborhood of z0.

Case 2 : Suppose that z0 6∈ ν1. Then 1/F s
1 is holomorphic at z0 for all s. Hence,

we have

ν∞Φ (z0) 6

3
∑

k=1

ν∞Fk
1

(z0).

Then from the above two cases we have

ν∞Φ 6

3
∑

s=1

ν∞F s
1

for all z outside the set ν1,2 ∪ ν1,2, which has the counting function equal to S(r).

Then we have the desired inequality. �
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4. Proofs of results

By using Möbius transformation if necessary, we may assume that all values a1,

a2, a3, a4 belong to C. We will use the same notations given in Section 3 for the

proofs of Theorem 1.1 and Corollary 1.2 below.

P r o o f of Theorem 1.1. Let f1, f2, f3 be distinct. Then Φ(F 1
i , F

2
i , F

3
i ) 6≡ 0 for

every i = 1, . . . , 4. Lemma 3.3 yields that

N0(r, νi,0) + 2
4

∑

j=1, j 6=i

N
[1]
0 (r, νj) 6 N0(r, ν

0
Φ) 6 T0(r) + S(r), 1 6 i 6 4.

Summing-up both sides of these inequalities, we get

4
∑

i=1

N0(r, νi,0) + 6

4
∑

i=1

N
[1]
0 (r, νj) 6 4T0(r) + S(r).

On the other hand, by the second main theorem we have

T0(r) =

3
∑

k=1

T0(r, fk) 6
3

2

4
∑

i=1

N
[1]
0 (r, νj) + S(r).

The above two inequalities imply that

4
∑

i=1

N0(r, νi,0) = S(r).

Therefore, by Lemma 3.1 we have

N0(r, C(f1, f2, f3)) = N0(r, C
′) +

∑

06s63
16i64

N0(r, C(f1, f2, f3) ∩ νi,s)

= N0(r, C
′) +

4
∑

i=1

(N0(r, νi,0) +N0(r, νi,3)) = S(r)

(here we note that C(f1, f2, f3) ∩ νi,s = ∅ for all 1 6 s 6 2). This is a contradiction.

Then the supposition is impossible. Hence, we must have f1 = f2 or f2 = f3 or

f3 = f2. The theorem is proved. �

P r o o f of Corollary 1.2. Suppose that f1, f2, f3 are distinct. By the assumption,

we see that if z is a simple zero of some functions (fi−a1), then it will be a common

simple zero of all funtions (fj − a1), 1 6 j 6 4. This implies that ν1,1 = ν1,2 = ∅.
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Also by Lemma 3.1 (3), the set ν1,3 is of counting function equal to S(r). On the

other hand, ν1,0 ⊂ C(f1, f2, f3) and from Theorem 1.1 we have

N0(r, ν1,0) 6 N0(r, C(f1, f2, f3)) = S(r).

These facts imply that

N0(r, ν1) =

3
∑

s=0

N0(r, ν1,s) = N0(r, ν1,0) +N0(r, ν1,3) = S(r).

Now, from Lemma 3.3 and the second main theorem we have

2T0(r) = 2

3
∑

k=1

T0(r, fk) 6 3

4
∑

i=1

N
[1]
0 (r, νi) + S(r)

= 3

4
∑

i=2

N
[1]
0 (r, νi) + S(r) 6

3

2
T0(r) + S(r).

Letting r → R0, we get 2 6 3
2 . This is a contradiction.

Then the supposition is impossible. Hence, we must have f1 = f2 or f2 = f3 or

f3 = f2. The corollary is proved. �

P r o o f of Corollary 1.3. Suppose that f1, f2, f3, f4 are distinct. Similarly as in

Section 2, we set

T0(r) =

4
∑

k=1

T0(r, fk)

and denote by S(r) the quantities Sfk(r), 1 6 k 6 4 (these quantities are equivalent).

Denote by νi,s the set of all points z which are common zeros of {fk−ai : 1 6 k 6 4}

such that there are exactly s values in {ν0fk−ai
(z) : 1 6 k 6 4} exceeding 2. From

Lemma 3.1 (3) we see that νi,s consists of counting functions equal to S(r) for all

s > 2. On the other hand, for each i ∈ {1, . . . , 4} we see that if z ∈ νi,0 ∪ νi,1, then

there are at least three distinct indices s, k, t ∈ {1, . . . , 4} such that z is a common

simple zero of {fs − ai, ft − ai, fk − ai}, and hence z belongs to C(fs, ft, fk). This

yields that
4
⋃

i=1

(νi,0 ∪ νi,1) ⊂ C(fs, ft, fk).

Therefore, from Theorem 1.1 we have

4
∑

i=1

N0(r, νi) =

4
∑

i=1

(N0(r, νi,0) +N0(r, νi,1)) + S(r)

6
∑

16s<t<k64

N0(r, C(fs, ft, fk)) + S(r) = S(r).
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Then by the second main theorem, we have

2T0(r, f1) 6

4
∑

i=1

N0(r, νi) + S(r) = S(r).

This contradicts the fact that f1 is admissible. Then the supposition is impossible.

Hence, there are two funtions among {f1, f2, f3, f4} identical to each other. The

corollary is proved. �

References

[1] A.Banerjee: Weighted sharing of a small function by a meromorphic function and its
derivative. Comput. Math. Appl. 53 (2007), 1750–1761. zbl MR doi

[2] S. S. Bhoosnurmath, R. S.Dyavanal: Uniqueness and value-sharing of meromorphic func-
tions. Comput. Math. Appl. 53 (2007), 1191–1205. zbl MR doi

[3] T.-B.Cao, Z.-S.Deng: On the uniqueness of meromorphic functions that share three or
two finite sets on annuli. Proc. Indian Acad. Sci., Math. Sci. 122 (2012), 203–220. zbl MR doi

[4] T.-B.Cao, H.-X.Yi, H.-Y.Xu: On the multiple values and uniqueness of meromorphic
functions on annuli. Comput. Math. Appl. 58 (2009), 1457–1465. zbl MR doi

[5] H.Fujimoto: Uniqueness problem with truncated multiplicities in value distribution the-
ory. Nagoya Math. J. 152 (1998), 131–152. zbl MR doi

[6] G.G.Gundersen: Meromorphic functions that share four values. Trans. Am. Math. Soc.
277 (1983), 545–567. zbl MR doi

[7] K. Ishizaki, N. Toda: Unicity theorems for meromorphic functions sharing four small
functions. Kodai Math. J. 21 (1998), 350–371. zbl MR doi

[8] A.Y.Khrystiyanyn, A.A.Kondratyuk: On the Nevanlinna theory for meromorphic func-
tions on annuli. I. Mat. Stud. 23 (2005), 19–30. zbl MR

[9] A.Y.Khrystiyanyn, A.A.Kondratyuk: On the Nevanlinna theory for meromorphic func-
tions on annuli. II. Mat. Stud. 24 (2005), 57–68. zbl MR

[10] X.Li, H.Yi, H.Hu: Uniqueness results of meromorphic functions whose derivatives
share four small functions. Acta Math. Sci., Ser. B, Engl. Ed. 32 (2012), 1593–1606. zbl MR doi

[11] M.Lund, Z. Ye: Nevanlinna theory of meromorphic functions on annuli. Sci. China,
Math. 53 (2010), 547–554. zbl MR doi

[12] R.Nevanlinna: Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen.
Acta Math. 48 (1926), 367–391. (In German.) zbl MR doi

[13] S.D.Quang: Unicity of meromorphic functions sharing some small functions regardless
of multiplicities. Int. J. Math. 23 (2012), Article ID 1250088, 18 pages. zbl MR doi

[14] S.D.Quang: Finiteness problem of meromorphic functions sharing four small functions
regardless of multiplicities. Int. J. Math. 25 (2014), Article ID 1450102, 20 pages. zbl MR doi

Authors’ addresses: Duc Quang Si, Department of Mathematics, Hanoi National Univer-
sity of Education, 136-Xuan Thuy, Cau Giay, 123106 Hanoi, Vietnam, and Thang Long In-
stitute of Mathematics and Applied Sciences, Nghiem Xuan Yem, Hoang Mai, 100000 Hanoi,
Vietnam, e-mail: quangsd@hnue.edu.vn; An Hai Tran, Division of Mathematics, Banking
Academy, 12-Chua Boc, Dong Da, 100000 Hanoi, Vietnam, e-mail: trananhai@wru.vn.

176

https://zbmath.org/?q=an:1152.30321
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2332104
http://dx.doi.org/10.1016/j.camwa.2006.10.026
https://zbmath.org/?q=an:1170.30011
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2327673
http://dx.doi.org/10.1016/j.camwa.2006.08.045
https://zbmath.org/?q=an:1269.30036
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2945092
http://dx.doi.org/10.1007/s12044-012-0074-7
https://zbmath.org/?q=an:1189.30065
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2555283
http://dx.doi.org/10.1016/j.camwa.2009.07.042
https://zbmath.org/?q=an:0937.32010
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1659377
http://dx.doi.org/10.1017/S0027763000006826
https://zbmath.org/?q=an:0508.30029
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0694375
http://dx.doi.org/10.2307/1999223
https://zbmath.org/?q=an:0946.30019
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1664754
http://dx.doi.org/10.2996/kmj/1138043945
https://zbmath.org/?q=an:1066.30036
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2150985
https://zbmath.org/?q=an:1092.30048
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2210430
https://zbmath.org/?q=an:1274.30120
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2927447
http://dx.doi.org/10.1016/S0252-9602(12)60126-X
https://zbmath.org/?q=an:1193.30044
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2608311
http://dx.doi.org/10.1007/s11425-010-0037-3
https://zbmath.org/?q=an:52.0323.03
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1555233
http://dx.doi.org/10.1007/BF02565342
https://zbmath.org/?q=an:1284.30020
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2959434
http://dx.doi.org/10.1142/S0129167X12500887
https://zbmath.org/?q=an:1304.30044
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3285302
http://dx.doi.org/10.1142/S0129167X1450102X

		webmaster@dml.cz
	2021-04-19T13:24:06+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




