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Abstract. Let f : A → B and g : A → C be two ring homomorphisms and let J and J ′ be
ideals of B and C, respectively, such that f−1(J) = g−1(J ′). In this paper, we investigate
the transfer of the notions of Gaussian and Prüfer rings to the bi-amalgamation of A
with (B,C) along (J, J ′) with respect to (f, g) (denoted by A ⊲⊳f,g (J, J ′)), introduced
and studied by S.Kabbaj, K. Louartiti and M.Tamekkante in 2013. Our results recover
well known results on amalgamations in C. A.Finocchiaro (2014) and generate new original
examples of rings possessing these properties.
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1. Introduction

All rings considered in this paper are assumed to be commutative and have identity

element, and all modules are unitary.
In 1932, Prüfer introduced and studied in [24] integral domains in which every

finitely generated ideal is invertible. In 1936, Krull [21] named these rings after
H. Prüfer and stated equivalent conditions that make a domain Prüfer. Through

the years, Prüfer domains acquired a great many equivalent characterizations, each
of which was extended to rings with zero-divisors in different ways. In their paper

devoted to Gaussian properties, Bazzoni and Glaz have proved that a Prüfer ring
satisfies any of the other four Prüfer conditions if and only if its total ring of quo-

tients satisfies that same condition, see [4], Theorems 3.3, 3.6, 3.7, 3.12. In 1970,
Koehler studied associative rings for which every cyclic module is quasi-projective

and she noticed that any commutative ring satisfies this property, see [20]. Re-
call that for a commutative ring R, an R-module V is quasi-projective if the map
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HomR(V, V ) → HomR(V, V/N) is surjective for every submodule N of V (see [1]).

In [2], the authors examined the transfer of the Prüfer conditions and obtained
further evidence for the validity of Bazzoni-Glaz conjecture sustaining that “the
weak global dimension of a Gaussian ring is 0, 1, or ∞”, see [4]. Notice that

both conjectures share the common context of rings. Abuihlail, Jarrar and Kab-
baj studied in [1] the multiplicative ideal structure of commutative rings in which

every finitely generated ideal is quasi-projective. Furthermore, they provided some
preliminaries for quasi-projective modules over commutative rings and investigated

the correlation with well-known Prüfer conditions; namely, they proved that this
class of rings stands strictly between the two classes of arithmetical rings and Gaus-

sian rings. Thereby, they generalized Osofsky’s theorem on the weak global dimen-
sion of arithmetical rings and partially resolved Bazzoni-Glaz’s related conjecture on

Gaussian rings. They also established an analogue of Bazzoni-Glaz results on the
transfer of Prüfer conditions between a ring and its total ring of quotients. In [8],

the authors studied the transfer of the notions of local Prüfer ring and total ring
of quotients. They examined the arithmetical, Gaussian, fqp conditions to amal-

gamated duplication along an ideal. At this point, we recall the following defini-
tions:

Definition 1.1. Let R be a commutative ring.

(1) R is called an arithmetical ring if the lattice formed by its ideals is distributive,
see [14].

(2) R is called a Gaussian ring if for every f, g ∈ R[X ], one has the content ideal

equation c(fg) = c(f)c(g), see [25].

(3) R is called a Prüfer ring if every finitely generated regular ideal of R is invertible

(equivalently, every two-generated regular ideal is invertible), see [6], [17].

In the domain context, all these forms coincide with the definition of a Prüfer
domain. Glaz in [15] provides examples which show that all these notions are distinct

in the context of arbitrary rings. The following diagram of implications summarizes
the relations between them, see [3], [4], [16], [15], [22], [23], [25]:

arithmetical ⇒ Gaussian ⇒ Prüfer

and examples are given in [15] to show that, in general, the implications cannot be
reversed.

In this paper, we investigate the transfer of Gaussian and Prüfer properties in bi-
amalgamation of rings, introduced and studied by Kabbaj, Louartiti and Tamekkante

in [18] and defined as follows: Let f : A → B and g : A → C be two ring homo-
morphisms and let J and J ′ be two ideals of B and C, respectively, such that
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I0 := f−1(J) = g−1(J ′). The bi-amalgamation (or bi-amalgamated algebra) of A

with (B,C) along (J, J ′) with respect to (f, g) is the subring of B × C given by

A ⊲⊳f,g (J, J ′) := {(f(a) + j, g(a) + j′) : a ∈ A, (j, j′) ∈ J × J ′}.

This construction was introduced in [18] as a natural generalization of duplications
(see [9], [12]) and amalgamations (see [10], [11]). Note that some of the results of

the present paper (as pointed out later) overlap very recent results obtained inde-
pendently by Campanini-Finocchiaro in [7].

In [18], the authors provide original examples of bi-amalgamations and, in par-
ticular, show that Boisen-Sheldon’s CPI-extensions (see [5]) can be viewed as bi-

amalgamations (notice that [10], Example 2.7 shows that CPI-extensions can be
viewed as quotient rings of amalgamated algebras). They also show how every bi-

amalgamation can arise as a natural pullback (or even as a conductor square) and
then characterize pullbacks that can arise as bi-amalgamations. Then, the last two

sections of [18] deal, respectively, with the transfer of some basic ring theoretic prop-
erties to bi-amalgamations and the study of their prime ideal structures. All their

results recover known results on duplications and amalgamations. Recently in [19],
the authors established necessary and sufficient conditions for a bi-amalgamation
to inherit the arithmetical property, with applications to the weak global dimension

and transfer of the semihereditary property. Throughout, we will adopt the following
notations:

For a ring A, Spec(A) and Max(A) will denote, respectively, the sets of all prime
and maximal ideals of A, and for any ideal I of A, Spec(A, I) and Max(A, I) will

denote, respectively, the sets of all prime and maximal ideals of A containing I. For
any p ∈ Spec(A, I0) or p ∈ Max(A, I0), consider the multiplicative subsets

Sp := f(A− p) + J and S′

p := g(A− p) + J ′

of B and C, respectively, and let

fp : Ap → BSp
and gp : Ap → CS′

p

be the canonical ring homomorphisms induced by f and g. One can easily check
that

f−1

p (JSp
) = g−1

p (J ′

S′

p
) = (I0)p.

Moreover, by [18], Lemma 5.1, P := p ⊲⊳f,g (J, J ′) is a prime (or maximal) ideal of
A ⊲⊳f,g (J, J ′) and, by [18], Proposition 5.7, we have

(A ⊲⊳f,g (J, J ′))P ∼= Ap ⊲⊳fp,gp (JSp
, J ′

S′

p
).

For a ring R, we denote by Jac(R), the Jacobson radical of R.
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2. Results

Let f : A → B and g : A → C be two ring homomorphisms and let J and J ′ be

two ideals of B and C, respectively, such that I0 := f−1(J) = g−1(J ′). All along this
section, A ⊲⊳f,g (J, J ′) will denote the bi-amalgamation of A with (B,C) along (J, J ′)

with respect to (f, g). Our first result investigates the transfer of Gaussian and Prüfer
properties in bi-amalgamated algebras, in case J × J ′ contains a regular element.

Observe that this happens only in the trivial case for which the bi-amalgamation
degenerates in the direct product B × C.

Theorem 2.1. Assume J×J ′ is a regular ideal of (f(A)+J)× (g(A)+J ′). Then

A ⊲⊳f,g (J, J ′) is Gaussian or Prüfer if and only if J = B, J ′ = C and B and C are

Gaussian or Prüfer, respectively.

P r o o f. Assume that A ⊲⊳f,g (J, J ′) is Gaussian (Prüfer). We claim that I0 =

f−1(J) = g−1(J ′) = A. Deny, suppose that there exists a maximal ideal m of A
such that I0 ⊆ m. From [18], Lemma 5.1, M := m ⊲⊳f,g (J, J ′) is a maximal ideal of
A ⊲⊳f,g (J, J ′) and we have

(A ⊲⊳f,g (J, J ′))M ∼= Am ⊲⊳fm,gm (JSm
, J ′

S′

m
) =: D.

Let (j, j′) be a regular element of J×J ′. It is easy to see that j/1 and j′/1 are also reg-

ular elements of BSm
or CSm

, respectively. Using the fact A ⊲⊳f,g (J, J ′) is Gaussian
(Prüfer), then by [17], Theorem 13, the principal ideals (j/1, 0)D and (j/1, j′/1)D

are comparable. Since 0 6= j′/1, then necessarily (j/1, 0)D ⊆ (j/1, j′/1)D. Thus,
there exist α ∈ Am, β ∈ JSm

and γ ∈ J ′

Sm
such that (j/1, 0) = (j/1, j′/1)(fm(α)+β,

gm(α) + γ). Hence, it follows that fm(α) + β = 1 and gm(α) + γ = 0. Thus,
α ∈ (I0)m and so fm(α) ∈ JSm

and 1 = fm(α) + β ∈ JSm
. Therefore, JSm

= BSm
.

Then (I0)m = Am, which is a contradiction since I0 ⊆ m. Hence, I0 = f−1(J) = A

and so J = B and J ′ = C and A ⊲⊳f,g (J, J ′) = B × C which is Gaussian (Prüfer).
It is known that Gaussian (Prüfer) notion is stable under finite products. It follows

that B and C are Gaussian (Prüfer). The converse is straightforward. �

Remark 2.2. It is worth mentioning that very recently, a result similar to The-

orem 2.1 was independently obtained by Campanini and Finocchiaro in [7], Propo-
sition 4.10, using different notation.

Recall that the amalgamation of A with B along an ideal J of B with respect to
the ring homomorphism f : A → B is given by

A ⊲⊳f J := {(a, f(a) + j) : a ∈ A, j ∈ J}.
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Clearly, every amalgamation can be viewed as a special bi-amalgamation, since

A ⊲⊳f J = A ⊲⊳idA,f (f−1(J), J).
The following result is an immediate consequence of Theorem 2.1 and recovers [13],

Theorem 3.1.

Corollary 2.3. Under the above notation, assume that f−1(J) × J is a regular

ideal of A× f(A) + J . Then A ⊲⊳f J is Gaussian (Prüfer) if and only if f−1(J) = A

and J = B and both A and B are Gaussian (Prüfer).

Let I be a proper ideal of A. The (amalgamated) duplication of A along I is
a special amalgamation given by

A ⊲⊳ I := A ⊲⊳idA I =
{

(a, a+ i) : a ∈ A, i ∈ I}.

The next corollary is an immediate consequence of Corollary 2.3 on the transfer of

Gaussian and Prüfer properties to duplications and capitalizes, see [13], Corollary 3.3.

Corollary 2.4. Let A be a ring and I a regular ideal of A. Then A ⊲⊳ I is

Gaussian (Prüfer) if and only if A is Gaussian (Prüfer) and I = A.

The next result investigates when the bi-amalgamation is local Gaussian in case
J × J ′ is not a regular ideal. We recall an important characterization of a local

Gaussian ring A. Namely, for any two elements a and b in the ring A, we have
(a, b)2 = (a2) or (b2); moreover if ab = 0 and (a, b)2 = (a2), then b2 = 0 (see [4],

Theorem 2.2).

Proposition 2.5. Assume that (A,m) is a local ring and J and J ′ are nonzero

proper ideal of B and C, respectively, such that J × J ′ ⊆ Jac(B × C). Then the

following statements hold:

(1) If A ⊲⊳f,g (J, J ′) is Gaussian, then so are f(A) + J and g(A) + J ′.

(2) If A, f(A) + J and g(A) + J ′ are Gaussian, J2 = 0, J ′2 = 0 for all a ∈ m,

f(a)J = f(a)2J and g(a)J ′ = g(a)2J ′, then A ⊲⊳f,g (J, J ′) is Gaussian.

(3) Assume that A is Gaussian, J2 = 0, J ′2 = 0 and I0 is a prime ideal of A. Then

A ⊲⊳f,g (J, J ′) is Gaussian if and only if f(A) + J , g(A) + J ′ are Gaussian for

all a ∈ m, f(a)J = f(a)2J and g(a)J ′ = g(a)2J ′.

P r o o f. Notice that from [18], Proposition 5.4 (2), (A ⊲⊳f,g (J, J ′),m ⊲⊳f,g (J, J ′))

is local since (A,m) is local and J × J ′ ⊆ Jac(B × C).
(1) Since the Gaussian property is stable under factor rings (here, f(A) + J ≃

A ⊲⊳f,g (J, J ′)/(0× J ′) and g(A) + J ′ ≃ A ⊲⊳f,g (J, J ′)/(J × 0) by [18], Proposi-
tion 4.1 (2)), the result is straightforward.
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(2) Assume that A, f(A)+J and g(A)+J ′ are Gaussian, J2 = 0, J ′2 = 0 and for all

a ∈ m, f(a)J = f(a)2J and g(a)J ′ = g(a)2J ′. Our aim is to show that A ⊲⊳f,g (J, J ′)

is Gaussian. Let (f(a) + i, g(a) + i′) and (f(b) + j, g(b) + j′) ∈ A ⊲⊳f,g (J, J ′). Two
cases are possible:

Case 1 : a or b 6∈ m. Assume without loss of generality that a 6∈ m. Then (f(a) +

i, g(a) + i′) 6∈ m ⊲⊳f,g (J, J ′). So (f(a) + i, g(a) + i′) is invertible in A ⊲⊳f,g (J, J ′).

Therefore, ((f(a) + i, g(a) + i′), (f(b) + j, g(b) + j′))2 = ((f(a) + i, g(a) + i′)2) =

A ⊲⊳f,g (J, J ′). Moreover, if ((f(a) + i, g(a) + i′), (f(b) + j, g(b) + j′))2 = ((f(a) + i,

g(a)+ i′)2) = A ⊲⊳f,g (J, J ′) and (f(a)+ i, g(a)+ i′)(f(b)+ j, g(b)+ j′) = (0, 0), then
it follows that (f(b) + j, g(b) + j′) = (0, 0), making (f(b) + j, g(b) + j′)2 = (0, 0), as

desired.

Case 2 : a and b ∈ m. Using the fact that A is local Gaussian, we have (a, b)2 =

(a2) or (b2). We may assume that (a, b)2 = (a2). So we have b2 = a2x and ab = a2y

for some x, y ∈ A. Moreover, ab = 0 implies that b2 = 0. So f(b)2 = f(a)2f(x),

g(b)2 = g(a)2g(x) and f(a)f(b) = f(a)2f(y), g(a)g(b) = g(a)2g(y). By assumption,
2f(b)j, f(b)i ∈ f(b)2J and 2f(a)if(x), f(a)j, 2f(a)if(y) ∈ f(a)2J. Therefore, there

exist j1, i1, j2, i2, i3 ∈ J such that 2f(b)j = f(a)2f(x)j1, 2f(a)if(x) = f(a)2i1,

f(a)j = f(a)2j2, f(b)i = f(a)2f(x)i2, 2f(a)if(y) = f(a)2i3 and similarly, there

exist j′1, i
′

1, j
′

2, i
′

2, i
′

3 ∈ J ′ such that 2g(b)j′ = g(a)2g(x)j′1, 2g(a)i
′g(x) = g(a)2i′1,

g(a)j′ = g(a)2j′
2
, g(b)i′ = g(a)2g(x)i′

2
and 2g(a)i′g(y) = g(a)2i′

3
. In view of the

fact that J2 = 0 and J ′2 = 0, one can easily check that (f(b) + j, g(b) + j′)2 =

(f(a)+i, g(a)+i′)2(f(x)+f(x)j1−i1, g(x)+g(x)j′
1
−i′

1
) and (f(b)+j, g(b)+j′)(f(a)+i,

g(a) + i′) = (f(a) + i, g(a) + i′)2(f(y) + f(x)i2 + j2 − i3, g(y) − g(x)i′2 + j′2 − i′3).
Consequently, ((f(a) + i, g(a) + i′), (f(b) + j, g(b) + j′))2 = ((f(a) + i, g(a) + i′)2).

Moreover, assume that (f(a) + i, g(a) + i′)(f(b) + j, g(b) + j′) = (0, 0). Hence,
(f(a) + i)(f(b) + j) = 0 and (g(a) + i′)(g(b) + j′) = 0. Since ((f(a) + i), (f(b) +

j))2 = ((f(a) + i)2), ((g(a) + i′), (g(b) + j′))2 = ((g(a) + i′)2), and f(A) + J and

g(A) + J ′ are local Gaussian, we have (f(b) + j)2 = 0 and (g(b) + j′)2 = 0. Thus,
(f(b) + j, g(b) + j′)2 = (0, 0). Finally, A ⊲⊳f,g (J, J ′) is Gaussian, as desired.

(3) If A, f(A) + J, g(A) + J ′ are Gaussian, J2 = 0 for all a ∈ m, f(a)J = f(a)2J,

J ′2 = 0 and g(a)J ′ = g(a)2J ′, then by statement (2) above, A ⊲⊳f,g (J, J ′) is

Gaussian. Conversely, assume that A ⊲⊳f,g (J, J ′) is Gaussian. Then by state-
ment (1) above, f(A) + J and g(A) + J ′ are Gaussian. Next, we show that for

all a ∈ m, f(a)J = f(a)2J . It is clear that f(a)2J ⊆ f(a)J . On the other
hand, let a ∈ m and 0 6= x ∈ J . If f(a) = 0, then f(a)J = f(a)2J , as de-

sired. We may assume that f(a) 6= 0. Then obviously, (0, 0) 6= (f(a), g(a)) and
(0, 0) 6= (x, 0) are elements of A ⊲⊳f,g (J, J ′). Using the fact A ⊲⊳f,g (J, J ′) is (lo-

cal) Gaussian yields that ((f(a), g(a)), (x, 0))2 = ((f(a), g(a))2 or ((x, 0))2. Since
J2 = 0, say ((f(a), g(a)), (x, 0))2 = ((f(a), g(a))2). If (f(a), g(a))2 = (0, 0), it fol-
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lows that xf(a) = 0 and so f(a)J ⊆ f(a)2J , as desired. We may assume that

(f(a), g(a))2 6= (0, 0). And so there exists (f(b) + j, g(b) + j′) ∈ A ⊲⊳f,g (J, J ′) such
that (xf(a), 0) = (f(a2), g(a2))(f(b) + j, g(b) + j′). Therefore,

{

xf(a) = (f(a2)(f(b) + j), see (i)

0 = (g(a2b) + g(a2)j′), see (ii).

From equation (ii) it follows that a2b ∈ I0 which is a prime ideal of A. So a2 ∈ I0

or b ∈ I0. Two cases are possible:
Case 1 : a2 ∈ I0. Then a ∈ I0 and f(a) ∈ J . Therefore, f(a)J = f(a)2J = 0

(as J2 = 0).
Case 2 : b ∈ I0. Then f(b) ∈ J and f(b) + j ∈ J . Consequently, xf(a) =

f(a2)(f(b) + j) ∈ f(a)2J . Hence, f(a)J ⊆ f(a)2J , as desired. Next, it remains to
show that for all a ∈ m, g(a)J ′ = g(a)2J ′. Clearly, g(a)2J ′ ⊆ g(a)J ′. On the other

hand, let a ∈ m and 0 6= x′ ∈ J ′. By a similar argument as previously, it follows
that g(a)J ′ ⊆ g(a)2J ′, as desired. �

Remark 2.6. It is worth mentioning that there is some overlapping between the
assertion (2) of Proposition 2.5 and [7], Theorem 5.4, although the assumptions and

proofs are different. Indeed, in the proof of [7], Theorem 5.4, the authors use the fact
that if A is Gaussian, then B and C are Gaussian, which requires further assumptions

on f and g (f and g are surjective). Our argument to prove the assertion (2) of
Proposition 2.5 is different. Indeed, the use of f(A)+J and g(A)+J ′ in our statement

seems more natural in our context (without any assumption on f and g), due to
the assertion (1) of Proposition 2.5. Moreover, the assertion (2) of Proposition 2.5

allows us to construct new examples that are different from those issued from [7],
Theorem 5.4, which require both f and g to be surjective. Furthermore, it is also

interesting to notice that the assertion (3) of Proposition 2.5 which is not stated
in [7], gives a characterization of Gaussian rings issued from the bi-amalgamation in

case A is local, J2 = 0, J ′2 = 0 and I0 is a prime ideal of A.

Proposition 2.5 enriches the literature with new original examples of non-

arithmetical Gaussian rings. Recall that for a ring A and an A-module E, the
trivial ring extension of A by E (also called idealization of E over A) is the ring

R := A ∝ E whose underlying group is A × E with multiplication given by
(a, e)(a′, e′) = (aa′, ae′ + ea′).

Example 2.7. Let (A,m) := (A1 ∝ E1,m1 ∝ E1) be the trivial ring extension
of A1 by E1, where A1 is supposed to be a non-arithmetical Gaussian ring with

m2
1 = 0, (for instance (A1,m1) := (Z/4Z, 2.Z/4Z)) and E1 is a nonzero A1/m1-vector
space (for instance E1 = (Z/4Z)/(2.Z/4Z) = Z/2Z). By [19], Theorem 2.1 (2)
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and (3), A is a non-arithmetical Gaussian ring, as A1 is not a field. Let B := A ∝ E

be the trivial ring extension of A by a nonzero A/m-vector space E. Consider

f : A →֒ B,

(a1, e1) →֒ f((a1, e1)) = ((a1, e1), 0);

note that f is an injective ring homomorphism and J := m ∝ E = (m1 ∝ E1) ∝ E

is the maximal ideal of B. Let C := A1 and let

g : A → C,

(a1, e1) → g((a1, e1)) = a1;

observe that g is a surjective ring homomorphism and J ′ := m1 is the maximal ideal
of C. Clearly, f−1(J) = g−1(J ′) = m1 ∝ E1. Then:

(1) A ⊲⊳f,g (J, J ′) is Gaussian;

(2) A ⊲⊳f,g (J, J ′) is not arithmetical.

P r o o f. (1) One can verify that J2 = 0, J ′2 = 0, f(a)J = f(a)2J = 0, g(a)J ′ =

g(a)2J ′ = 0 for all a ∈ m. Hence by using statement (2) of Proposition 2.5, it follows

that A ⊲⊳f,g (J, J ′) is Gaussian.

(2) By [19], Theorem 2.1 (2), A ⊲⊳f,g (J, J ′) is not arithmetical since f(A) + J =

A ∝ 0 +m ∝ E = A ∝ E which is not arithmetical (by [2], Theorem 3.1 (3), as A is
not a field). �

Recall that a ring R is said to be a total quotient ring if every element of R is
invertible or a zero-divisor. Total quotient rings are an important source of Prüfer

rings. Now, we study the transfer of this notion to bi-amalgamated algebras, in case
J × J ′ is not a regular ideal of (f(A) + J)× (g(A) + J ′). For any ring R and J an

ideal of R, we denote by Z(R) and Ann(J) the set of zero-divisor elements of R and
the annihilator of J , respectively.

Proposition 2.8. Let (A,m) be a local total ring of quotients, let f : A → B,

g : A → C be two ring homomorphisms, and let J and J ′ be nonzero proper ideals

of B and C, respectively, such that f−1(J) = g−1(J ′), J×J ′ ⊆ Jac(B×C). Assume

that f is injective, J2 = 0 and J ′2 = 0. Then A ⊲⊳f,g (J, J ′) is a local total ring of

quotients.

P r o o f. Assume that f is injective, J2 = 0 and J ′2 = 0. By [18], Propo-

sition 5.4 (2), (A ⊲⊳f,g (J, J ′),m ⊲⊳f,g (J, J ′)) is local since (A,m) is local and
J × J ′ ⊆ Jac(B × C).
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Our aim is to show that A ⊲⊳f,g (J, J ′) is a total ring of quotients; we have to prove

that each element (f(a) + i, g(a)+ i′) of A ⊲⊳f,g (J, J ′), is invertible or a zero-divisor
element.

Let (f(a)+i, g(a)+i′) be an element ofA ⊲⊳f,g (J, J ′). If a 6∈ m, then a is invertible.

And so (f(a) + i, g(a) + i′) 6∈ m ⊲⊳f,g (J, J ′) . Consequently, (f(a) + i, g(a) + i′) is
invertible in A ⊲⊳f,g (J, J ′), as desired.

Now, we may assume that a ∈ m. If a = 0, then (f(a) + i, g(a) + i′) = (i, i′) ∈

Z(A ⊲⊳f,g (J, J ′)), since J2 = J ′2 = 0. We may assume a 6= 0. Since A is local total
ring of quotients, there exists 0 6= b ∈ A such that ab = 0. So f(a)f(b) = 0 and

g(a)g(b) = 0. Two cases are then possible:

Case 1 : f(b) ∈ Ann(J) and g(b) ∈ Ann(J ′). Using the fact that f is in-
jective, there exists (0, 0) 6= (f(b), g(b)) ∈ A ⊲⊳f,g (J, J ′) such that (f(a) + i,

g(a) + i′)(f(b), g(b)) = (0, 0). Consequently, (f(a) + i, g(a) + i′) ∈ Z(A ⊲⊳f,g (J, J ′)).

Case 2 : Assume that f(b) 6∈ Ann(J) or g(b) 6∈ Ann(J ′). Then there exists

0 6= k ∈ J or 0 6= k′ ∈ J ′ such that f(b)k 6= 0 or g(b)k′ 6= 0. So, (f(a) + i,

g(a)+ i′)(f(b)k, 0) = (0, 0) or (f(a)+ i, g(a)+ i′)(0, g(b)k′) = (0, 0). Hence, (f(a)+ i,

g(a) + i′) ∈ Z(A ⊲⊳f,g (J, J ′)). Thus, A ⊲⊳f,g (J, J ′) is a local total ring of quotients.

�

Remark 2.9. It is worth noting that total rings of quotients of bi-amalgamation
were also studied in [7], Proposition 4.12. However, the proofs in [7], Proposition 4.12

and Proposition 2.8 are different, because of different hypotheses. Observe that in
Proposition 2.8, our approach concerns the local case of bi-amalgamation where f is

injective, J2 = 0 and J ′2 = 0 and our argument in the proof is mainly based on the
use ofAnn(J) andAnn(J ′), which diverges with the proof [7], Proposition 4.12, where
the authors use the argument that the ideals J and J ′ are torsionA/(ker(f) ∩ ker(g))-

modules by their assumptions.

Proposition 2.8 enriches the current literature with new original examples of Prüfer
rings which are not Gaussian rings.

Example 2.10. Let (A,m) be a non Gaussian local total ring of quotients (for
instance take (A,m) := (A1 ∝ A1/m1,m1 ∝ A1/m1) with (A1,m1) a local ring

that is not Gaussian, by using [2], Theorem 3.1 (1) and (2)). Let (B,N) := (A ∝ E,

m ∝ E) be the trivial ring extension of A by a nonzero (A/m)-vector space E and let

C := B ∝ E′ be the trivial ring extension of B by a nonzero (B/N)-vector space E′.
Consider

f : A →֒ B,

(a1, e1) →֒ f((a1, e1)) = ((a1, e1), 0);
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note that f is an injective ring homomorphism and J := 0 ∝ E is a nonzero proper

ideal of B and let

g : A →֒ C,

(a1, e1) →֒ g((a1, e1)) = (((a1, e1), 0), 0);

observe that g is an injective ring homomorphism and J ′ := J ∝ E′ is a proper ideal
of C. Obviously, f−1(J) = g−1(J ′) = 0. Then:

(1) A ⊲⊳f,g (J, J ′) is Prüfer.

(2) A ⊲⊳f,g (J, J ′) is not Gaussian.

P r o o f. (1) We claim that A ⊲⊳f,g (J, J ′) is a local total ring of quotients.

Indeed, by [18], Proposition 5.3, A ⊲⊳f,g (J, J ′) is local since A is local and
J × J ′ ⊆ Jac(B × C). One can easily check that J2 = 0, J ′2 = 0. Hence, by

using Proposition 2.8, it follows that A ⊲⊳f,g (J, J ′) is a total ring of quotients.
Hence, A ⊲⊳f,g (J, J ′) is Prüfer.

(2) By (1) of Proposition 2.5, A ⊲⊳f,g (J, J ′) is not Gaussian since f(A) + J =

(A ∝ 0) + (0 ∝ E) = (A + 0) ∝ (0 + E) = A ∝ E is not Gaussian (by [2],

Theorem 3.1 (2), since A is not Gaussian, as A1 is not Gaussian). �
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