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Abstract. In this paper, we study the nonexistence of entire positive solution for a con-
formal k-Hessian inequality in R

n via the method of proof by contradiction.
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1. Introduction

In this paper, we study a conformal k-Hessian inequality

(1.1) σk(A
g) > uα,

where σk(A
g) = σk(λ(A

g)), u is the unknown function, α is a constant, and σk

denotes the k-Hessian operator or the kth order elementary symmetric polynomial

given by

(1.2) σk(λ) =
∑

i1<...<is

k
∏

s=1

λis ,

where k = 1, . . . , n, i1, . . . , is ∈ {1, . . . , n}, and λ = (λ1, . . . , λn) denotes eigenvalues

of the matrix Ag. In (1.1), Ag is the conformal Schouten tensor of (M, g) given by

(1.3) Ag :=
1

n− 2

(

Ricg −
Rg

2(n− 1)
g
)

= ∇2u− 1
2 |∇u|2g0 +∇u⊗∇u+Ag0
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andM, g, respectively, denote the manifold and a conformal metric g = gu = e−2ug0,

where Ricg and Rg, respectively, denote the Ricci tensor and scalar curvature, ∇ is
the Levi-Civita connection of M, ∇u and ∇2u denote the covariant gradient and

covariant Hessian of the function of u, g0 is a given metric on M, and Ag0 is the

Schouten tensor of (M, g0) given by

Ag0 =
1

n− 2

(

Ricg0 −
Rg0

2(n− 1)
g0

)

.

The leading term σk(A
g) in the inequality (1.1) is related to the k-Yamabe prob-

lem, see [21], [24]. When k = 1, it is related to the well-known Yamabe problem,

see [1], [2], [20], [22], [25]. Note that for Euclidean space Rn, the Schouten tensor Ag

has the form

(1.4) Ag = D2u−
(

1
2 |Du|2I −Du⊗Du

)

,

where Du and D2u denote the gradient vector and Hessian matrix of u, respectively,

I is the n× n identity matrix.

In this paper, we consider the admissible solution of the inequality (1.1) in R
n

with Ag given by (1.4). According to Caffarelli-Nirenberg-Spruck (see [6]), we say

that u is an admissible function of (1.1) if λ(Ag) ∈ Γk := {λ ∈ R
n : σs(λ) > 0,

s = 1, . . . , k}. We give the following nonexistence result of the positive admissible
solution of the inequality (1.1) in R

n.

Theorem 1.1. The inequality (1.1) with Ag in the form (1.4) has no entire pos-

itive admissible solution in R
n for n > 3, α > 0 and n = 2, α > k.

The result in Theorem 1.1 is sharp when n = 2. In the case when n = 2 and

k = 1, some obvious examples will be given in Section 2 to show that there are entire

positive admissible solutions of (1.1) if α does not satisfy α > 1.

Taking k = 1 in Theorem 1.1, we have the following nonexistence result for an

inequality involving the Laplace operator.

Corollary 1.1. The inequality

(1.5) ∆u−
(n

2
− 1

)

|Du|2 > uα

has no entire positive solution in R
n for n > 3, α > 0 and n = 2, α > 1.

Remark 1.1. When n = 2, the inequality (1.5) reduces to ∆u > uα. Therefore,

when n = 2, the result in Corollary 1.1 for α > 1 corresponds to the well-known

results in [4], [12], [15], [16]. If uα in the inequalities (1.1) and (1.5) is replaced by Cuα

with any positive constant C, the conclusions of Theorem 1.1 and Corollary 1.1 still

hold.
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We recall some related studies on the entire solutions of Hessian equations and Hes-

sian inequalities. The classification of the entire nonnegative solutions of the equa-

tion −∆u = uα in R
n is established for 1 6 α < (n+ 2)/(n− 2) in [7] and for α =

(n+ 2)/(n− 2) in [5], respectively. The similar classification results are extended

in [13] to admissible solutions of the conformal k-Hessian equations σk(A
g) = uα

in R
n for α ∈ [0,∞), where k ∈ N+ and g = u−2 dx2 with u > 0 is a locally con-

formally flat metric in R
n, where Ag is given by Ag = g−1Ag0 . In [18], the same

classification result for the special case of n = 2k + 1 is also obtained by suitable

choices of the test functions and the arguments of integration. Using the method as

in [7], [18], a nonexistence result for the Hessian inequality σk(−D2u) > uα is proved

in [17]. The conformal k-Hessian inequality (1.1) with Ag = u(D2u) − 1
2 |Du|2I is

considered in [19], where the nonexistence result for 2k < n and α ∈ [k,∞) is formu-

lated. Note that Ag in (1.4) has a different structure from that in [19], which leads

to a different nonexistence result in Theorem 1.1 here from that of [19].

The nonexistence of the inequality (1.1) in Theorem 1.1 implies that the equation

(1.6) σk(D
2u−A(x, u,Du)) = B(x, u,Du)

with A = 1
2 |Du|2I−Du⊗Du and B = uα has no entire positive admissible subsolu-

tion in R
n. Note that the equation in the general form (1.6) has been studied in [9],

[10], [23], where the existence results of classical solutions for Dirichlet boundary

value problem and the oblique boundary value problem on bounded domains are

established. One can refer to [3], [8], [11] for various nonexistence results of entire

positive subsolutions for equation (1.6) arising from the conformal geometry with

different special forms of A and B. In a sequel, we will study the corresponding

nonexistence for the equation (1.6) with A = 1
2 |Du|2I − Du ⊗ Du and B = eαu,

where α is a constant.

The organization of this paper is as follows. In Section 2, we first recall Maclau-

rin’s inequality for k-Hessian operators. Then we give the proof of Theorem 1.1

by appropriate choice of test functions and the method of integration by parts. The

proof is divided into two cases, where Schwarz’s inequality and Young’s inequality are

properly used. At the end, we give examples of entire positive admissible solutions

of (1.1) for some α 6 k = 1 in the two dimensional case.

2. Proof of Theorem 1.1

In this section, we give the proof of the nonexistence result, Theorem 1.1. We

first establish relations between the k-Hessian operator and the Laplace operator

by using Maclaurin’s inequality. In this way, we reduce the conformal k-Hessian
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inequality (1.1) to an inequality involving the Laplace operator. Then by multiplying

a cut-off function and integrating the inequality over Rn, we divide the proof into

two cases, α > k, n > 2 and 0 < α 6 k, n > 3. By a detailed analysis, we get

contradictions.

First, we recall Maclaurin’s inequality in [14].

Lemma 2.1. For λ ∈ Γk, 1 6 l 6 k 6 n, we have

(2.1)
[σk(λ)

Ck
n

]1/k

6

[σl(λ)

Cl
n

]1/l

.

The inequality (2.1) is a direct consequence of Newton’s inequality, see the proof of

Lemma 15.12 in [14]. Note that in [14], the term in the brackets on the left hand side

of (2.1) is defined to be σk(λ) (which is different from our definition of the k-Hessian

operator).

Taking l = 1 in Lemma 2.1, we can obtain a relationship between the k-Hessian

operator and the Laplace operator, which is crucial in studying the nonexistence for

the inequality (1.1). We now give the proof of the main result, Theorem 1.1.

P r o o f of Theorem 1.1. Suppose that u > 0 is an admissible solution of (1.1).

We will deduce the contradiction.

Since
C1

n

(Ck
n)

1/k
=

(

k!
n

n

n

n− 1
. . .

n

n− k + 1

)1/k

> 1

when λ(Ag) ∈ Γk, from Lemma 2.1 we have

(2.2) σ
1/k
k (Ag) 6 σ1(A

g).

Since Ag has the form (1.4), it can be readily calculated that

(2.3) σ1(A
g) = ∆u−

(n

2
− 1

)

|Du|2.

Using (1.1), (2.2) and (2.3), we have

(2.4) uα/k 6 ∆u−
(n

2
− 1

)

|Du|2.

Multiplying both sides of (2.4) by uδηθ and integrating over Rn, we have

(2.5)

∫

Rn

uα/k+δηθ dx 6 −
(n

2
− 1

)

∫

Rn

uδηθ|Du|2 dx+

∫

Rn

uδηθ∆u dx,
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where δ, θ are constants to be determined, η ∈ C2 is a cut-off function satisfying

η ≡ 1, in BR,(2.6)

0 6 η 6 1, in B2R,(2.7)

η ≡ 0, in R
n \B2R,(2.8)

|Dη| 6 C

R
, in R

n,(2.9)

where BR denotes a ball in R
n centered at 0 with radius R, C is a positive constant.

In order to deal with the last term of (2.5), we use the integration by parts to get

(2.10)

∫

Rn

uδηθ∆u dx = −
∫

B2R

(Diu)Di(u
δηθ) dx

= − δ

∫

Rn

|Du|2uδ−1ηθ dx− θ

∫

U

uδηθ−1(Diη)(Diu) dx,

where

U := supp|Dη| = {x ∈ R
n : R < |x| < 2R}.

Note that we use the standard summation convention meaning that the repeated

indices indicate summation from 1 to n unless otherwise specified.

We next split the proof into the following two cases of α and n:

(i) α > k and n > 2;

(ii) 0 6 α 6 k and n > 3.

We shall make different choices of the constants δ and θ in cases (i) and (ii), respec-

tively.

In case (i), we fix the constants δ and θ such that

δ > max
{n− 2

k
α− n+ 1, 0

}

, θ >
2(α+ kδ)

α− k
.

Note that we always have δ > 0 and θ > 2. For the last term in (2.10), using

Schwarz’s inequality, we get

(2.11) −θ

∫

U

uδηθ−1(Diη)(Diu) dx 6 θ

∫

U

uδηθ−1|Dη||Du| dx

6 ε0θ

∫

Rn

|Du|2uδ−1ηθ dx+ θCε0

∫

U

|Dη|2uδ+1ηθ−2 dx,

where ε0 is any positive constant and Cε0 denotes some positive constant depending

on ε0. Inserting (2.11) and (2.10) into (2.5), we get

(2.12)

∫

Rn

uα/k+δηθ dx 6 −
(n

2
− 1

)

∫

Rn

uδηθ|Du|2 dx

+ (ε0θ − δ)

∫

Rn

|Du|2uδ−1ηθ dx+ θCε0

∫

U

|Dη|2uδ+1ηθ−2 dx.
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Hence, by taking

ε0 6 δ/θ

in (2.12), we get

(2.13)

∫

Rn

uα/k+δηθ dx 6 θCε0

∫

U

|Dη|2uδ+1ηθ−2 dx.

Then ε0 is now fixed. Applying Young’s inequality to the last term in (2.13), we

have

(2.14)

∫

Rn

uα/k+δηθ dx 6 θε1Cε0

∫

U

(uδ+1ηp)s

s
dx+ θCε1Cε0

∫

U

(ηq|Dη|2)t
t

dx,

where p, q are positive constants satisfying

p+ q = θ − 2, s > 1, t > 1,
1

s
+

1

t
= 1,

where ε1 is any positive constant, Cε1 denotes some positive constant depending

on ε1. Setting

s =
α/k + δ

δ + 1
> 1,

we get

t =
α+ kδ

α− k
> 1, p =

θ(δ + 1)

α/k + δ
> 0, q = θ − 2− p > 0, qt = θ − 2(α+ kδ)

α− k
> 0.

Inserting p, q, s and t into (2.14), we have

(2.15)

∫

Rn

uα/k+δηθ dx 6
θε1Cε0k(δ + 1)

α+ kδ

∫

U

uα/k+δηθ dx

+
θCε1Cε0(α − k)

α+ kδ

∫

U

ηθ−2(α+kδ)/(α−k)|Dη|2(α+kδ)/(α−k) dx.

Taking

ε1 <
α+ kδ

θCε0k(δ + 1)

and using (2.9), we get from (2.15) that

(2.16)

∫

Rn

uα/k+δηθ dx 6
θCε1Cε0(α− k)ωnC

α+ kδ − θε1Cε0k(δ + 1)
Rn−2(α+kδ)/(α−k),
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where ωn denotes the volume of the unit ball in R
n. Now the constant ε1 is fixed.

Recall that δ > max{α(n− 2)/k − n+ 1, 0}. If α(n− 2)/k − n+ 1 > 0, we have

(2.17) n− 2(α+ kδ)

α− k
= n− 2− 2k(δ + 2)

α− k

< n− 2− 2k(α(n− 2)/k − n+ 3)

α− k
= −(n− 2)− 2k

α− k
< 0.

If α(n− 2)/k − n+ 1 < 0, we have k/α > (n− 2)/(n− 1) and

(2.18) n− 2(α+ kδ)

α− k
< n− 2α

α− k

= n− 2

1− k/α
< n− 2

1− (n− 2)/(n− 1)
= −n+ 2 6 0.

Then n − 2(α+ kδ)/(α− k) is negative in both the above cases. Letting R → ∞
in (2.16), we get

(2.19)

∫

Rn

uα/k+δηθ dx 6 0.

On the other hand, from the positivity of u and the property of the cut-off function η,

the integration in (2.19) should be positive. We then get a contradiction in case (i).

In case (ii), we further consider the two subcases:

(a) 0 < α 6 k and n > 3;

(b) α = 0 and n > 3.

In case (ii) (a), we fix the constants δ and θ such that

δ > max
{α

k

(n

4
− 1

)

, 1
}

, θ > 4
(

1 +
kδ

α

)

.

For the last term in (2.10), we have

(2.20) −θ

∫

U

uδηθ−1(Diη)(Diu) dx 6 θ

∫

U

uδηθ−1|Dη||Du| dx

6 θε2

∫

U

|Du|2uδ−α/2kηθ dx+ θCε2

∫

U

|Dη|2uδ+α/2kηθ−2 dx

6 θε2

∫

Rn

|Du|2u(1−α/2k)δuα/2k(δ−1)ηθ dx+ θCε2

∫

U

|Dη|2uδ+α/2kηθ−2 dx

6
θε2ε3(2k − α)

2k

∫

Rn

|Du|2uδηθ dx+
θε2Cε3α

2k

∫

Rn

|Du|2uδ−1ηθ dx

+ θCε2

∫

U

|Dη|2uδ+α/2kηθ−2 dx,
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where Schwarz’s inequality is used to obtain the second inequality, Young’s inequality

ab 6 ε3a
p/p + Cε3b

q/q with exponent pair (p, q) = (2k/(2k − α), 2k/α) is used to

obtain the last inequality, ε2, ε3 are positive constants, Cε2 , Cε3 denote the positive

constants depending on ε2, ε3 respectively. Inserting (2.20) and (2.10) into (2.5), we

get

(2.21)

∫

Rn

uα/k+δηθ dx 6

(θε2ε3(2k − α)

2k
− n− 2

2

)

∫

Rn

|Du|2uδηθ dx

+
(θε2Cε3α

2k
− δ

)

∫

Rn

|Du|2uδ−1ηθ dx+ θCε2

∫

U

|Dη|2uδ+α/2kηθ−2 dx.

By successively choosing ε3 and ε2 such that

ε3 6
k(n− 2)

θ(2k − α)
, ε2 6 min

{ 2kδ

θCε3α
, 1
}

,

we can discard the first two terms on the right hand side of (2.21). Now (2.21)

becomes

(2.22)

∫

Rn

uα/k+δηθ dx 6 θCε2

∫

U

|Dη|2uδ+α/2kηθ−2 dx

= θCε2

∫

U

(uδ+α/2kηθ(α+2kδ)/(2α+2kδ))(ηθα/(2α+2kδ)−2|Dη|2) dx

6
θε4Cε2 (α+ 2kδ)

2α+ 2kδ

∫

U

uα/k+δηθ dx

+
θCε2Cε4α

2α+ 2kδ

∫

U

ηθ−4(1+kδ/α)|Dη|4(1+kδ/α) dx,

where Young’s inequality ab 6 ε4a
p/p + Cε4b

q/q with the exponent pair (p, q) =

((α/k + δ)/(α/2k + δ), (2α+ 2kδ)/α) is used to obtain the last inequality, ε4 is any

positive constant, Cε4 denotes some positive constant depending on ε4. By choosing

ε4 <
2α+ 2kδ

θCε2(α+ 2kδ)

and using (2.9), we get from (2.22) that

(2.23)

∫

Rn

uα/k+δηθ dx 6
θCε2Cε4αωnC

2α+ 2kδ − θε4Cε2(α+ 2kδ)
Rn−4(1+kδ/α),

where ωn denotes the volume of the unit ball in R
n. By the choice of δ, we have

n− 4(1 + kδ/α) < 0. Letting R → ∞ in (2.23), we can obtain

(2.24)

∫

Rn

uα/k+δηθ dx 6 0.

We then get a contradiction in case (ii) (a).
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In case (ii) (b), we fix the constants δ and θ such that

δ = 0, θ > n.

The last term in (2.10) becomes

(2.25) −θ

∫

U

ηθ−1(Diη)(Diu) dx

6 θε5

∫

U

|Du|2ηθ dx+ θCε5

∫

U

|Dη|2ηθ−2 dx

6 θε5

∫

Rn

|Du|2ηθ dx+ ε6Cε5 (θ − 2)

∫

U

ηθ dx+ 2Cε5Cε6

∫

U

|Dη|θ dx,

where Schwarz’s inequality is used to obtain the first inequality, Young’s inequality

ab 6 ε6a
p/p+Cε6b

q/q with the exponent pair (p, q) = (θ/(θ − 2), θ/2) is used to ob-

tain the second inequality, ε5, ε6 are positive constants, Cε5 , Cε6 denote the positive

constants depending on ε5, ε6, respectively. Combining (2.5), (2.10) and (2.25), we

have

(2.26)

∫

Rn

ηθ dx 6

(

θε5 −
n− 2

2

)

∫

Rn

|Du|2ηθ dx

+ ε6Cε5(θ − 2)

∫

U

ηθ dx+ 2Cε5Cε6

∫

U

|Dη|θ dx.

By successively choosing ε5 and ε6 such that

ε5 6
n− 2

2θ
, ε6 <

1

Cε5 (θ − 2)
,

we get from (2.26) that

(2.27)

∫

Rn

ηθ dx 6
2Cε5Cε6

1− ε6Cε5(θ − 2)

∫

U

|Dη|θ dx 6
2Cε5Cε6ωnC

1− ε6Cε5(θ − 2)
Rn−θ,

where ωn denotes the volume of the unit ball in R
n. Letting R → 0 in (2.27), since

θ > n, we can get

(2.28)

∫

Rn

ηθ dx 6 0.

We then get a contradiction in case (ii)(b). We have completed the proof of Theo-

rem 1.1. �
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Note that Corollary 1.1 is a direct consequence of Theorem 1.1 when k = 1. We

omit its proof.

We have discussed the nonexistence of positive admissible solutions for (1.1) when

n > 2, α ∈ (k,∞) and n > 3, α ∈ [0, k]. To close this section, we show three simple

examples of positive entire admissible solutions of (1.1) for some α 6 k = 1 in the

two dimensional case.

Example 2.1. When n = 2, k = 1, α = 1, then the function

(2.29) u(x) = AeBx2+C

with constants A > 0, B > 1/4 and any constant C > 0 satisfies the inequality (1.1)

in R
2 with Ag in (1.4), namely

(2.30) σ1[uij − (12 |Du|2δij − uiuj)] = 4ABeBx2+C + 4AB2x2eBx2+C

> AeBx2+C = u.

Moreover, if A > 1, B > 1/4 and C > 1 in (2.29), since AeBx2+C > 1, we have, in

place of (2.30),

(2.31) σ1[uij − (12 |Du|2δij − uiuj)] > AeBx2+C > uα

for any α ∈ (−∞, 1]. In this case, the function in (2.29) satisfies σ1(A
g) > uα in R

2,

where Ag is defined in (1.4) and α is any constant in (−∞, 1].

Example 2.2. When n = 2, k = 1, α = 0, then the function

(2.32) u(x) = Ax2 +B

with the constant A > 1/4 and any constant B satisfies the inequality (1.1) in R
2

with Ag in (1.4), namely

(2.33) σ1

[

uij −
(

1
2 |Du|2δij − uiuj

)]

= 4A > 1.

Moreover, if A > 1/4 and B > 1 in (2.28), since Ax2 + B > 1, we have, in place

of (2.33),

(2.34) σ1

[

uij −
(

1
2 |Du|2δij − uiuj

)]

> uα

for any α ∈ (−∞, 0]. In this case, the function in (2.32) satisfies σ1(A
g) > uα in R

2,

where Ag is defined in (1.4) and α is any constant in (−∞, 0].
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Example 2.3. When n = 2, k = 1, α = −1, then the function

(2.35) u(x) =
√

Ax2 +B

with constants A > 1 and B > 0 satisfies the inequality (1.1) in R2 with Ag in (1.4),

namely

(2.36) σ1[uij − (12 |Du|2δij − uiuj)] =
AB

(Ax2 +B)3/2
+

A√
Ax2 +B

>
1√

Ax2 +B
= u−1.

Moreover, if A > 1 and B > 1 in (2.35), since
√
Ax2 +B > 1, we can replace (2.36)

by

(2.37) σ1[uij − (12 |Du|2δij − uiuj)] >
1√

Ax2 +B
> uα

for any α ∈ (−∞,−1]. In this case, the function in (2.35) satisfies σ1(A
g) > uα

in R
2, where Ag is defined in (1.4) and α is any constant in (−∞,−1].
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