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Abstract. We prove the continuity in norm of the translation operator in the Musielak-
Orlicz LM spaces. An application to the convergence in norm of approximate identities is
given, whereby we prove density results of the smooth functions in LM , in both the modular
and norm topologies. These density results are then applied to obtain basic topological
properties.
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1. Introduction

Classical Lebesgue and Sobolev spaces with constant exponent arise in the mod-

elling of most materials with sufficient accuracy. For certain materials with inhomo-

geneities, for instance electrorheological fluids, this is not adequate, but rather the

exponent should be able to vary. This leads to studying those materials in Lebesgue

and Sobolev spaces with variable exponent.

Historically, variable exponent Lebesgue spaces Lp(·)(Ω), where Ω is an open sub-

set of RN , appeared in the literature for the first time in 1931 in a paper written

by Orlicz, see [17]. The study of variable exponent Lebesgue spaces was then aban-

doned by Orlicz in favour of the theory of the function spaces LM (Ω), built upon

an N -function M , which now bears his name and which generalizes naturally the

Lebesgue spaces with constant exponent. When we try to integrate both the func-

tional structures of variable exponent Lebesgue spaces and Orlicz spaces, we are led

to the so-called Musielak-Orlicz spaces. This later functional structure was exten-

sively studied since the 1970’s by the Polish school, notably by Musielak, Hudzik

and Kamińska, see for instance [7], [8], [9], [15] and the references therein.
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Here we are interested in establishing some basic approximation results in

Musielak-Orlicz spaces with respect to the modular and norm convergence, which

then allows us to obtain some topological properties that constitute the basic tools

needed in the existence theory for partial differential equations involving nonstan-

dard growths described in terms of Musielak-Orlicz functions. Such results require

to take into account the earlier ones studied deeply in the monographs (see [13], [15])

and those of the particular framework of variable Lebesgue and Sobolev spaces con-

cerning completeness, density, reflexivity and separability obtained by Kováčik and

Rákosník, see [12].

Throughout this paper, we denote by Ω an open subset of RN , N > 1. A real

function M : Ω× [0,∞) → [0,∞] is called a ϕ-function, written M ∈ ϕ, if M(x, ·) is

a nondecreasing and convex function for all x ∈ Ω with M(x, 0) = 0,M(x, s) > 0 for

s > 0, M(x, s) → ∞ as s → ∞ and M(·, s) is a measurable function for every s > 0.

A ϕ-function is called a Φ-function, denoted by M ∈ Φ, if furthermore it satisfies

lim
s→0+

M(x, s)

s
= 0 and lim

s→∞

M(x, s)

s
= ∞.

Define M : Ω× [0,∞) → [0,∞] by

M(x, s) = sup
t>0

{st−M(x, t)} ∀ s > 0 and all x ∈ Ω.

It can be checked that M ∈ ϕ. The Φ-function M is called the complementary

function toM in the sense of Young. GivenM ∈ ϕ, the Musielak-Orlicz space LM (Ω)

consists of all measurable functions u : Ω → R such that
∫
Ω
M(x, |u(x)|/λ) dx < ∞

for some λ > 0. Equipped with the so-called Luxemburg norm

‖u‖LM(Ω) = inf

{
λ > 0:

∫

Ω

M(x, |u(x)|/λ) dx 6 1

}
,

where LM (Ω) is a Banach space (see [15], Theorem 7.7). It is a particular case of

the so-called modular function spaces, investigated by Nakano (see for instance [16]).

We define EM (Ω) as the subset of LM (Ω) of all measurable functions u : Ω → R such

that
∫
ΩM(x, |u(x)|/λ) dx < ∞ for all λ > 0.

A density result for smooth functions in Musielak-Orlicz-Sobolev spaces with re-

spect to the modular topology was claimed for the first time in [2] in Ω = R
N and

then for a bounded star-shaped Lipschitz domain Ω in [3]. The authors assumed

that the Φ-function M satisfies, among others, the log-Hölder continuity condition,

that is to say there exists a constant A > 0 such that for all s > 1,

(1.1)
M(x, s)

M(y, s)
6 s−A/ log |x−y| ∀x, y ∈ Ω with |x− y| 6

1

2
.
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Nonetheless, the proof involved an essential gap. The Jensen inequality was used for

the infimum of convex functions, which obviously is not necessarily convex.

Unlike the classical Orlicz spaces, the spatial dependence of the ϕ-functionM does

not allow, in general, bounded functions to belong to Musielak-Orlicz spaces even if Ω

has finite Lebesgue measure. Particularly, characteristic functions have no reason,

in general, to lie in Musielak spaces. In the approach we use here, we only need M

to be locally integrable that is for any constant number c > 0 and for every compact

set K ⊂ Ω

(1.2)

∫

K

M(x, c) dx < ∞.

Inequality (1.2) was introduced in [15], Definition 7.5 for measurable subsets of Ω

with finite measure. Observe that (1.2) is not always satisfied as shown by the

following example. Set Ω = (−1/2, 1/2) and set

M(x, s) =

{
s1/x, x ∈ (0, 1/2),

s2, x ∈ (−1/2, 0).

Note that M is a Φ-function. Consider the compact set K = [0, 1/4], which is

contained in Ω. Then for c > 1
∫

K

M(x, c) dx =

∫ 1/4

0

c1/x dx = ∞.

From now on, Bc(Ω) will stand for the set of bounded functions compactly sup-

ported in Ω and C∞
0 (Ω) will denote the set of infinitely differentiable functions com-

pactly supported in Ω.

The condition (1.2) ensures that the set Bc(Ω) is contained in EM (Ω). Incidentally,

the functions essentially bounded do not belong necessarily to EM (Ω) even if (1.2)

is satisfied. Here, we do not need to assume the condition (1.1).

Let us note that if M ∈ ϕ (or M ∈ ϕ) satisfies lim
s→∞

ess inf
x∈Ω

M(x, s)/s = ∞

( lim
s→∞

ess inf
x∈Ω

M(x, s)/s = ∞), then M (M) satisfies (1.2) not only for compact sub-

sets K ⊂ Ω but for all measurable subsets of Ω having finite Lebesgue measure.

Indeed, assume that lim
s→∞

ess inf
x∈Ω

M(x, s)/s = ∞ is fulfilled. Then for arbitrary c > 0,

there exists sc > 0 (not depending on x) such that for all s > sc

ess inf
x∈Ω

M(x, s)

s
> c+ 1.

Thus, sup
s>sc

(sc−M(x, s)) 6 0 and by the definition of M we obtain

M(x, c) 6 sup
06s6sc

(sc−M(x, s)) 6 csc.
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This inequality holds true for every x ∈ Ω and then we get (1.2) for subsets of finite

Lebesgue measure.

In this paper, our main goal is to establish density results for smooth functions

in Musielak spaces. To do so we first prove a result on the M -mean continuity

of bounded functions compactly supported in Ω which we then apply to get the

convergence in norm of approximate identities.

The paper is organized as follows. In Section 2 we give the main results. Section 3

is devoted to the proof of the main results. At the end we give two appendices that

contain some basic properties of Musielak-Orlicz spaces that we prove using our main

results.

2. Main results

For h ∈ R
N , let τhu stand for the translation operator defined by

τhu(x) =

{
u(x+ h) if x ∈ Ω and x+ h ∈ Ω,

0 otherwise in R
N .

If the function u has a compact support, τhu is well-defined provided that h <

dist(suppu, ∂Ω).

Theorem 2.1. Let M be a Φ-function satisfying (1.2). Then any u ∈ Bc(Ω) is

M -mean continuous, that is to say for every ε > 0 there exists an η = η(ε) > 0 such

that for h ∈ R
N with |h| < η we have

‖τhu− u‖LM(Ω) < ε.

Let J stand for the Friedrichs mollifier kernel defined on R
N by

J(x) =

{
ke−1/(1−‖x‖2) if ‖x‖ < 1,

0 if ‖x‖ > 1,

where k > 0 is such that
∫
RN J(x) dx = 1. For ε > 0, we define Jε(x) = ε−NJ(xε−1)

and uε = Jε ∗ u by

(2.1) uε(x) =

∫

RN

Jε(x− y)u(y) dy =

∫

B(0,1)

u(x− εy)J(y) dy.

A direct consequence of Theorem 2.1 is the following approximation result.

Corollary 2.1. Let M be a Φ-function satisfying (1.2) and let u ∈ Bc(Ω). For

any ε > 0 small enough, we have uε ∈ C∞
0 (Ω). Furthermore,

‖uε − u‖LM(Ω) → 0 as ε → 0+.
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Theorem 2.2. Let M be a Φ-function satisfying (1.2). Then

(1) C∞
0 (Ω) is dense in EM (Ω) with respect to the strong topology in EM (Ω).

(2) C∞
0 (Ω) is dense in LM (Ω) with respect to the modular topology in LM (Ω).

A special class of Φ-functions is introduced by the following:

Definition 2.1. We say thatM ∈ Φ satisfies the ∆2-condition, writtenM ∈ ∆2,

if there exist a constant k > 0 and a nonnegative function h ∈ L1(Ω) such that

(2.2) M(x, 2t) 6 kM(x, t) + h(x)

for all t > 0 and for almost every x ∈ Ω.

Remark 2.1. Let M be a Φ-function satisfying (1.2). In view of Lemma A.3, if

M ∈ ∆2, then C∞
0 (Ω) is dense in LM (Ω) with respect to the norm ‖·‖LM(Ω).

In general, if u ∈ EM (Ω) we cannot expect that τhu belongs to EM (Ω) as was

proved first by Kamińska [8], Theorem 2.1 (see also [12], Example 2.9 and Theo-

rem 2.10). In Theorem 2.1, we prove that the translation operator acts on the set of

bounded functions compactly supported in Ω. In the case, where M(x, t) = |t|p(x),

a similar result was proved in [5], page 261 by using the continuous imbedding be-

tween variable exponent Lebesgue spaces. Unfortunately, this result is not true in

general in variable Lebesgue spaces, as shown in [8], Example 20 (see also [6], Propo-

sition 3.6.1) unless the exponent is constant.

Remark 2.2. Note that the boundedness of the function u in Theorem 2.1 is

necessary, else the result is false. Indeed, when we put ourselves in the particular case

M(x, t) = tp(x), the authors in [12] gave the following example: N = 1, Ω = (−1, 1).

For 1 6 r < s < ∞ they define the variable exponent

p(x) =

{
r if x ∈ [0, 1),

s if x ∈ (−1, 0)

and consider the function

f(x) =

{
x−1/s if x ∈ [0, 1),

0 if x ∈ (−1, 0).

They show that τhf /∈ Lp(·)(Ω) although f ∈ Lp(·)(Ω). Observe here, in this example,

that the function f is compactly supported but not bounded on Ω.
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Theorem 2.2 is a unified generalization of the approximation results known in

Lebesgue spaces Lp(Ω), 1 < p < ∞ and Orlicz spaces. The approach, now classical,

is based upon reducing the study to continuous functions compactly supported in Ω

and then using imbedding theorems and a sequence of mollifiers to conclude, see

for instance [1], Corollary 2.30 and Theorem 8.21. This classical approach is based

on the fact that the translation operator u(· + h) is continuous in norm when h

tends to zero. This fails to hold in Musielak-Orlicz spaces as shown in Remark 2.2.

Consequently, we cannot approximate in general the identities for a given function.

In the framework of variable exponent Lebesgue spaces Lp(·)(Ω), Kováčik and

Rákosník in [12], Theorem 2.11 proved first the density of the set C∞
0 (Ω) of infinitely

differentiable functions compactly supported in Ω, provided only that the variable

exponent is p(·) ∈ L∞(Ω). Their idea consists in showing successively that the

set of essentially bounded functions L∞(Ω) ∩ Lp(·)(Ω) is dense in Lp(·)(Ω) and by

means of Luzin’s theorem the subset of continuous functions C(Ω)∩Lp(·)(Ω) is dense

in Lp(·)(Ω), which finally leads to the density of the set C∞
0 (Ω) in Lp(·)(Ω).

In Musielak-Orlicz spaces, the situation is more complicated. First, we note that

although the assumption (1.2) is satisfied, the inclusion L∞(Ω) ⊂ LM(·,·)(Ω) does not

hold true in general even if Ω is an open subset of RN with finite Lebesgue measure.

Secondly, the use of an idea similar to that of Cruz-Uribe and Fiorenza (see [5]) will

require additional assumptions. Thirdly, in contrast to what is mentioned above,

the translation operator is not acting, in general, between Musielak-Orlicz spaces

(see [12], Example 2.9 and Theorem 2.10 and [6], Proposition 3.6.1). For these

reasons and to the best of our knowledge, it is not possible to obtain approximation

results using classical ideas. The approach we use consists in starting by proving the

density of smooth functions C∞
0 (Ω) in Bc(Ω) with respect to the norm in LM (Ω) (see

Corollary 2.1), and then the density of bounded functions compactly supported in

norm in EM (Ω) and in modular norm in LM (Ω) (see Lemma B.1), which allows us

to get the density of smooth functions C∞
0 (Ω) in EM (Ω) and LM (Ω) with respect to

the norm and modular convergences, respectively. The idea we use in this paper is

essentially based upon using the fact that for a function u ∈ Bc(Ω), the translation

operator u(·+h) is continuous with respect to the norm ‖·‖LM(Ω) as h tends to 0 (see

Theorem 2.1). This constitutes the main reason why we introduce the space Bc(Ω).

3. Proof of the main results

P r o o f of Theorem 2.1. For u ∈ Bc(Ω), let suppu = U ⊂ BR ∩ Ω, where by BR

we denote a ball with radius R > 0. Let h ∈ R
N with |h| < min(1, dist(U, ∂Ω)). We

have supp τhu ⊂ B := BR+1∩Ω. Let us define B = BR+1∩Ω where BR+1 stands for

the closed ball with radius R + 1. Thanks to (1.2), for any constant number C > 0
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and any compact subset K ⊂ Ω one has M(x,C) ∈ L1(K). Therefore for arbitrary

ε > 0 there is ν > 0 such that for every measurable subset Ω′ ⊂ K

(3.1)

∫

Ω′

M(x,C) dx <
ε

2
, whenever |Ω′| < ν.

For this ν there exists ̺ ∈ (0, 1) such that the Lebesgue measure is |H̺| <
1
4ν, where

H̺ = {x ∈ B : dist(x, ∂B) 6 ̺}.

BR

U

Ω

BR+1

̺

H̺

Define U̺ = B \H̺. Since u is measurable on U̺, Luzin’s theorem ensures that

for ν > 0 there exists a closed set F1,ν ⊂ U̺ such that the restriction of u to F1,ν is

continuous and |U̺ \ F1,ν | <
1
4ν. We then have |B \ F1,ν | <

1
2ν. The function u is

uniformly continuous on the compact set F1,ν . It follows that for ε > 0, there exists

an η ∈ (0, ̺) such that for all x, x+ h ∈ F1,ν one has

(3.2) |h| < η ⇒ |u(x+ h)− u(x)| <
ε

2(
∫
U
M(x, 1) dx+ 1)

.

Define two sets

F2,ν = {x ∈ U, x+ h ∈ F1,ν} and Fν = F1,ν ∩ F2,ν .

The set Fν is a closed subset of Ω. In addition, we have |B \ Fν | < ν. Indeed,

since the Lebesgue measure is invariant by translation we get |B \F1,ν | = |B \F2,ν |.

Therefore,

(3.3) |B \ Fν | = |(B \ F1,ν) ∪ (B \ F2,ν)| 6 |B \ F1,ν |+ |B \ F2,ν | < ν.

If x /∈ B then for |h| < η we have x+ h /∈ BR ∩Ω. If not, we would get x ∈ B which

contradicts the fact that x /∈ B. Hence, we obtain

(3.4)

∫

Ω

M(x, |τhu(x)− u(x)|) dx =

∫

B

M(x, |τhu(x)− u(x)|) dx

=

∫

B∩Fν

M(x, |τhu(x)− u(x)|) dx+

∫

B\Fν

M(x, |τhu(x)− u(x)|) dx.
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By (3.2) the first term on the right-hand side can be estimated as

∫

B∩Fν

M(x, |τhu(x)− u(x)|) dx 6

∫

B∩Fν

M
(
x,

ε

2(
∫
U
M(x, 1) dx+ 1)

)
dx <

ε

2
.

As regards the second term on the right-hand side of (3.4), we use the fact that

u ∈ Bc(Ω) is bounded by a constant number c > 0 and then (3.1) (since B \ Fν ⊂

K : = H̺ ∪ U̺ ∪ U) to obtain

(3.5)

∫

B\Fν

M(x, |τhu(x)− u(x)|) dx 6

∫

B\Fν

M(x, 2c) dx 6
ε

2
.

Putting together (3.4) and (3.5), we get

∀ ε > 0, ∃ η > 0: |h| < η ⇒

∫

Ω

M(x, |τhu(x)− u(x)|) dx < ε.

Let δ > 0 be arbitrary but fixed. As u/δ ∈ Bc(Ω), we get

∃ η > 0: |h| < η ⇒

∫

Ω

M
(
x,

|τhu(x)− u(x)|

δ

)
dx 6 1,

which gives

‖τhu− u‖LM(Ω) 6 δ whenever |h| < η.

�

P r o o f of Corollary 2.1. Let u ∈ Bc(Ω). The function uε defined in (2.1) belongs

to C∞
0 (Ω) whenever ε < dist(suppu, ∂Ω) (see for example [1], Theorem 2.29). LetM

stand for the complementary Φ-function ofM and let v ∈ LM (Ω). By Fubini theorem

and Hölder inequality (A.3) we can write

∫

Ω

|(uε(x)− u(x))v(x)| dx 6

∫

RN

(∫

Ω

|u(x− εy)− u(x)||v(x)| dx

)
J(y) dy

6 2‖v‖L
M

(Ω)

∫

|y|61

‖τ−εyu− u‖LM(Ω)J(y) dy.

Hence, by the definition of the Orlicz norm and the inequality (A.4) we obtain

‖uε − u‖LM(Ω) 6 2

∫

|y|61

‖τ−εyu− u‖LM(Ω)J(y) dy.

We can now use Theorem 2.1. Given µ > 0, there exists η > 0 such that for ε < η

we get

‖τ−εyu(x)− u(x)‖LM(Ω) 6 µ
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for every y with |y| 6 1. Then we conclude that

‖uε − u‖LM(Ω) 6 2µ

∫

|y|61

J(y) dy = 2µ,

which gives the result. �

P r o o f of Theorem 2.2. (1) Combining Corollary 2.1 and Lemma B.1, we obtain

the density of C∞
0 (Ω) in EM (Ω) with respect to the strong topology.

(2) Let u ∈ LM (Ω). According to Lemma B.1, there exist w ∈ Bc(Ω) and λ > 0

such that for all η > 0

∫

Ω

M(x, |u(x) − w(x)|/λ) dx 6 η.

Then by Corollary 2.1 there exists a function v ∈ C∞
0 (Ω) that converges strongly

to w in LM (Ω). But we know that the norm topology is stronger than the modular

one, more precisely we have

∫

Ω

M(x, |w(x) − v(x)|) dx 6 η.

Let us make the choice λ1 = max{1, λ} and use the convexity of the Φ-function M ;

we can write

∫

Ω

M(x, |u(x)− v(x)|/2λ1) dx

6
1

2

∫

Ω

M(x, |u(x) − w(x)|/λ) dx+
1

2

∫

Ω

M(x, |w(x) − v(x)|) dx.

This yields the result. �

Appendix A. Background

Here, we recall some known facts about Musielak-Orlicz spaces. More details

can be found in the papers by Musielak, Kamińska and Hudzik. Observe first that

equivalently a Φ-function M can be represented as (see [15], Theorem 13.2)

M(x, t) =

∫ t

0

a(x, s) ds for t > 0,
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where a(x, ·) is a right continuous and increasing function, a(x, s) > 0 for s > 0,

a(x, 0) = 0, a(x, s) → ∞ as s → ∞ for every x ∈ Ω. The complementary of

a Φ-function M (see [15], Definition 13.4) can be also expressed as

M(x, t) =

∫ t

0

a∗(x, s) ds for t > 0,

where a∗(x, s) = sup{v, a(x, v) 6 s}. Moreover, we have the Young inequality

(A.1) uv 6 M(x, u) +M(x, v) ∀u, v > 0, ∀x ∈ Ω,

which reduces to an equality when v = a(x, u) or u = a∗(x, v). It’s easy to check

that

(A.2) ‖u‖LM(Ω) 6 1 ⇔

∫

Ω

M(x, |u(x)|) dx 6 1.

We also have the following Hölder inequality (see [15], Theorem 13.13)

(A.3)

∫

Ω

|u(x)v(x)| dx 6 ‖u‖M‖v‖L
M

(Ω)

for all u ∈ LM (Ω) and v ∈ LM (Ω), where ‖u‖M = sup
‖v‖L

M
61

∫
Ω
|u(x)v(x)| dx is the

Orlicz norm.

The equivalence between Orlicz and Luxemburg norms is well-known in the Orlicz

spaces setting, see [14], Theorem 3.8.5, while in the Musielak-Orlicz framework this

result was proved by Musielak in [15], Theorem 13.11 using a local integrability

condition upon measurable sets with finite measure.

Lemma A.1. Let M be a Φ-function satisfying (1.2). Then, for all u ∈ LM (Ω)

(A.4) ‖u‖LM(Ω) 6 ‖u‖M 6 2‖u‖LM(Ω).

P r o o f. The inequality on the right-hand side is an easy consequence of the

Young inequality. We only need to prove the left-hand side inequality. To this end,

it is sufficient to prove that

∫

Ω

M(x, |u(x)|/‖u‖M) dx 6 1.

This can be done by using (1.2) and following exactly the lines of [14], Lemma 3.7.2.

�
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We denote by M−1 the inverse of the Φ-function M with respect to its second

argument defined as follows:

M−1(x, t) = inf{s > 0, M(x, s) > t}.

Thus, we have

(A.5) M−1(x,M(x, s)) = M(x,M−1(x, s)) = s.

A sequence {un} is said to converge to u in LM (Ω) in the modular sense, if there

exists λ > 0 such that

∫

Ω

M
(
x,

|un(x)− u(x)|

λ

)
dx → 0 as n → ∞.

We say that {un} converges to u in norm in LM (Ω), if ‖un−u‖LM(Ω) → 0 as n → ∞.

The following lemma was proved in [10], Proposition 3.1, [15], Theorem 8.14 using

the local integrability (see [15], Definition 7.5). For the convenience of the reader,

we give here a simple proof using Vitali’s theorem.

Lemma A.2. Let M ∈ Φ. If M ∈ ∆2, then the norm convergence and the

modular convergence are equivalent.

P r o o f. We only need to prove that the modular convergence implies the norm

convergence, the converse is an easy task. Let {un} be a sequence of functions

belonging to LM (Ω) such that
∫
Ω M(x, un(x)/λ) dx → 0 as n → ∞ for some λ > 0.

Thus, M(x, un(x)/λ) → 0 strongly in L1(Ω). Hence, for a subsequence still indexed

by n, we can assume that un → u a.e. in Ω. Let p be a fixed integer, by the

∆2-condition we can write

M(x, 2pun(x)/λ) 6 kpM(x, un(x)/λ) + (kp−1 + . . .+ k + 1)h(x).

Therefore, by Vitali’s theorem we get lim
n→∞

∫
ΩM(x, 2pun) dx = 0. For an arbitrary

λ > 0 there exists m such that λ 6 2m. Then we can write

∫

Ω

M(x, λun) dx 6
λ

2m

∫

Ω

M(x, 2mun) dx → 0 as n → ∞,

which gives ‖un‖LM(Ω) → 0 as n → ∞. �
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Note that EM (Ω) is a closed subset of LM (Ω). Indeed, let {un} ⊂ EM (Ω) be

such that un → u ∈ LM (Ω). For any λ > 0, we have
∫
ΩM(x, 2λ|un − u|) dx → 0.

This implies M(x, 2λ|un − u|) → 0 in L1(Ω). So there is h ∈ L1(Ω) such that

M(x, 2λ|un − u|) 6 h. Hence,

λ|un(x)− u(x)| 6 1
2M

−1(x, h(x)),

which yields

λ|u(x)| 6 λ|un(x)| +
1
2M

−1(x, h(x)).

By the convexity of M , we get

M(x, λ|u(x)|) 6 1
2M(x, 2λ|un(x)|) +

1
2h(x).

Thus
∫

Ω

M(x, λ|u(x)|) dx 6
1

2

∫

Ω

M(x, 2λ|un(x)|) dx+
1

2

∫

Ω

h(x) dx < ∞.

So u ∈ EM (Ω).

Lemma A.3. Let M ∈ ϕ, then the following assertions are equivalent

(i) EM (Ω) = LM (Ω).

(ii) M ∈ ∆2.

P r o o f. (i)⇒(ii) For any u ∈ LM (Ω) we have 2u ∈ LM (Ω). Then

LM (Ω) ⊂ L
M̃
(Ω), where M̃(x, u) = M(x, 2u).

Therefore, by [15], Theorem 8.5 (b) there exist a constant k > 0 and a nonnegative

function h ∈ L1(Ω) such that

M̃(x, u) = M(x, 2u) 6 kM(x, u) + h(x).

(ii)⇒(i) For u ∈ LM (Ω) there exists λ > 0 such that
∫
Ω
M(x, |u(x)|/λ) dx < ∞.

We shall prove that for every µ > 0 we have
∫
ΩM(x, |u(x)|/µ) dx < ∞. Indeed,

there exists an integer m such that λ/µ 6 2m. Thus, we can write

∫

Ω

M(x, |u(x)|/µ) dx 6
λ

2mµ

∫

Ω

M
(
x,

2m|u(x)|

λ

)
dx

6
λ

2mµ

(
km

∫

Ω

M
(
x,

|u(x)|

λ

)
dx+ (km−1 + . . .+ k + 1)

∫

Ω

h(x) dx

)
< ∞.

�
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Appendix B. Some topological properties

In the following lemma we prove approximation results in EM (Ω) and LM (Ω)

with respect to the strong and modular topologies respectively by bounded functions

compactly supported in Ω.

Lemma B.1. Let M be a Φ-function satisfying (1.2). Then

(1) Bc(Ω) is dense in EM (Ω) with respect to the strong topology in LM (Ω).

(2) Bc(Ω) is dense in LM (Ω) with respect to the modular topology in LM (Ω).

P r o o f. (i) If u ∈ EM (Ω), then for all λ > 0 one has M(x, |u|/λ) ∈ L1(Ω).

Denote by Tj, j > 0, the truncation function at levels ±j defined on R by Tj(s) =

max{−j,min{j, s}}. We define the sequence {uj} by

(B.1) uj = Tj(u)χKj
,

where χKj
stands for the characteristic function of the set

Kj =
{
x ∈ Ω: |x| 6 j, dist(x,Ωc) >

1

j

}
.

Hence, the function uj belongs to Bc(Ω) and converges almost everywhere to u in Ω.

Thus M(x, |uj(x) − u(x)|/λ) → 0 a.e. in Ω and

(B.2) M(x, |uj(x) − u(x)|/2λ) 6 M(x, |u(x)|/λ) ∈ L1(Ω).

So that by the Lebesgue dominated convergence theorem, we obtain

∫

Ω

M(x|uj(x)− u(x)|/2λ) dx 6 1 for j large enough,

which yields lim
j→∞

‖uj − u‖LM(Ω) 6 λ. Being λ > 0 arbitrary, we get

lim
j→∞

‖uj − u‖LM(Ω) = 0.

(ii) Now if u ∈ LM (Ω) then for some λ > 0 one hasM(x, |u|/λ) ∈ L1(Ω). Let {uj}

be the sequence defined in (B.1). The inequality (B.2) holds for some λ > 0 and

since uj ∈ Bc(Ω) and converges a.e. to u in Ω, we get M(x, |uj(x) − u(x)|/2λ) → 0

a.e. in Ω. Thus, Lebesgue’s dominated convergence theorem yields

∫

Ω

M(x, |uj(x)− u(x)|/2λ) → 0 as j → ∞.

�
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In the framework of classical Lebesgue or Orlicz spaces, the separability of the

closure of bounded functions compactly supported in Ω is well-known, see for in-

stance [1], Theorems 2.21 and 8.21, while for bounded variable exponent spaces one

can see in [12], Corollary 2.12. Here, using the density results obtained in Theo-

rem 2.2 we prove the separability of EM (Ω). Our proof is totally different from

that given by Musielak in [15], Theorem 7.10, since the author used the density

of simple functions assuming that the Φ-function M satisfies the local integrability

condition on a measure space (Ω,Σ, µ), where µ is a positive complete measure, that

is to say
∫
D M(x, s) dµ < ∞ for every s > 0 and D ∈ Σ with µ(D) < ∞ (see [15],

Definition 7.5).

Theorem B.1. For any M ∈ Φ satisfying (1.2), the space EM (Ω) is separable.

Remark B.1. In view of Lemma A.3, if the Φ-function M ∈ ∆2 then LM (Ω) is

a separable space.

P r o o f of Theorem B.1. Let u ∈ EM (Ω). By virtue of Theorem 2.2, we can

assume that u ∈ Cc(Ω) (the set of continuous functions with compact support in Ω).

Hence, it is sufficient to show that there exists a countable set dense in Cc(Ω) with

respect to the strong topology in EM (Ω). Let Ωn be the sequence of compact subsets

of RN defined by

Ωn =
{
x ∈ Ω: |x| 6 n and dist(x, ∂Ω) >

1

n

}
.

Recall that Ω =
∞⋃
i=1

Ωn. Let P be the set of all polynomials on R
N with rational

coefficients and

Pn = {vχΩn
: v ∈ P},

where χΩn
is the characteristic function of Ωn. If dist(suppu, ∂Ω) > 1/n then u

belongs to C(Ωn) and by using the density of Pn in C(Ωn), see [1], Corollary 1.32,

there exists a sequence uj ∈ Pn that converges uniformly to u, that is to say

∀ ε > 0, ∃ j0 ∈ N, ∀ j > j0, sup
x∈Ωn

|uj(x) − u(x)| 6
ε∫

Ωn
M(x, 1) dx+ 1

.

So for every ε > 0 there exists j0 ∈ N such that for any j > j0 one has

∫

Ωn

M
(
x,

|u(x)− uj(x)|

ε

)
dx 6 1.

Therefore, Pn is dense in C(Ωn) for the strong topology in LM (Ω). Consequently,

the countable set
∞⋃

n=1
Pn is dense in EM (Ω) and EM (Ω) is separable. �
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In the Orlicz spaces, the density of simple functions, denoted S, in EM (Ω) is an

important step in the proof of the duality result (see for instance [1], Theorem 8.19).

In the Musielak-Orlicz spaces such approximation result needs to assume a local

integrability condition (see [15], Theorem 7.6) which allows to get the inclusion

S ⊂ EM (Ω).

Here, we use the density of the set Sc of simple functions compactly supported

in Ω (see Lemma B.2 below) and prove a duality result in the following theorem.

Theorem B.2. Let M be a Φ-function satisfying (1.2) and let M stand for its

complementary function. Then, the dual space (EM (Ω))′ of EM (Ω) is isomorphic to

LM (Ω); denote (EM (Ω))′ ≃ LM (Ω).

We point out that this duality result is well known (see [4]). The general case of

Köthe duality of Musielak-Orlicz spaces was given for the first time by Kamińska-

Kubiak in [11]. The result we obtain here can be deduced from [11]. For the conve-

nience of the reader we give the proof after proving the following four lemmas.

We denote by S the family of finite linear combinations of characteristic functions

of measurable sets Bi with finite Lebesgue measure, expressed as

p∑

i=1

αiχBi
(x) with α1, α2, . . . , αp ∈ R and |Bi| < ∞.

Let Sc stand for the set of the functions belonging to S with the additional property

that
p⋃

i=1

Bi ⊂ K for some compact subset K of Ω. In the next lemma we prove the

density of Sc in EM (Ω).

Lemma 3.1. Let M be a Φ-function satisfying (1.2). Then the set Sc is dense

in EM (Ω) with respect to the strong topology in EM (Ω).

P r o o f. Let u ∈ Bc(Ω). Since u is a measurable function, by classical result

(see [1]) we know that there exists a sequence {un} ⊂ S converging pointwise to u

in Ω and satisfying |un(x)| 6 |u(x)| for all n ∈ N and x ∈ Ω. Since u ∈ Bc(Ω), we

can assume that un ∈ Sc. Hence,

M(x, |un(x) − u(x)|/λ) 6 M(x, 2|u(x)|/λ) ∈ L1(Ω).

As for all λ > 0

M(x, |un(x)− u(x)|/λ) → 0 a.e. in Ω,

by the Lebesgue dominated convergence theorem we obtain
∫

Ω

M(x, |un(x)− u(x)|/λ) dx 6 1 for n large enough,
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which yields ‖un − u‖LM(Ω) 6 λ for n large enough. Being λ > 0 arbitrary, we get

‖un − u‖LM(Ω) → 0 as n → ∞.

�

Lemma B.3. Let M be a Φ-function satisfying (1.2). For every nonempty sub-

set E ⊂ K, where K is a compact subset of Ω, there exist two constant numbers

c1, c2 > 0 such that

(B.3) ‖χE‖LM(Ω) 6
1

M−1(c1, c2/|E|)
.

P r o o f. Let x0 ∈ Ω be fixed. By (1.2), the measurable function

x 7→ M
(
x,M−1

(
x0,

1

2|E|

)
χE

)

belongs to L1(Ω). Hence, there is an η > 0 such that for any measurable subset Ω′

of Ω one has

|Ω′| < η ⇒

∫

Ω′

M
(
x,M−1

(
x0,

1

2|E|

)
χE

)
dx <

1

2
.

As M(·, s) is measurable on E, Luzin’s theorem implies that for η > 0 there exists

a closed set Fη ⊂ E such that the restriction of M(·, s) to Fη is continuous and

|E \ Fη| < η. Let k be the point, where the supremum of M(·, s) is reached in the

set Fη. Then
∫

E

M
(
x,M−1

(
k,

1

2|E|

))
dx

=

∫

Fη

M
(
x,M−1

(
k,

1

2|E|

))
dx+

∫

E\Fη

M
(
x,M−1

(
k,

1

2|E|

))
dx.

For the first term on the right-hand side of the last equality, we use (A.5) obtaining
∫

Fη

M
(
x,M−1

(
k,

1

2|E|

))
dx 6

∫

Fη

M
(
k,M−1

(
k,

1

2|E|

))
dx 6

1

2
,

while for the second, since |E \ Fη| < η we have
∫

E\Fη

M
(
x,M−1

(
k,

1

2|E|

))
dx 6

1

2
.

Thus, we get ∫

Ω

M
(
x,M−1

(
k,

1

2|E|

)
χE

)
dx 6 1.

�
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Remark B.2. Formula (B.3) remains valid either for every nonempty bounded

subset E of Ω or for every nonempty subset E of Ω if Ω is bounded and open.

Lemma B.4. Let M and M be two complementary Φ-functions. Let v ∈ LM (Ω)

be a fixed function. Define

(B.4) Lv(u) =

∫

Ω

u(x)v(x) dx ∀u ∈ LM (Ω).

Then Lv defines a linear continuous functional on LM (Ω). Furthermore,

‖v‖L
M

(Ω) 6 ‖Lv‖ 6 2‖v‖L
M

(Ω),

where ‖Lv‖ = sup{|Lv(u)|, ‖u‖LM(Ω) 6 1}.

P r o o f. We omit the proof, since it is similar to the one given in [1], Lemma 8.17

in the framework of Orlicz spaces.

The above result holds also when Lv is restricted to EM (Ω). In general, contin-

uous linear functionals defined on LM (Ω) can be expressed in a form different from

that defined in (B.4) (see [14], Theorem 3.13.5). Hence, we cannot have the Riesz

representation theorem as in classical Lebesgue spaces. In the next lemma we give

an “almost complete” analogue of Riesz representation theorem. A similar result in

the Orlicz framework can be found in [14], Theorem 3.13.6. �

Lemma B.5. LetM be a Φ-function satisfying (1.2) and let L ∈ [EM (Ω)]′. Then

there exists a unique function v ∈ LM (Ω) such that

(B.5) L(u) =

∫

Ω

u(x)v(x) dx ∀u ∈ EM (Ω).

P r o o f. We begin first by assuming that u belongs to Sc i.e. u is of the form
p∑

i=1

αiχBi
(x), where Bi are measurable sets of finite Lebesgue measure such that

p⋃
i=1

Bi ⊂ K for some compact subset K ⊂ Ω and αi ∈ R for i = 1, 2, . . . , p. Let µ

be the complex measure defined for a measurable set of finite Lebesgue measure

A ⊂ K ⊂ Ω for some compact K as

µ(A) = L(χA).

By (B.3) there exist two constants c1, c2 > 0 such that

|µ(A)| 6 ‖L‖‖χA‖LM(Ω) 6
‖L‖

M−1(c1, c2/|A|)
→ 0 as |A| → 0.
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Thus, the measure µ is absolutely continuous with respect to the Lebesgue mea-

sure and it follows by Radon-Nikodym’s theorem that there exists a nonnegative

measurable function v ∈ L1(Ω), unique up to sets of Lebesgue measure zero, such

that

µ(A) =

∫

A

v(x) dx.

Hence, we can write

L(u) =

p∑

i=1

αiL(χBi
) =

p∑

i=1

αiµ(Bi) =

p∑

i=1

αi

∫

Bi

v(x) dx(B.6)

=

p∑

i=1

αi

∫

Ω

v(x)χBi
dx =

∫

Ω

u(x)v(x) dx.

Now for arbitrary u ∈ EM (Ω), by Lemma B.2 we can found a sequence of functions

uj ∈ Sc such that uj → u a.e. in Ω and strongly in EM (Ω). Therefore, by Fatou’s

lemma we obtain

∣∣∣∣
∫

Ω

u(x)v(x) dx

∣∣∣∣ 6 lim inf
j→∞

∫

Ω

|uj(x)v(x)| dx = lim inf
j→∞

L(|uj|sgn v)

6 ‖L‖ lim inf
j→∞

‖uj‖LM(Ω) 6 ‖L‖‖u‖LM(Ω).

This implies that v ∈ LM (Ω). Let Lv(u) =
∫
Ω u(x)v(x) dx, the linear functional

defined by (B.4). By (B.5), Lv and L coincide on the set Sc and by Lemma B.2,

they coincide everywhere in EM (Ω). �

P r o o f of Theorem B.2. It is immediate that from Lemma B.5 we get the

isomorphism

LM (Ω) ≃ [EM (Ω)]′.

�

Theorem B.3. Let M,M ∈ Φ be a pair of complementary Φ-functions satisfying

both (1.2) and the∆2-condition. Then, the Musielak-Orlicz space LM (Ω) is reflexive.

P r o o f. Since M and M both satisfy the ∆2-condition, by Lemma A.3 and

Theorem B.2 we get

LM (Ω) ≃ [LM (Ω)]′ and LM (Ω) ≃ [LM (Ω)]′

and then the conclusion follows. �
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[13] M.A.Krasnosel’skĭı, J. B. Rutitskĭı: Convex Functions and Orlicz Spaces. P. Noordhoff,
Groningen, 1961. zbl MR

[14] A.Kufner, O. John, S. Fučík: Function Spaces. Monographs and Textbooks on Mechan-
ics of Solids and Fluids. Mechanics: Analysis, Noordhoff International Publishing, Ley-
den; Academia, Prague, 1977. zbl MR

[15] J.Musielak: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics 1034,
Springer, Berlin, 1983. zbl MR doi

[16] H.Nakano: Modulared Semi-Ordered Linear Spaces. Tokyo Math. Book Series 1,
Maruzen, Tokyo, 1950. zbl MR

[17] W.Orlicz: Über konjugierte Exponentenfolgen. Studia Math. 3 (1931), 200–211. (In
German.) zbl doi

Authors’ address: A hm e d Yo u s s f i, Yo u s s e f A hm i d a, Sidi Mohamed Ben
Abdellah University, National School of Applied Sciences, Laboratory of Engineering,
Systems and Applications (LISA), My Abdellah Avenue, Road Imouzer, P.O. Box 72
Fès-Principale, 30 000 Fez, Morocco, e-mail: ahmed.youssfi@gmail.com, ahmed.youssfi@
usmba.ac.ma, youssef.ahmida@usmba.ac.ma.

471

https://zbmath.org/?q=an:1098.46001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2424078
http://dx.doi.org/10.1016/S0079-8169(13)62896-2
https://zbmath.org/?q=an:1294.46025
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2849685
http://dx.doi.org/10.14708/cm.v51i1.5313
https://zbmath.org/?q=an:1264.46024
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3001860
https://zbmath.org/?q=an:0647.46057
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0928802
http://dx.doi.org/10.1016/S0079-8169(13)62909-8
https://zbmath.org/?q=an:1178.42022
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2292148
http://dx.doi.org/10.1002/mana.200410479
https://zbmath.org/?q=an:1222.46002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2790542
http://dx.doi.org/10.1007/978-3-642-18363-8
https://zbmath.org/?q=an:0355.46011
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0467279
https://zbmath.org/?q=an:0504.46024
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0641438
http://dx.doi.org/10.14708/cm.v22i2.6021
https://zbmath.org/?q=an:0609.46015
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0894273
https://zbmath.org/?q=an:0436.46022
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0577673
http://dx.doi.org/10.14708/cm.v21i1.5965
https://zbmath.org/?q=an:1325.46012
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3323013
http://dx.doi.org/10.1016/j.jmaa.2015.02.035
https://zbmath.org/?q=an:0784.46029
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1134951
https://zbmath.org/?q=an:0095.09103
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0126722
https://zbmath.org/?q=an:0364.46022
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0482102
https://zbmath.org/?q=an:0557.46020
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0724434
http://dx.doi.org/10.1007/BFb0072210
https://zbmath.org/?q=an:0041.23401
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0038565
https://zbmath.org/?q=an:0003.25203
http://dx.doi.org/10.4064/sm-3-1-200-211

		webmaster@dml.cz
	2020-11-18T11:28:18+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




