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Abstract. In the present paper, we investigate the existence of solutions to boundary
value problems for the one-dimensional Schrödinger equation −y′′+ qy = f , where q and f

are Henstock-Kurzweil integrable functions on [a, b]. Results presented in this article are
generalizations of the classical results for the Lebesgue integral.
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1. Introduction

Let q be a real valued function defined on [a, b] and let L be the one-dimensional

Schrödinger operator defined by Ly = −y′′ + qy. In [5] an existence and uniqueness

theorem is given for initial value problems with the differential equation Ly = f ,

where q and f are Henstock-Kurzweil integrable functions on [a, b]. In the present

paper we use this theorem in order to give a solution to the boundary value problem

(1.1)






Ly = f,

m1y(a) + n1y
′(a) + p1y(b) + q1y

′(b) = h1,

m2y(a) + n2y
′(a) + p2y(b) + q2y

′(b) = h2,

where mi, ni, pi, qi, hi ∈ C, i = 1, 2 and q, f are Henstock-Kurzweil integrable func-

tions on [a, b].
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2. Preliminaries

We say that a function f : [a, b] → C is Henstock-Kurzweil integrable (shortly,

HK-integrable), if there exists a number A ∈ C such that for each ε > 0, there exists

a function γε : [a, b] → (0,∞) (named a gauge) for which

∣∣∣∣
n∑

i=1

f(ti)(xi − xi−1)−A

∣∣∣∣ < ε

for any partition P = {([xi−1, xi], ti)}ni=1 such that ti ∈ [xi−1, xi] and [xi−1, xi] ⊆
[ti−γε(ti), ti+γε(ti)] for all i = 1, 2, . . . , n. The number A is the integral of f on [a, b]

and is denoted by
∫ b

a
f = A. We denote by HK([a, b]) the set of Henstock-Kurzweil

integrable functions on [a, b]. This set is a linear space over the field C, furthermore

HK([a, b]) is a semi-normed space with the Alexiewicz semi-norm defined as

‖f‖[a,b] = sup
[c,d]⊆[a,b]

∣∣∣∣
∫ d

c

f(t) dt

∣∣∣∣.

The variation of ϕ : [a, b] → C is defined by

V[a,b]ϕ = sup

{ n∑

i=1

|ϕ(xi)− ϕ(xi−1)| : a = x0 < x1 < x2 < . . . < xn−1 < xn = b

}
.

The function ϕ is of bounded variation on [a, b] if V[a,b]ϕ < ∞. The space of all
functions of bounded variation on [a, b] is denoted by BV([a, b]).

Theorem 2.1 (Multiplier Theorem, [1], Theorem 10.12). If f ∈ HK([a, b]) and

g ∈ BV([a, b]) then the product fg belongs to HK([a, b]) and

∫ b

a

fg = F (b)g(b)−
∫ b

a

F dg,

where F is the indefinite integral F (x) =
∫ x

a
f of f on [a, b], and the latter integral

is a Riemann-Stieltjes one.

Next, a type of Hölder inequality for HK-integrable functions is given.

Theorem 2.2 ([7], Lemma 24). If f ∈ HK([a, b]) and g ∈ BV([a, b]), then

∣∣∣∣
∫ b

a

fg

∣∣∣∣ 6 inf
t∈[a,b]

|g(t)|
∣∣∣∣
∫ b

a

f(t) dt

∣∣∣∣+ ‖f‖[a,b]V[a,b]g.
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A function F : [a, b] → C is absolutely continuous (respectively, absolutely contin-

uous in the restricted sense) on a set E ⊆ [a, b], if for each ε > 0 there exists δ > 0

such that

s∑

i=1

|F (di)− F (ci)| < ε, respectively,
s∑

i=1

sup{|F (x)− F (y)| : x, y ∈ [ci, di]} < ε

whenever {[ci, di]}si=1 is a collection of non-overlapping intervals with endpoints in E

and such that
s∑

i=1

(di − ci) < δ. The space of absolutely continuous functions on E is

denoted by AC(E) and the space of absolutely continuous functions in the restricted

sense on E is denoted by AC∗(E).

The function F is generalized absolutely continuous in the restricted sense on

[a, b] (F ∈ ACG∗([a, b])), if F is continuous on [a, b] and there exists a countable

collection (En)
∞
n=1 of subsets of [a, b] such that [a, b] =

∞⋃
i=1

En and F ∈ AC∗(En) for

all n ∈ N. This concept leads to a very strong version of the Fundamental Theorem

of Calculus:

Theorem 2.3 (Fundamental Theorem of Calculus, [3]). Let f, F : [a, b] → C be

functions and let c ∈ [a, b].

(1) If f ∈ HK([a, b]) and F (x) =
∫ x

c
f for all x ∈ [a, b], then F ∈ ACG∗([a, b]) and

F ′ = f almost everywhere on [a, b]. In particular, if f is continuous at x ∈ [a, b],

then F ′(x) = f(x).

(2) If F ∈ ACG∗([a, b]) and F
′ = f almost everywhere on [a, b], then f ∈ HK([a, b])

and F (x) =
∫ x

c
f + F (c) for all x ∈ [a, b].

(3) F ∈ ACG∗([a, b]) if and only if F
′ exists almost everywhere on [a, b] and

∫ x

c
F ′ =

F (x)− F (c) for all x ∈ [a, b].

The following result gives a formula of integration by parts for functions in

ACG∗([a, b]).

Corollary 2.4 (Integration by parts). If u ∈ ACG∗([a, b]) and v ∈ AC([a, b]) then

u′v ∈ HK([a, b]), uv′ ∈ L([a, b]) and

∫ b

a

u′(t)v(t) dt = u(b)v(b)− u(a)v(a)−
∫ b

a

u(t)v′(t) dt.

P r o o f. By Theorem 2.3, u′ exists almost everywhere on [a, b], u′ ∈ HK([a, b])

and
∫ x

a
u′ = u(x)−u(a) for all x ∈ [a, b]. Then by [3], Theorem 12.8, u′v ∈ HK([a, b])
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and
∫ b

a

u′(t)v(t) dt =

∫ b

a

u′(t) dt v(b)−
∫ b

a

(∫ s

a

u′(t) dt

)
v′(s) ds

= (u(b)− u(a))v(b) −
∫ b

a

(u(s)− u(a))v′(s) ds

= u(b)v(b)− u(a)v(b)−
∫ b

a

u(s)v′(s) ds+ u(a)(v(b)− v(a))

= u(b)v(b)− u(a)v(a)−
∫ b

a

u(s)v′(s) ds.

�

Proposition 2.5. If f, g ∈ ACG∗([a, b]) then fg ∈ ACG∗([a, b]).

P r o o f. Take M > 0 such that |f(x)| 6 M and |g(x)| 6 M for all x ∈ [a, b]. Let

(En), (Gn) be such that [a, b] =
⋃
n∈N

En =
⋃

n∈N

Gn and for which f ∈ AC∗(En) and

g ∈ AC∗(Gn) for all n ∈ N. Define V = {En ∩ Gm : n,m ∈ N and En ∩ Gm 6= ∅}.
Then [a, b] =

⋃
V ∈V

V and f, g ∈ AC∗(V ) for all V ∈ V . Let ε > 0. There exist δf > 0

and δg > 0 such that

s∑

i=1

sup{|f(x)− f(y)| : x, y ∈ [ci, di]} < ε

and
s∑

i=1

sup{|g(x)− g(y)| : x, y ∈ [c∗i , d
∗
i ]} < ε,

whenever {[ci, di]}si=1 and {[c∗i , d∗i ]}si=1 are collections of non-overlapping intervals

that have endpoints in V and satisfy

s∑

i=1

(di − ci) < δf and
s∑

i=1

(d∗i − c∗i ) < δg.

Let δ = min{δf , δg}, if
s∑

i=1

(di − ci) < δ, then

s∑

i=1

sup
x,y∈[ci,di]

|f(x)g(x)− f(y)g(y)|

6 M

[ s∑

i=1

sup
x,y∈[ci,di]

|f(x) − f(y)|+
s∑

i=1

sup
x,y∈[ci,di]

|g(x)− g(y)|
]
< 2Mε.

�
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To finish this section we enunciate a well known result about integral transforms,

see for example [4].

Theorem 2.6. If G is a continuous complex function defined on [a, b] × [a, b]

then Ψ, defined on L2([a, b]) as

Ψ(f)(x) =

∫ b

a

G(x, t)f(t) dt,

satisfies the inclusion Ψ(L2([a, b])) ⊆ C([a, b]) and

Ψ: (L2([a, b]), ‖·‖2) → (L2([a, b]), ‖·‖2)

is a compact linear operator. Moreover, if Ψ 6= 0, Ψ is symmetric, and Ψ(L2([a, b])) is

a dense subspace of L2([a, b]), then there exist two sequences (λn) in R\{0} and (φn)

in Ψ(L2([a, b])) \ {0} such that
(1) ‖φn‖2 = 1, Ψ(φn) = λnφn and |λn+1| 6 |λn| for all n ∈ N,

(2) lim
n→∞

|λn| = 0,

(3) {φ1, φ2, . . .} is a complete orthonormal system in L2([a, b]).

3. The existence and uniqueness theorem

The Wronskian of u1, u2 ∈ C1([a, b]) at x ∈ [a, b] is given by

Wx(u1, u2) = u1(x)u
′
2(x)− u′

1(x)u2(x).

It is well known that if Wc(u1, u2) 6= 0 for some c ∈ [a, b], then u1, u2 are linearly

independent. We consider

A = {y ∈ AC([a, b]) : y′ ∈ ACG∗([a, b])}.

This set is a linear space over C. Note that if y ∈ A, then y′ exists and is

continuous on [a, b], |y′| is integrable, y is of bounded variation, y′′ exists almost
everywhere on [a, b], and

(3.1)
∫ x

a

y′′ = y′(x)− y′(a)

for all x ∈ [a, b], where the integral is the HK-integral. The equality in (3.1) is

important in order to analyse the second order differential equation −y′′ + qy = f

(see [5], Lemma 3.1). Now, we define the linear space

A∗ = {y ∈ A : Ly = 0 a.e. on [a, b]}
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over the field C. By [5], Theorem 3.2, we have that if y1, y2 ∈ A∗ are linearly

independent then Wx(y1, y2) 6= 0 for all x ∈ [a, b]. Moreover, the Wronskian of

two elements y1, y2 ∈ A∗ is a constant function on [a, b], indeed; by Proposition 2.5,

y1y
′
2−y2y

′
1 ∈ ACG∗([a, b]) and since (y1y′2−y2y

′
1)

′ = y1y
′′
2 −y2y

′′
1 = y1qy2−y2qy1 = 0

a.e. on [a, b], it follows by Theorem 2.3, case (2) that

y1(x)y
′
2(x) − y2(x)y

′
1(x) =

∫ x

a

(y1y
′
2 − y2y

′
1)

′(t) dt+ y1(a)y
′
2(a)− y2(a)y

′
1(a)

= y1(a)y
′
2(a)− y2(a)y

′
1(a)

for all x ∈ [a, b].

Proposition 3.1. dimA∗ = 2.

P r o o f. For some fixed c ∈ [a, b] we can find, by [5], Theorem 3.2, y1, y2 ∈ A such
that Lyi = 0 a.e. on [a, b] for i = 1, 2, y1(c) = 1, y′1(c) = 0, y2(c) = 0 and y′2(c) = 1.

Therefore, y1, y2 ∈ A∗ and Wc(y1, y2) = 1, so y1, y2 are linearly independent. Now,

let y ∈ A∗ and define w on [a, b] as w = (y(c)/y1(c))y1 + (y′(c)/y′2(c))y2 − y; then

w ∈ A, w(c) = w′(c) = 0, and Lw = 0 a.e. on [a, b]. Consequently, by using

again [5], Theorem 3.2 we have that w = 0, thus y = (y(c)/y1(c))y1+(y′(c)/y′2(c))y2,

i.e. {y1, y2} is a basis of A∗. �

The boundary conditions in the problem (1.1) can be written as Uy = h, where

(3.2) Uy =

(
m1 n1 p1 q1
m2 n2 p2 q2

)



y(a)

y′(a)

y(b)

y′(b)


 and h =

(
h1

h2

)
.

It is clear that U is a linear operator.

Theorem 3.2 (Theorem of the alternative). Let h ∈ C
2 and f ∈ HK([a, b]).

Consider the problems

(A)

{
Ly = f a.e.,

U(y) = h,
(B)

{
Ly = 0 a.e.,

U(y) = 0.

Then, either

(1) the problem (A) has a unique solution in A, or
(2) the problem (B) has a nonzero solution in A.
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P r o o f. Let {y1, y2} be a basis of A∗.

Case I : {Uy1, Uy2} is a linearly dependent set. Let α, β ∈ C be such that

(α, β) 6= (0, 0) and αUy1 + βUy2 = 0. Then αy1 + βy2 ∈ A∗, αy1 + βy2 6= 0

and U(αy1+βy2) = 0. Therefore αy1+βy2 is a nonzero solution of the problem (B).

If y ∈ A is a solution of the problem (A) and z = y + αy1 + βy2, then z ∈ A is also
a solution of the problem (A) and z 6= y.

Case II : {Uy1, Uy2} is a linearly independent set. By [5], Theorem 3.2, there
exists ỹ ∈ A such that Lỹ = f a.e. on [a, b]. Since det(Uy1, Uy2) 6= 0 it follows that

there exist a1, a2 ∈ C such that h − Uỹ = a1Uy1 + a2Uy2. Thus ỹ + a1y1 + a2y2 is

a solution of the problem (A). Now, let y ∈ A be another solution of the problem (A).
Then ỹ − y ∈ A∗ and so there exist α, β ∈ C such that y − ỹ = αy1 + βy2. This

implies that h − Uỹ = αUy1 + βUy2 and hence α = a1 and β = a2, from which

y = ỹ + a1y1 + a2y2.

Finally, if z ∈ A is a solution of the problem (B) then there exist λ, µ ∈ C such

that z = λy1 + µy2 and λUy1 + µUy2 = 0, therefore λ = µ = 0, i.e. z = 0. �

Remark 3.3. Let h ∈ C
2 and f ∈ HK([a, b]). If the problem (B) has only

a trivial solution in A and {y1, y2} is a basis of A∗ then from Case I of Theorem 3.2

it follows that det(Uy1, Uy2) 6= 0. Thus, there exist constants α, β ∈ C such that

αUy1 + βUy2 = h. Therefore, if y is a solution of the problem
{
Ly = f a.e.,

U(y) = 0,

then y + αy1 + βy2 is the unique solution of the problem (A).

Lemma 3.4. Let {y1, y2} be a basis of A∗ such that W (y1, y2) = 1 and let

f ∈ HK([a, b]). If z : [a, b] → C is defined as

(3.3) z(x) = y1(x)

∫ x

a

y2(t)f(t) dt− y2(x)

∫ x

a

y1(t)f(t) dt

then z ∈ A,

(3.4) z′(x) = y′1(x)

∫ x

a

y2(t)f(t) dt− y′2(x)

∫ x

a

y1(t)f(t) dt

and Lz = f a.e. on [a, b].

P r o o f. We know that y1, y2 are of bounded variation on [a, b]. Then by Theo-

rem 2.1, y1f and y2f are HK-integrable on [a, b] and hence z is well defined. Now,

by Theorem 2.3 (1),

(3.5)
∫ (·)

a

y1(t)f(t) dt,

∫ (·)

a

y2(t)f(t) dt ∈ ACG∗([a, b]),
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thus by Corollary 2.4,

∫ x

a

(y2(t)f(t))y1(t) dt =

(∫ x

a

y2(t)f(t) dt

)
y1(x) −

∫ x

a

(∫ s

a

y2(t)f(t) dt

)
y′1(s) ds

and

∫ x

a

(y1(t)f(t))y2(t) dt =

(∫ x

a

y1(t)f(t) dt

)
y2(x)−

∫ x

a

(∫ s

a

y1(t)f(t) dt

)
y′2(s) ds.

Consequently,

(3.6) z(x) =

∫ x

a

[
y′1(s)

∫ s

a

y2(t)f(t) dt− y′2(s)

∫ s

a

y1(t)f(t) dt

]
ds

and so by Theorem 2.3 (1),

z′(x) = y′1(x)

∫ x

a

y2(t)f(t) dt− y′2(x)

∫ x

a

y1(t)f(t) dt

for all x ∈ [a, b]. Since the integrand in (3.6) is a continuous function, it follows

that z ∈ AC([a, b]). Now, considering the equality in (3.4), we have by (3.5) and

Proposition 2.5 that z′ ∈ ACG∗([a, b]). Thus z ∈ A. Consider E ⊆ [a, b] with

m(E) = 0 such that for each x ∈ [a, b] \ E,

−y′′1 (x) + q(x)y1(x) = 0, −y′′2 (x) + q(x)y2(x) = 0,

d

dx

∫ x

a

y1(t)f(t) dt = y1(x)f(x),
d

dx

∫ x

a

y2(t)f(t) dt = y2(x)f(x).

Let x ∈ [a, b] \ E. Then

z′′(x) = y′′1 (x)

∫ x

a

y2(t)f(t) dt− y′′2 (x)

∫ x

a

y1(t)f(t) dt−Wx(y1, y2)f(x),

thus

−z′′(x) + q(x)z(x) = (−y′′1 (x) + q(x)y1(x))

∫ x

a

y2(t)f(t) dt

− (−y′′2 (x) + q(x)y2(x))

∫ x

a

y1(t)f(t) dt+ f(x) = f(x).

Therefore Lz = f a.e. on [a, b]. �

526



Theorem 3.5. Let {y1, y2} be a basis of A∗ such that W (y1, y2) = 1 and let

K : [a, b]× [a, b] → C be defined as

K(x, t) =

{
0, if a 6 x < t,

y2(t)y1(x)− y1(t)y2(x), if t 6 x 6 b.

If the problem (B) has only a trivial solution and f ∈ HK([a, b]) then the unique

solution y ∈ A of the problem

(3.7)

{
Ly = f a.e.,

U(y) = 0,

is given by

y(x) =

∫ b

a

[K(x, t) + c1(t)y1(x) + c2(t)y2(x)]f(t) dt,

where

(3.8) c1(t) =
det

(
(y1(t)y2(b)− y2(t)y1(b))

[
p1

p2

]
+ (y1(t)y

′
2(b)− y2(t)y

′
1(b))

[
q1
q2

]
, Uy2

)

det(Uy1, Uy2)

and

(3.9) c2(t) =
det

(
Uy1, (y1(t)y2(b)− y2(t)y1(b))

[
p1

p2

]
+ (y1(t)y

′
2(b)− y2(t)y

′
1(b))

[
q1
q2

])

det(Uy1, Uy2)

for all t ∈ [a, b].

P r o o f. Since y1, y2 are of bounded variation on [a, b] it follows that K(x, ·),
c1 and c2 are of bounded variation on [a, b] for all x ∈ [a, b]. Thus y is well defined.

Let us consider the function z defined in (3.3). Then

y(x) = z(x) + y1(x)

∫ b

a

c1(t)f(t) dt+ y2(x)

∫ b

a

c2(t)f(t) dt,

and so by Lemma 3.4, y ∈ A and

Ly = Lz +

∫ b

a

c1(t)f(t) dt Ly1 +

∫ b

a

c2(t)f(t) dt Ly2 = f

a.e. on [a, b]. On the other hand, observe that

UK(·, t) =
(
p1 q1
p2 q2

)(
K(b, t)

K1(b, t)

)
=

(
p1 q1
p2 q2

)(
y2(t)y1(b)− y1(t)y2(b)

y2(t)y
′
1(b)− y1(t)y

′
2(b)

)
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for all t ∈ (a, b), where K1 denotes the derivative of K with respect to the first

variable. Let A be the matrix whose columns are Uy1 and Uy2, and let

M =

(
p1 q1

p2 q2

)
and B(t) =

( −K(b, t)

−K1(b, t)

)
.

From (3.8) and (3.9) we have that (c1(t), c2(t)) is the unique solution of the linear

system

AX = MB(t)

for all t ∈ (a, b). Thus,

c1(t)Uy1 + c2(t)Uy2 = MB(t) = −UK(·, t)

for all t ∈ (a, b). Then

Uy =

∫ b

a

[c1(t)Uy1 + c2(t)Uy2 + UK(·, t)]f(t) dt

=

∫ b

a

[−UK(·, t) + UK(·, t)]f(t) dt = 0.

The uniqueness of the solution is obtained by the theorem of the alternative. �

4. The inverse of the Schrödinger operator

In the rest of this paper we will assume that the problem (B) has only a trivial

solution.

Remark 4.1. Consider y1, y2, K, c1 and c2 as in Theorem 3.5. We set

G(x, t) = K(x, t) + c1(t)y1(x) + c2(t)y2(x)

and let

D∗ = {y ∈ A : Uy = 0}.
Then L : D∗ → HK([a, b]) is invertible and its inverse Γ: HK([a, b]) → D∗ is

given by

Γ(f)(x) =

∫ b

a

G(x, t)f(t) dt.

Indeed, if y ∈ D∗ then Ly ∈ HK([a, b]) by Theorems 2.1 and 2.3. Thus by Theo-

rem 3.5, Γ(L(y)) is the unique solution of the problem
{
Lz = Ly a.e.,

U(z) = 0,

therefore y = Γ(L(y)). On the other hand, using Theorem 3.5 again, we have that

Γ(f) ∈ D∗ and L(Γ(f)) = f a.e. on [a, b] for all f ∈ HK([a, b]).
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Theorem 4.2. If (fn) is a sequence in HK([a, b]) with ‖fn‖[a,b] 6 1 for all n ∈ N,

then there exist a subsequence (fnk
) of (fn) and g ∈ C([a, b]) such that Γ(fnk

) → g

uniformly on [a, b].

P r o o f. Let (fn) be a sequence in HK([a, b]) such that ‖fn‖[a,b] 6 1 for all n ∈ N.

Considering F = {Γ(fn) : n ∈ N}, we prove that F is equicontinuous. Choose
M1,M2 > 0 such that the variations of c1, c2, y1 and y2 on [a, b] are bounded byM1

and the functions y1, y2, y′1, y
′
2 are bounded byM2. Let ε > 0; since G is continuous

on [a, b] × [a, b] and y1, y2 are continuous on [a, b], there exists δ1 > 0 such that if

x1, x2 ∈ [a, b] with |x2 − x1| < δ1 then

|G(x2, a)−G(x1, a)| <
ε

2

and

|y1(x2)− y1(x1)| <
ε

16M1
, |y2(x2)− y2(x1)| <

ε

16M1
.

Let δ = min{ε/(8M2
2 ), δ1}. Take n ∈ N and x1, x2 ∈ [a, b] with |x2 − x1| < δ.

Without loss of generality we may suppose that x1 < x2. By Theorem 2.2,

|Γ(fn)(x2)− Γ(fn)(x1)| =
∣∣∣∣
∫ b

a

[G(x2, t)−G(x1, t)]fn(t) dt

∣∣∣∣

6 inf
t∈[a,b]

|G(x2, t)−G(x1, t)|
∣∣∣∣
∫ b

a

fn

∣∣∣∣+ ‖fn‖[a,b]V[a,b][G(x2, ·)−G(x1, ·)]

6 |G(x2, a)−G(x1, a)|+ V[a,b][G(x2, ·)−G(x1, ·)]
<

ε

2
+ V[a,b][G(x2, ·)−G(x1, ·)].

Now, observe that

V[a,b][G(x2, ·)−G(x1, ·)] 6 V[a,b][K(x2, ·)−K(x1, ·)] + |y1(x2)

− y1(x1)|V[a,b]c1 + |y2(x2)− y2(x1)|V[a,b]c2

and

V[a,b][K(x2, ·)−K(x1, ·)] = V[a,x1][(y1(x2)− y1(x1))y2 − (y2(x2)− y2(x1))y1]

+ V[x1,x2][y1(x2)y2 − y2(x2)y1]

6 |y1(x2)− y1(x1)|V[a,b]y2 + |y2(x2)− y2(x1)|V[a,b]y1

+ |y1(x2)|V[x1,x2]y2 + |y2(x2)|V[x1,x2]y1.

Moreover, since y1, y2 are differentiable on [a, b] and y′1, y
′
2 are bounded by M2,

we have V[x1,x2]yi 6 M2(x2 − x1), i = 1, 2. Thus

V[a,b][G(x2, ·)−G(x1, ·)] 6 |y1(x2)− y1(x1)|2M1

+ |y2(x2)− y2(x1)|2M1 + 2M2
2 (x2 − x1) <

ε

2
.
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Therefore, |Γ(fn)(x2)−Γ(fn)(x1)| < ε. Repeating the same procedure as above we

find a constant M > 0 such that |Γ(fn)(x)| 6 M for all x ∈ [a, b] and n ∈ N. Then

{Γ(fn)(x)} is a compact set in C for all x ∈ [a, b]. Consequently, from Arzelà-Ascoli

theorem, F is a compact set in C([a, b]), therefore there exists a subsequence (fnk
)

of (fn) and g ∈ F such that Γ(fnk
) converges uniformly to g on [a, b]. �

Remark 4.3. The operator Γ: (HK([a, b]), ‖·‖[a,b]) → D∗ ⊆ (C([a, b]), ‖·‖∞) is

compact.

Let y ∈ BV([a, b]) and f ∈ HK([a, b]). We denote the integrals
∫ b

a
y(t)f(t) dt and∫ b

a
f(t)y(t) dt by 〈y, f〉 and 〈f, y〉, respectively. The following properties hold:
(1) 〈y + u, f〉 = 〈y, f〉+ 〈u, f〉 and 〈y, f + g〉 = 〈y, f〉+ 〈y, g〉 for all g ∈ HK([a, b])

and u ∈ BV([a, b]).

(2) 〈αy, f〉 = α〈y, f〉 and 〈y, αf〉 = α〈y, f〉 for all α ∈ C.

(3) 〈y, f〉 = 〈f, y〉.
(4) |〈y, f〉| 6 ‖y‖BV‖f‖[a,b], where ‖y‖BV = |y(a)| + V[a,b]y. This inequality is true

by Theorem 2.2.

Proposition 4.4. If y, z ∈ A then

〈Ly, z〉 = Wb(y, z)−Wa(y, z) + 〈y, Lz〉.

P r o o f. First note that

〈Ly, z〉 = −
∫ b

a

y′′(t)z(t) dt+

∫ b

a

q(t)y(t)z(t) dt.

By Corollary 2.4,
∫ b

a

y′′(t)z(t) dt = y′(b)z(b)− y′(a)z(a)−
∫ b

a

y′(t)z′(t) dt

and ∫ b

a

z′′(t)y(t) dt = z′(b)y(b)− z′(a)y(a)−
∫ b

a

z′(t)y′(t) dt.

Therefore

〈Ly, z〉 = − y′(b)z(b) + y′(a)z(a) +

∫ b

a

y′(t)z′(t) dt+

∫ b

a

q(t)y(t)z(t) dt

= − y′(b)z(b) + y′(a)z(a) + z′(b)y(b)− z′(a)y(a)−
∫ b

a

z′′(t)y(t) dt

+

∫ b

a

q(t)y(t)z(t) dt = Wb(y, z)−Wa(y, z) + 〈y, Lz〉.

�

530



Remark 4.5. Let y, z ∈ A; if y(a) = y(b) = y′(a) = y′(b) = 0 or z(a) = z(b) =

z′(a) = z′(b) = 0 then

〈Ly, z〉 = 〈y, Lz〉.
Let f ∈ L2([a, b]) then by taking g = 1 ∈ L2([a, b]) we have f = fg ∈ L([a, b]).

Thus,

(4.1) L2([a, b]) ⊆ HK([a, b]).

In the following theorem we use the notation D‖·‖ to represent the closure of

a set D with respect to the norm ‖·‖.

Theorem 4.6. The following propositions hold.

(1) L2([a, b]) is a dense subspace of HK([a, b]) with the Alexiewicz semi-norm.

(2) Γ(L2([a, b])) is a dense subspace of L2([a, b]) with the semi-norm ‖·‖2.

P r o o f. (1) Consider S([a, b]) to be the space of all step functions defined on [a, b].

By [6], it follows that

HK([a, b]) = S([a, b])
‖·‖[a,b] ⊆ L2([a, b])

‖·‖[a,b] ⊆ HK([a, b]).

(2) We set ∆ := Γ(L2([a, b])). We show that ∆̄‖·‖2 = L2([a, b]). Suppose to the

contrary that ∆̄‖·‖2 6= L2([a, b]), then there exists k ∈ L2([a, b])∩∆⊥ such that k 6= 0

on a set with positive measure. This implies that 〈z, k〉 = 0 for all z ∈ ∆. From (4.1)

and Lemma 3.4, there exists h ∈ A such that Lh = k a.e. on [a, b].

Let l, li : C([a, b]) → C, i = 1, 2, be defined as

l(g) =

∫ b

a

g(t)h(t) dt and li(g) =

∫ b

a

g(t)yi(t) dt.

Since W (y1, y2) = 1, it follows that l1, l2 are linearly independent. Let g ∈
ker(l1) ∩ ker(l2), then

∫ b

a

g(t)y1(t) dt =

∫ b

a

g(t)y2(t) dt = 0.

Consider f : [a, b] → C defined as

f(x) = y1(x)

∫ x

a

y2(t)g(t) dt− y2(x)

∫ x

a

y1(t)g(t) dt.

From Lemma 3.4, we have f ∈ A,

f ′(x) = y′1(x)

∫ x

a

y2(t)g(t) dt− y′2(x)

∫ x

a

y1(t)g(t) dt
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and L(f) = g a.e. on [a, b]. Thus, f(a) = f(b) = f ′(a) = f ′(b) = 0 and hence f ∈ D∗.

This implies that f = Γ(g)(∈ ∆) and using Remark 4.5 we obtain

∫ b

a

g(t)h(t) dt =

∫ b

a

L(f)(t)h(t) dt = 〈L(f), h〉 = 〈f, L(h)〉 = 〈f, k〉 = 0.

Thus g ∈ ker(l). Consequently, by [2], Lemma 3.2, l = α1l1 + α2l2 for some scalars

α1, α2 ∈ C.

Therefore for each g ∈ C([a, b]),

∫ b

a

g(t)[h(t)− α1y1(t)− α2y2(t)] dt = 0.

This shows that h̄ = α1y1 + α2y2 and so k = L(h) = L(h̄) = α1L(y1) + α2L(y2) = 0

a.e. on [a, b], i.e. k = 0 a.e. on [a, b], which is a contradiction. �

5. Adding the condition of symmetry to Γ

In this section we show that if Γ is a symmetric operator, i.e. for each f, g ∈
HK([a, b]), 〈Γf, g〉 = 〈f,Γg〉, then the solution of (3.7) can be represented as a series
(see Theorem 5.5).

Remark 5.1. If Γ is a symmetric operator then the following propositions hold:

(1) σp(Γ) ⊆ R, where σp(Γ) is the point spectrum of Γ.

(2) Let φ0, φ1 ∈ D∗ be such that Γφ0 = λ0φ0 and Γφ1 = λ1φ1. If λ0 6= λ1 then

〈φ0, φ1〉 = 0.

(3) Let λ ∈ R with λ 6= 0 and φ ∈ D∗. Then Lφ = λφ if and only if Γφ = φ/λ.

(4) For each λ ∈ σp(Γ) \ {0}, we have 1 6 dimker(λ − Γ) 6 2. In fact, define L1

as L1y = −y′′ + (q − 1/λ)y, then ker(Γ − λ) ⊆ ker(L − 1/λ) ⊆ {y ∈ A :

L1y = 0 a.e. on [a, b]}, now by replacing the operator L by L1 in Proposition 3.1,

we obtain that dim{y ∈ A : L1y = 0 a.e. on [a, b]} = 2, thus dimker(λ−Γ) 6 2.

Proposition 5.2. If Γ is a symmetric operator then there exists a sequence (λn)

such that σp(Γ) \ {0} = {λn : n ∈ N}, and there exists (φn) in D∗ \ {0} such that
{φ1, φ2, . . .} is a complete orthonormal system in L2([a, b]) and Γ(φn) = λnφn for all

n ∈ N.

P r o o f. Let Ψ = Γ|L2([a,b]). Then Ψ is symmetric and, by Remark 4.1, Ψ is

injective and so Ψ 6= 0. Moreover, by Theorem 4.6, case (2), Ψ(L2([a, b])) is a dense

subspace of L2([a, b]). Therefore, by Theorem 2.6, there exist two sequences (λn) in

R \ {0} and (φn) in Ψ(L2([a, b])) \ {0} such that
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(1) ‖φn‖2 = 1, Ψ(φn) = λnφn and |λn+1| 6 |λn| for all n ∈ N,

(2) lim
n→∞

|λn| = 0,

(3) {φ1, φ2, . . .} is a complete orthonormal system in L2([a, b]).

If there exists λ ∈ σp(Γ) \ {0} for which λ 6= λn for all n ∈ N, then there exists

φ ∈ D∗ \ {0} such that Γ(φ) = λφ and, by Remark 5.1, case (2), 〈φ, φn〉 = 0 for all

n ∈ N. This implies that

‖φ‖2 =

∞∑

k=1

|〈φ, φn〉|2 = 0

and so φ = 0 which is a contradiction. �

Remark 5.3. If L : D∗ → HK([a, b]) is a symmetric operator then Γ:

HK([a, b]) → D∗ is symmetric. Indeed, we set u = Γ(f) and v = Γ(g), this implies

that 〈Γ(f), g〉 = 〈Γ(f), L(Γ(g))〉 = 〈u, Lv〉 = 〈Lu, v〉 = 〈L(Γ(f)),Γ(g)〉 = 〈f,Γ(g)〉.

Proposition 5.4. Suppose that L : D∗ → HK([a, b]) is a symmetric operator and

consider (µk), a sequence in C, with µk 6= µj if k 6= j, such that σp(L) \ {0} =

{µk : k ∈ N}. Let P = {k ∈ N : dimker(µk − L) = 2}. If for every k ∈ P ,

ϕk, ϕ
∗
k ∈ ker(µk − L) are such that {ϕk, ϕ

∗
k} is an orthonormal set and for each

k ∈ N \ P , ϕk ∈ ker(µk − L) is such that ‖ϕk‖ = 1, then

Ω = {ϕk, ϕ
∗
k : k ∈ P} ∪ {ϕk : k ∈ N \ P}

is a complete orthonormal system in L2([a, b]).

P r o o f. Let (λn) and (φn) be the same as in Proposition 5.2. We set Q =

{n ∈ N : dimker(λn − Γ) = 2}. Take n ∈ Q and suppose that for each m 6= n,

φm 6∈ ker(λn−Γ). This implies that for every g ∈ ker(λn−Γ) andm 6= n, 〈g, φm〉 = 0.

Thus by completeness of (φn), g = 〈g, φn〉φn holds for all g ∈ ker(λn − Γ), i.e.

dimker(λn − Γ) = 1, which is a contradiction. Consequently, for each n ∈ Q, there

exists a unique mn ∈ N with mn 6= n such that φmn
∈ ker(λn − Γ). We show that

(5.1) {〈f, ϕk〉ϕk + 〈f, ϕ∗
k〉ϕ∗

k : k ∈ P} = {〈f, φn〉φn + 〈f, φmn
〉φmn

: n ∈ Q}.

Let us denote by F1 the first family in (5.1) and by F2 the second one. Let n ∈ Q,

then there exists kn ∈ P such that λn = 1/µkn
. We set h1 = 〈f, φn〉φn+〈f, φmn

〉φmn

and h2 = 〈f, ϕkn
〉ϕkn

+ 〈f, ϕ∗
kn
〉ϕ∗

kn
, then y = h1 + (f − h1) = h2 + (f − h2),

h1, h2 ∈ ker(λn − Γ) and f − h1, f − h2 ∈ ker(λn − Γ)⊥. Therefore, h1 = h2 and so

h1 ∈ F1. In a similar way the opposite inclusion is proved.

On the other hand, it is clear that

(5.2) {〈f, ϕk〉ϕk : k ∈ N \ P} = {〈f, φn〉φn : n ∈ N \Q}.
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Let us denote by G1 the first family in (5.2) and by G2 the second one. Then

f =
∑

n∈N

〈f, φn〉φn =
∑

n∈Q

〈f, φn〉φn +
∑

n∈N\Q

〈f, φn〉φn

=
∑

F∈F2

F +
∑

G∈G2

G =
∑

F∈F1

F +
∑

G∈G1

G

=
∑

k∈P

(〈f, ϕk〉ϕk + 〈f, ϕ∗
k〉ϕ∗

k) +
∑

k∈N\Q

〈f, ϕk〉ϕk.

�

Theorem 5.5. Suppose that L is symmetric and take (µk) and Ω as in Proposi-

tion 5.4. Let (βn) and (ωn) be an indexation of (µk) and Ω, respectively, such that

Lωn = βnωn for all n ∈ N. If there exists a constant M > 0 such that for each

u ∈ HK([a, b]),

(5.3)

∣∣∣∣
n∑

k=1

〈u, ωk〉
1

βk

ωk(x)

∣∣∣∣ 6 ‖u‖[a,b]M

for all x ∈ [a, b] and n ∈ N, then for every f ∈ HK([a, b]),

Γ(f) =

∞∑

k=1

〈f, ωk〉
1

βk

ωk

uniformly on [a, b].

P r o o f. Let f ∈ HK([a, b]). Since L2([a, b]) is a dense subspace of HK([a, b]) with

the Alexiewicz semi-norm, it follows that there exists a sequence (fp) in L2([a, b])

such that ‖fp − f‖[a,b] → 0. By Theorem 4.2, there exists a subsequence (fpm
)

of (fp) and g ∈ C([a, b]) such that Γ(fpm
) converges uniformly to g on [a, b]. More-

over, by Remark 4.3, Γ: (HK([a, b]), ‖·‖[a,b]) → (C([a, b]), ‖·‖∞) is bounded and so

Γ(fpm
) → Γ(f). Therefore ‖g−Γ(f)‖∞ = 0 and so g = Γ(f). Let ε > 0, we consider

m ∈ N such that

|Γ(fpm
)(x) − Γ(f)(x)| < ε

3

for all x ∈ [a, b] and

‖fpm
− f‖[a,b] <

ε

3M
.

On the other hand, by Proposition 5.4, {ω1, ω2, . . .} is a complete system in
L2([a, b]). Thus, there exists N ∈ N such that for every n > N ,

∥∥∥∥fpm
−

n∑

k=1

〈fpm
, ωk〉ωk

∥∥∥∥
2

<
ε

3 max
x∈[a,b]

‖G(x, ·)‖2
.
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Therefore, for each n > N and every x ∈ [a, b] we have

∣∣∣∣Γ(f)(x)−
N∑

k=1

〈f, ωk〉
1

βk

ωk(x)

∣∣∣∣ 6 |Γ(f)(x) − Γ(fpm
)(x)|

+

∣∣∣∣Γ(fpm
)(x) −

N∑

k=1

〈fpm
, ωk〉

1

βk

ωk(x)

∣∣∣∣ +
∣∣∣∣

N∑

k=1

〈fpm
− f, ωk〉

1

βk

ωk(x)

∣∣∣∣

<
ε

3
+ ‖G(x, ·)‖2

∥∥∥∥fpm
−

N∑

k=1

〈fpm
, ωk〉ωk

∥∥∥∥
2

+ ‖fpm
− f‖[a,b]M < ε.

�

Theorem 5.6. Suppose that L is symmetric and take (βn) and (ωn) as in The-

orem 5.5. If there exists M > 0 such that |ωn(x)| 6 M for all n ∈ N and x ∈ [a, b],

and
∞∑

k=1

1

|βk|
< ∞,

then for every f ∈ HK([a, b]),

Γ(f) =

∞∑

k=1

〈f, ωk〉
1

βk

ωk

uniformly on [a, b].

P r o o f. Due to Theorem 5.5, we only need to prove that the inequallity (5.3)

holds. In a way similar to the proof of Theorem 4.6 (1), it follows that L([a, b])
‖·‖[a,b]

=

HK([a, b]). Let u ∈ HK([a, b]), then there exists (sn) in L([a, b]) such that

‖sn − u‖[a,b] → 0. This implies that
∣∣|〈sn, ωk〉| − |〈u, ωk〉|

∣∣ 6 |〈sn − u, ωk〉| 6 ‖sn − u‖[a,b]‖ωk‖BV −→
n→∞

0.

Therefore |〈u, ωk〉| = lim
n→∞

|〈sn, ωk〉|. Suppose that ‖u‖[a,b] > 0, then there exists

N ∈ N such that ‖sn‖1 = ‖sn‖[a,b] < 2‖u‖[a,b] for every n > N . Thus

|〈sn, ωk〉| 6
∫ b

a

|sn(t)| |ωk(t)| dt 6 M‖sn‖1 < 2M‖u‖[a,b]

for all k ∈ N and n > N . Consequently, |〈u, ωk〉| = lim
N6n→∞

|〈sn, ωk〉| 6 2M‖u‖[a,b]
for all k ∈ N, and so

∣∣∣∣
n∑

k=1

〈u, ωk〉
1

βk

ωk(x)

∣∣∣∣ 6 2M2‖u‖[a,b]
∞∑

k=1

1

|βk|
.

�
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Example 5.7. Separated and periodic boundary conditions.

The separated boundary conditions are those that in (3.2) correspond to the matrix

(5.4)

(
m1 n1 0 0

0 0 p2 q2

)

and the periodic conditions correspond to the matrix

(5.5)

(
1 0 −1 0

0 1 0 −1

)
.

If U is defined by the matrix given in (5.4) or in (5.5) then L is a symmetric

operator. Indeed, by Proposition 4.4, 〈Lu, v〉 = Wb(u, v)−Wa(u, v) + 〈u, Lv〉 for all
u, v ∈ D∗. Suppose that separated conditions hold. Thus

m1u(a) + n1u
′(a) = 0, m1v(a) + n1v

′(a) = 0,

p2u(b) + q2u
′(b) = 0, p2v(b) + q2v

′(b) = 0.

If Wa(u, v) 6= 0 then m1 = n1 = 0, which contradicts our assumption that the

problem (B) has only a trivial solution. Therefore Wa(u, v) = 0. The equality

Wb(u, v) = 0 is proved in a similar way. Now, if we consider periodic conditions then

we have that u(a) = u(b), u′(a) = u′(b), v(a) = v(b) and v′(a) = v′(b). Therefore,

Wb(u, v) − Wa(u, v) = 0. Thus, in any case, we have 〈Lu, v〉 = 〈u, Lv〉 for all
u, v ∈ D∗.

Example 5.8. Let f be a function defined on [0, 1] as

f(x) =





2π

x
sin

(
π

x2

)
, if x ∈ (0, 1];

0, if x = 0.

This is an unbounded HK-integrable function on [0, 1]. Consider the boundary

value problem

(5.6)






−y′′ + y = f a.e.,

y(0) = 0,

y(1) = 1.

By Theorem 3.2, this problem has a unique solution, moreover from Remark 3.3

and Theorem 3.5, the solution of the problem (5.6) is given by

y(t) = Γ(f)(t)− (e− e−1)e−t + (e− e−1)et.
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The boundary conditions of this problem are separated, thus by Example 5.7,

L is symmetric, and for every µ ∈ σp(L), dimker(λ − L) = 1. For each k ∈ N,

let µk = 1 + k2π
2 and ϕk(x) =

√
2 sin(kπx). Then σp(L) \ {0} = {µk : k ∈ N},

∞∑
k=1

1/µk < ∞ and (ϕk) is a sequence in D∗ such that for each k ∈ N, ‖ϕk‖2 = 1,

Lϕk = µkϕk and |ϕk(x)| 6 1 for all x ∈ [a, b]. Consequently, by Theorem 5.6,

y(t) =

∞∑

k=1

〈f, ϕk〉
1

µk

ϕk(t)− (e− e−1)e−t + (e− e−1)et.

The function f is not Lebesgue integrable on [0, 1]. Hence, this example is not

covered by any result using the Lebesgue integral. Thus, the results presented in

this document are more extensive.
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