Czechoslovak Mathematical Journal

Salvador Sánchez-Perales; Francisco J. Mendoza-Torres
Boundary value problems for the Schrödinger equation involving the Henstock-Kurzweil integral

Czechoslovak Mathematical Journal, Vol. 70 (2020), No. 2, 519-537
Persistent URL: http://dml.cz/dmlcz/148243

Terms of use:

© Institute of Mathematics AS CR, 2020

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

BOUNDARY VALUE PROBLEMS FOR THE SCHRÖDINGER EQUATION INVOLVING THE HENSTOCK-KURZWEIL INTEGRAL

Salvador Sánchez-Perales, Oaxaca, Francisco J. Mendoza-Torres, Puebla

Received August 24, 2018. Published online December 12, 2019.

Abstract

In the present paper, we investigate the existence of solutions to boundary value problems for the one-dimensional Schrödinger equation $-y^{\prime \prime}+q y=f$, where q and f are Henstock-Kurzweil integrable functions on $[a, b]$. Results presented in this article are generalizations of the classical results for the Lebesgue integral.

Keywords: Henstock-Kurzweil integral; Schrödinger operator; ACG $_{*}$-function; bounded variation function

MSC 2010: 26A39, 34B24, 26A45

1. Introduction

Let q be a real valued function defined on $[a, b]$ and let L be the one-dimensional Schrödinger operator defined by $L y=-y^{\prime \prime}+q y$. In [5] an existence and uniqueness theorem is given for initial value problems with the differential equation $L y=f$, where q and f are Henstock-Kurzweil integrable functions on $[a, b]$. In the present paper we use this theorem in order to give a solution to the boundary value problem

$$
\left\{\begin{array}{l}
L y=f, \tag{1.1}\\
m_{1} y(a)+n_{1} y^{\prime}(a)+p_{1} y(b)+q_{1} y^{\prime}(b)=h_{1}, \\
m_{2} y(a)+n_{2} y^{\prime}(a)+p_{2} y(b)+q_{2} y^{\prime}(b)=h_{2},
\end{array}\right.
$$

where $m_{i}, n_{i}, p_{i}, q_{i}, h_{i} \in \mathbb{C}, i=1,2$ and q, f are Henstock-Kurzweil integrable functions on $[a, b]$.

The first author was partially supported by the Mexican National Council for Science and Technology and the Technological University of the Mixteca. The second author was partially supported by the Vice-Rectory of Research and Postgraduate Studies, BUAP.

2. Preliminaries

We say that a function $f:[a, b] \rightarrow \mathbb{C}$ is Henstock-Kurzweil integrable (shortly, HK-integrable), if there exists a number $A \in \mathbb{C}$ such that for each $\varepsilon>0$, there exists a function $\gamma_{\varepsilon}:[a, b] \rightarrow(0, \infty)$ (named a gauge) for which

$$
\left|\sum_{i=1}^{n} f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)-A\right|<\varepsilon
$$

for any partition $P=\left\{\left(\left[x_{i-1}, x_{i}\right], t_{i}\right)\right\}_{i=1}^{n}$ such that $t_{i} \in\left[x_{i-1}, x_{i}\right]$ and $\left[x_{i-1}, x_{i}\right] \subseteq$ $\left[t_{i}-\gamma_{\varepsilon}\left(t_{i}\right), t_{i}+\gamma_{\varepsilon}\left(t_{i}\right)\right]$ for all $i=1,2, \ldots, n$. The number A is the integral of f on $[a, b]$ and is denoted by $\int_{a}^{b} f=A$. We denote by $\operatorname{HK}([a, b])$ the set of Henstock-Kurzweil integrable functions on $[a, b]$. This set is a linear space over the field \mathbb{C}, furthermore $\mathrm{HK}([a, b])$ is a semi-normed space with the Alexiewicz semi-norm defined as

$$
\|f\|_{[a, b]}=\sup _{[c, d] \subseteq[a, b]}\left|\int_{c}^{d} f(t) \mathrm{d} t\right|
$$

The variation of $\varphi:[a, b] \rightarrow \mathbb{C}$ is defined by

$$
V_{[a, b]} \varphi=\sup \left\{\sum_{i=1}^{n}\left|\varphi\left(x_{i}\right)-\varphi\left(x_{i-1}\right)\right|: a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=b\right\} .
$$

The function φ is of bounded variation on $[a, b]$ if $V_{[a, b]} \varphi<\infty$. The space of all functions of bounded variation on $[a, b]$ is denoted by $\operatorname{BV}([a, b])$.

Theorem 2.1 (Multiplier Theorem, [1], Theorem 10.12). If $f \in \operatorname{HK}([a, b])$ and $g \in \operatorname{BV}([a, b])$ then the product $f g$ belongs to $\operatorname{HK}([a, b])$ and

$$
\int_{a}^{b} f g=F(b) g(b)-\int_{a}^{b} F \mathrm{~d} g
$$

where F is the indefinite integral $F(x)=\int_{a}^{x} f$ of f on $[a, b]$, and the latter integral is a Riemann-Stieltjes one.

Next, a type of Hölder inequality for HK-integrable functions is given.
Theorem 2.2 ([7], Lemma 24). If $f \in \operatorname{HK}([a, b])$ and $g \in \operatorname{BV}([a, b])$, then

$$
\left|\int_{a}^{b} f g\right| \leqslant \inf _{t \in[a, b]}|g(t)|\left|\int_{a}^{b} f(t) \mathrm{d} t\right|+\|f\|_{[a, b]} V_{[a, b]} g
$$

A function $F:[a, b] \rightarrow \mathbb{C}$ is absolutely continuous (respectively, absolutely continuous in the restricted sense) on a set $E \subseteq[a, b]$, if for each $\varepsilon>0$ there exists $\delta>0$ such that

$$
\sum_{i=1}^{s}\left|F\left(d_{i}\right)-F\left(c_{i}\right)\right|<\varepsilon, \quad \text { respectively, } \quad \sum_{i=1}^{s} \sup \left\{|F(x)-F(y)|: x, y \in\left[c_{i}, d_{i}\right]\right\}<\varepsilon
$$

whenever $\left\{\left[c_{i}, d_{i}\right]\right\}_{i=1}^{s}$ is a collection of non-overlapping intervals with endpoints in E and such that $\sum_{i=1}^{s}\left(d_{i}-c_{i}\right)<\delta$. The space of absolutely continuous functions on E is denoted by $\mathrm{AC}(E)$ and the space of absolutely continuous functions in the restricted sense on E is denoted by $\mathrm{AC}_{*}(E)$.

The function F is generalized absolutely continuous in the restricted sense on $[a, b]\left(F \in \mathrm{ACG}_{*}([a, b])\right)$, if F is continuous on $[a, b]$ and there exists a countable collection $\left(E_{n}\right)_{n=1}^{\infty}$ of subsets of $[a, b]$ such that $[a, b]=\bigcup_{i=1}^{\infty} E_{n}$ and $F \in \mathrm{AC}_{*}\left(E_{n}\right)$ for all $n \in \mathbb{N}$. This concept leads to a very strong version of the Fundamental Theorem of Calculus:

Theorem 2.3 (Fundamental Theorem of Calculus, [3]). Let $f, F:[a, b] \rightarrow \mathbb{C}$ be functions and let $c \in[a, b]$.
(1) If $f \in \operatorname{HK}([a, b])$ and $F(x)=\int_{c}^{x} f$ for all $x \in[a, b]$, then $F \in \operatorname{ACG}_{*}([a, b])$ and $F^{\prime}=f$ almost everywhere on $[a, b]$. In particular, if f is continuous at $x \in[a, b]$, then $F^{\prime}(x)=f(x)$.
(2) If $F \in \mathrm{ACG}_{*}([a, b])$ and $F^{\prime}=f$ almost everywhere on $[a, b]$, then $f \in \operatorname{HK}([a, b])$ and $F(x)=\int_{c}^{x} f+F(c)$ for all $x \in[a, b]$.
(3) $F \in \mathrm{ACG}_{*}([a, b])$ if and only if F^{\prime} exists almost everywhere on $[a, b]$ and $\int_{c}^{x} F^{\prime}=$ $F(x)-F(c)$ for all $x \in[a, b]$.

The following result gives a formula of integration by parts for functions in $\mathrm{ACG}_{*}([a, b])$.

Corollary 2.4 (Integration by parts). If $u \in \mathrm{ACG}_{*}([a, b])$ and $v \in \mathrm{AC}([a, b])$ then $u^{\prime} v \in \operatorname{HK}([a, b]), u v^{\prime} \in L([a, b])$ and

$$
\int_{a}^{b} u^{\prime}(t) v(t) \mathrm{d} t=u(b) v(b)-u(a) v(a)-\int_{a}^{b} u(t) v^{\prime}(t) \mathrm{d} t .
$$

Proof. By Theorem 2.3, u^{\prime} exists almost everywhere on $[a, b], u^{\prime} \in \operatorname{HK}([a, b])$ and $\int_{a}^{x} u^{\prime}=u(x)-u(a)$ for all $x \in[a, b]$. Then by [3], Theorem $12.8, u^{\prime} v \in \operatorname{HK}([a, b])$
and

$$
\begin{aligned}
\int_{a}^{b} u^{\prime}(t) v(t) \mathrm{d} t & =\int_{a}^{b} u^{\prime}(t) \mathrm{d} t v(b)-\int_{a}^{b}\left(\int_{a}^{s} u^{\prime}(t) \mathrm{d} t\right) v^{\prime}(s) \mathrm{d} s \\
& =(u(b)-u(a)) v(b)-\int_{a}^{b}(u(s)-u(a)) v^{\prime}(s) \mathrm{d} s \\
& =u(b) v(b)-u(a) v(b)-\int_{a}^{b} u(s) v^{\prime}(s) \mathrm{d} s+u(a)(v(b)-v(a)) \\
& =u(b) v(b)-u(a) v(a)-\int_{a}^{b} u(s) v^{\prime}(s) \mathrm{d} s
\end{aligned}
$$

Proposition 2.5. If $f, g \in \mathrm{ACG}_{*}([a, b])$ then $f g \in \mathrm{ACG}_{*}([a, b])$.
Proof. Take $M>0$ such that $|f(x)| \leqslant M$ and $|g(x)| \leqslant M$ for all $x \in[a, b]$. Let $\left(E_{n}\right),\left(G_{n}\right)$ be such that $[a, b]=\bigcup_{n \in \mathbb{N}} E_{n}=\bigcup_{n \in \mathbb{N}} G_{n}$ and for which $f \in \mathrm{AC}_{*}\left(E_{n}\right)$ and $g \in \mathrm{AC}_{*}\left(G_{n}\right)$ for all $n \in \mathbb{N}$. Define $\mathcal{V}=\left\{E_{n} \cap G_{m}: n, m \in \mathbb{N}\right.$ and $\left.E_{n} \cap G_{m} \neq \emptyset\right\}$. Then $[a, b]=\bigcup_{V \in \mathcal{V}} V$ and $f, g \in \mathrm{AC}_{*}(V)$ for all $V \in \mathcal{V}$. Let $\varepsilon>0$. There exist $\delta_{f}>0$ and $\delta_{g}>0$ such that

$$
\sum_{i=1}^{s} \sup \left\{|f(x)-f(y)|: x, y \in\left[c_{i}, d_{i}\right]\right\}<\varepsilon
$$

and

$$
\sum_{i=1}^{s} \sup \left\{|g(x)-g(y)|: x, y \in\left[c_{i}^{*}, d_{i}^{*}\right]\right\}<\varepsilon
$$

whenever $\left\{\left[c_{i}, d_{i}\right]\right\}_{i=1}^{s}$ and $\left\{\left[c_{i}^{*}, d_{i}^{*}\right]\right\}_{i=1}^{s}$ are collections of non-overlapping intervals that have endpoints in V and satisfy

$$
\sum_{i=1}^{s}\left(d_{i}-c_{i}\right)<\delta_{f} \quad \text { and } \quad \sum_{i=1}^{s}\left(d_{i}^{*}-c_{i}^{*}\right)<\delta_{g} .
$$

Let $\delta=\min \left\{\delta_{f}, \delta_{g}\right\}$, if $\sum_{i=1}^{s}\left(d_{i}-c_{i}\right)<\delta$, then

$$
\begin{aligned}
\sum_{i=1}^{s} \sup _{x, y \in\left[c_{i}, d_{i}\right]} & |f(x) g(x)-f(y) g(y)| \\
& \leqslant M\left[\sum_{i=1}^{s} \sup _{x, y \in\left[c_{i}, d_{i}\right]}|f(x)-f(y)|+\sum_{i=1}^{s} \sup _{x, y \in\left[c_{i}, d_{i}\right]}|g(x)-g(y)|\right]<2 M \varepsilon
\end{aligned}
$$

To finish this section we enunciate a well known result about integral transforms, see for example [4].

Theorem 2.6. If G is a continuous complex function defined on $[a, b] \times[a, b]$ then Ψ, defined on $L^{2}([a, b])$ as

$$
\Psi(f)(x)=\int_{a}^{b} G(x, t) f(t) \mathrm{d} t
$$

satisfies the inclusion $\Psi\left(L^{2}([a, b])\right) \subseteq C([a, b])$ and

$$
\Psi:\left(L^{2}([a, b]),\|\cdot\|_{2}\right) \rightarrow\left(L^{2}([a, b]),\|\cdot\|_{2}\right)
$$

is a compact linear operator. Moreover, if $\Psi \neq 0, \Psi$ is symmetric, and $\Psi\left(L^{2}([a, b])\right)$ is a dense subspace of $L^{2}([a, b])$, then there exist two sequences $\left(\lambda_{n}\right)$ in $\mathbb{R} \backslash\{0\}$ and $\left(\phi_{n}\right)$ in $\Psi\left(L^{2}([a, b])\right) \backslash\{0\}$ such that
(1) $\left\|\phi_{n}\right\|_{2}=1, \Psi\left(\phi_{n}\right)=\lambda_{n} \phi_{n}$ and $\left|\lambda_{n+1}\right| \leqslant\left|\lambda_{n}\right|$ for all $n \in \mathbb{N}$,
(2) $\lim _{n \rightarrow \infty}\left|\lambda_{n}\right|=0$,
(3) $\left\{\phi_{1}, \phi_{2}, \ldots\right\}$ is a complete orthonormal system in $L^{2}([a, b])$.

3. The existence and uniqueness Theorem

The Wronskian of $u_{1}, u_{2} \in C^{1}([a, b])$ at $x \in[a, b]$ is given by

$$
W_{x}\left(u_{1}, u_{2}\right)=u_{1}(x) u_{2}^{\prime}(x)-u_{1}^{\prime}(x) u_{2}(x)
$$

It is well known that if $W_{c}\left(u_{1}, u_{2}\right) \neq 0$ for some $c \in[a, b]$, then u_{1}, u_{2} are linearly independent. We consider

$$
\mathcal{A}=\left\{y \in \mathrm{AC}([a, b]): y^{\prime} \in \operatorname{ACG}_{*}([a, b])\right\}
$$

This set is a linear space over \mathbb{C}. Note that if $y \in \mathcal{A}$, then y^{\prime} exists and is continuous on $[a, b],\left|y^{\prime}\right|$ is integrable, y is of bounded variation, $y^{\prime \prime}$ exists almost everywhere on $[a, b]$, and

$$
\begin{equation*}
\int_{a}^{x} y^{\prime \prime}=y^{\prime}(x)-y^{\prime}(a) \tag{3.1}
\end{equation*}
$$

for all $x \in[a, b]$, where the integral is the HK-integral. The equality in (3.1) is important in order to analyse the second order differential equation $-y^{\prime \prime}+q y=f$ (see [5], Lemma 3.1). Now, we define the linear space

$$
\mathcal{A}_{*}=\{y \in \mathcal{A}: L y=0 \text { a.e. on }[a, b]\}
$$

over the field \mathbb{C}. By [5], Theorem 3.2, we have that if $y_{1}, y_{2} \in \mathcal{A}_{*}$ are linearly independent then $W_{x}\left(y_{1}, y_{2}\right) \neq 0$ for all $x \in[a, b]$. Moreover, the Wronskian of two elements $y_{1}, y_{2} \in \mathcal{A}_{*}$ is a constant function on $[a, b]$, indeed; by Proposition 2.5, $y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime} \in \operatorname{ACG}_{*}([a, b])$ and since $\left(y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}\right)^{\prime}=y_{1} y_{2}^{\prime \prime}-y_{2} y_{1}^{\prime \prime}=y_{1} q y_{2}-y_{2} q y_{1}=0$ a.e. on $[a, b]$, it follows by Theorem 2.3, case (2) that

$$
\begin{aligned}
y_{1}(x) y_{2}^{\prime}(x)-y_{2}(x) y_{1}^{\prime}(x) & =\int_{a}^{x}\left(y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}\right)^{\prime}(t) \mathrm{d} t+y_{1}(a) y_{2}^{\prime}(a)-y_{2}(a) y_{1}^{\prime}(a) \\
& =y_{1}(a) y_{2}^{\prime}(a)-y_{2}(a) y_{1}^{\prime}(a)
\end{aligned}
$$

for all $x \in[a, b]$.

Proposition 3.1. $\operatorname{dim} \mathcal{A}_{*}=2$.
Proof. For some fixed $c \in[a, b]$ we can find, by [5], Theorem 3.2, $y_{1}, y_{2} \in \mathcal{A}$ such that $L y_{i}=0$ a.e. on $[a, b]$ for $i=1,2, y_{1}(c)=1, y_{1}^{\prime}(c)=0, y_{2}(c)=0$ and $y_{2}^{\prime}(c)=1$. Therefore, $y_{1}, y_{2} \in \mathcal{A}_{*}$ and $W_{c}\left(y_{1}, y_{2}\right)=1$, so y_{1}, y_{2} are linearly independent. Now, let $y \in \mathcal{A}_{*}$ and define w on $[a, b]$ as $w=\left(y(c) / y_{1}(c)\right) y_{1}+\left(y^{\prime}(c) / y_{2}^{\prime}(c)\right) y_{2}-y$; then $w \in \mathcal{A}, w(c)=w^{\prime}(c)=0$, and $L w=0$ a.e. on $[a, b]$. Consequently, by using again [5], Theorem 3.2 we have that $w=0$, thus $y=\left(y(c) / y_{1}(c)\right) y_{1}+\left(y^{\prime}(c) / y_{2}^{\prime}(c)\right) y_{2}$, i.e. $\left\{y_{1}, y_{2}\right\}$ is a basis of \mathcal{A}_{*}.

The boundary conditions in the problem (1.1) can be written as $U y=h$, where

$$
U y=\left(\begin{array}{llll}
m_{1} & n_{1} & p_{1} & q_{1} \tag{3.2}\\
m_{2} & n_{2} & p_{2} & q_{2}
\end{array}\right)\left(\begin{array}{c}
y(a) \\
y^{\prime}(a) \\
y(b) \\
y^{\prime}(b)
\end{array}\right) \quad \text { and } \quad h=\binom{h_{1}}{h_{2}}
$$

It is clear that U is a linear operator.

Theorem 3.2 (Theorem of the alternative). Let $h \in \mathbb{C}^{2}$ and $f \in \operatorname{HK}([a, b])$. Consider the problems

$$
\text { (A) }\left\{\begin{array} { l }
{ L y = f \text { a.e., } } \\
{ U (y) = h , }
\end{array} \quad (\mathrm { B }) \left\{\begin{array}{l}
L y=0 \text { a.e. } \\
U(y)=0
\end{array}\right.\right.
$$

Then, either
(1) the problem (A) has a unique solution in \mathcal{A}, or
(2) the problem (B) has a nonzero solution in \mathcal{A}.

Proof. Let $\left\{y_{1}, y_{2}\right\}$ be a basis of \mathcal{A}_{*}.
Case $I:\left\{U y_{1}, U y_{2}\right\}$ is a linearly dependent set. Let $\alpha, \beta \in \mathbb{C}$ be such that $(\alpha, \beta) \neq(0,0)$ and $\alpha U y_{1}+\beta U y_{2}=0$. Then $\alpha y_{1}+\beta y_{2} \in \mathcal{A}_{*}, \alpha y_{1}+\beta y_{2} \neq 0$ and $U\left(\alpha y_{1}+\beta y_{2}\right)=0$. Therefore $\alpha y_{1}+\beta y_{2}$ is a nonzero solution of the problem (B). If $y \in \mathcal{A}$ is a solution of the problem (A) and $z=y+\alpha y_{1}+\beta y_{2}$, then $z \in \mathcal{A}$ is also a solution of the problem (A) and $z \neq y$.

Case II: $\left\{U y_{1}, U y_{2}\right\}$ is a linearly independent set. By [5], Theorem 3.2, there exists $\widetilde{y} \in \mathcal{A}$ such that $L \widetilde{y}=f$ a.e. on $[a, b]$. Since $\operatorname{det}\left(U y_{1}, U y_{2}\right) \neq 0$ it follows that there exist $a_{1}, a_{2} \in \mathbb{C}$ such that $h-U \widetilde{y}=a_{1} U y_{1}+a_{2} U y_{2}$. Thus $\widetilde{y}+a_{1} y_{1}+a_{2} y_{2}$ is a solution of the problem (A). Now, let $y \in \mathcal{A}$ be another solution of the problem (A). Then $\widetilde{y}-y \in \mathcal{A}_{*}$ and so there exist $\alpha, \beta \in \mathbb{C}$ such that $y-\widetilde{y}=\alpha y_{1}+\beta y_{2}$. This implies that $h-U \widetilde{y}=\alpha U y_{1}+\beta U y_{2}$ and hence $\alpha=a_{1}$ and $\beta=a_{2}$, from which $y=\widetilde{y}+a_{1} y_{1}+a_{2} y_{2}$.

Finally, if $z \in \mathcal{A}$ is a solution of the problem (B) then there exist $\lambda, \mu \in \mathbb{C}$ such that $z=\lambda y_{1}+\mu y_{2}$ and $\lambda U y_{1}+\mu U y_{2}=0$, therefore $\lambda=\mu=0$, i.e. $z=0$.

Remark 3.3. Let $h \in \mathbb{C}^{2}$ and $f \in \operatorname{HK}([a, b])$. If the problem (B) has only a trivial solution in \mathcal{A} and $\left\{y_{1}, y_{2}\right\}$ is a basis of \mathcal{A}_{*} then from Case I of Theorem 3.2 it follows that $\operatorname{det}\left(U y_{1}, U y_{2}\right) \neq 0$. Thus, there exist constants $\alpha, \beta \in \mathbb{C}$ such that $\alpha U y_{1}+\beta U y_{2}=h$. Therefore, if y is a solution of the problem

$$
\left\{\begin{array}{l}
L y=f \text { a.e. } \\
U(y)=0
\end{array}\right.
$$

then $y+\alpha y_{1}+\beta y_{2}$ is the unique solution of the problem (A).
Lemma 3.4. Let $\left\{y_{1}, y_{2}\right\}$ be a basis of \mathcal{A}_{*} such that $W\left(y_{1}, y_{2}\right)=1$ and let $f \in \operatorname{HK}([a, b])$. If $z:[a, b] \rightarrow \mathbb{C}$ is defined as

$$
\begin{equation*}
z(x)=y_{1}(x) \int_{a}^{x} y_{2}(t) f(t) \mathrm{d} t-y_{2}(x) \int_{a}^{x} y_{1}(t) f(t) \mathrm{d} t \tag{3.3}
\end{equation*}
$$

then $z \in \mathcal{A}$,

$$
\begin{equation*}
z^{\prime}(x)=y_{1}^{\prime}(x) \int_{a}^{x} y_{2}(t) f(t) \mathrm{d} t-y_{2}^{\prime}(x) \int_{a}^{x} y_{1}(t) f(t) \mathrm{d} t \tag{3.4}
\end{equation*}
$$

and $L z=f$ a.e. on $[a, b]$.
Proof. We know that y_{1}, y_{2} are of bounded variation on $[a, b]$. Then by Theorem 2.1, $y_{1} f$ and $y_{2} f$ are HK-integrable on $[a, b]$ and hence z is well defined. Now, by Theorem $2.3(1)$,

$$
\begin{equation*}
\int_{a}^{(\cdot)} y_{1}(t) f(t) \mathrm{d} t, \int_{a}^{(\cdot)} y_{2}(t) f(t) \mathrm{d} t \in \operatorname{ACG}_{*}([a, b]), \tag{3.5}
\end{equation*}
$$

thus by Corollary 2.4,

$$
\int_{a}^{x}\left(y_{2}(t) f(t)\right) y_{1}(t) \mathrm{d} t=\left(\int_{a}^{x} y_{2}(t) f(t) \mathrm{d} t\right) y_{1}(x)-\int_{a}^{x}\left(\int_{a}^{s} y_{2}(t) f(t) \mathrm{d} t\right) y_{1}^{\prime}(s) \mathrm{d} s
$$

and

$$
\int_{a}^{x}\left(y_{1}(t) f(t)\right) y_{2}(t) \mathrm{d} t=\left(\int_{a}^{x} y_{1}(t) f(t) \mathrm{d} t\right) y_{2}(x)-\int_{a}^{x}\left(\int_{a}^{s} y_{1}(t) f(t) \mathrm{d} t\right) y_{2}^{\prime}(s) \mathrm{d} s
$$

Consequently,

$$
\begin{equation*}
z(x)=\int_{a}^{x}\left[y_{1}^{\prime}(s) \int_{a}^{s} y_{2}(t) f(t) \mathrm{d} t-y_{2}^{\prime}(s) \int_{a}^{s} y_{1}(t) f(t) \mathrm{d} t\right] \mathrm{d} s \tag{3.6}
\end{equation*}
$$

and so by Theorem 2.3 (1),

$$
z^{\prime}(x)=y_{1}^{\prime}(x) \int_{a}^{x} y_{2}(t) f(t) \mathrm{d} t-y_{2}^{\prime}(x) \int_{a}^{x} y_{1}(t) f(t) \mathrm{d} t
$$

for all $x \in[a, b]$. Since the integrand in (3.6) is a continuous function, it follows that $z \in \operatorname{AC}([a, b])$. Now, considering the equality in (3.4), we have by (3.5) and Proposition 2.5 that $z^{\prime} \in \operatorname{ACG}_{*}([a, b])$. Thus $z \in \mathcal{A}$. Consider $E \subseteq[a, b]$ with $m(E)=0$ such that for each $x \in[a, b] \backslash E$,

$$
\begin{array}{ll}
-y_{1}^{\prime \prime}(x)+q(x) y_{1}(x)=0, & -y_{2}^{\prime \prime}(x)+q(x) y_{2}(x)=0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x} \int_{a}^{x} y_{1}(t) f(t) \mathrm{d} t=y_{1}(x) f(x), & \frac{\mathrm{d}}{\mathrm{~d} x} \int_{a}^{x} y_{2}(t) f(t) \mathrm{d} t=y_{2}(x) f(x)
\end{array}
$$

Let $x \in[a, b] \backslash E$. Then

$$
z^{\prime \prime}(x)=y_{1}^{\prime \prime}(x) \int_{a}^{x} y_{2}(t) f(t) \mathrm{d} t-y_{2}^{\prime \prime}(x) \int_{a}^{x} y_{1}(t) f(t) \mathrm{d} t-W_{x}\left(y_{1}, y_{2}\right) f(x)
$$

thus

$$
\begin{aligned}
-z^{\prime \prime}(x)+q(x) z(x)= & \left(-y_{1}^{\prime \prime}(x)+q(x) y_{1}(x)\right) \int_{a}^{x} y_{2}(t) f(t) \mathrm{d} t \\
& -\left(-y_{2}^{\prime \prime}(x)+q(x) y_{2}(x)\right) \int_{a}^{x} y_{1}(t) f(t) \mathrm{d} t+f(x)=f(x)
\end{aligned}
$$

Therefore $L z=f$ a.e. on $[a, b]$.

Theorem 3.5. Let $\left\{y_{1}, y_{2}\right\}$ be a basis of \mathcal{A}_{*} such that $W\left(y_{1}, y_{2}\right)=1$ and let $K:[a, b] \times[a, b] \rightarrow \mathbb{C}$ be defined as

$$
K(x, t)= \begin{cases}0, & \text { if } a \leqslant x<t \\ y_{2}(t) y_{1}(x)-y_{1}(t) y_{2}(x), & \text { if } t \leqslant x \leqslant b\end{cases}
$$

If the problem (B) has only a trivial solution and $f \in \operatorname{HK}([a, b])$ then the unique solution $y \in \mathcal{A}$ of the problem

$$
\left\{\begin{array}{l}
L y=f \text { a.e. } \tag{3.7}\\
U(y)=0
\end{array}\right.
$$

is given by

$$
y(x)=\int_{a}^{b}\left[K(x, t)+c_{1}(t) y_{1}(x)+c_{2}(t) y_{2}(x)\right] f(t) \mathrm{d} t
$$

where

$$
c_{1}(t)=\frac{\operatorname{det}\left(\left(y_{1}(t) y_{2}(b)-y_{2}(t) y_{1}(b)\right)\left[\begin{array}{l}
p_{1} \tag{3.8}\\
p_{2}
\end{array}\right]+\left(y_{1}(t) y_{2}^{\prime}(b)-y_{2}(t) y_{1}^{\prime}(b)\right)\left[\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right], U y_{2}\right)}{\operatorname{det}\left(U y_{1}, U y_{2}\right)}
$$

and

$$
c_{2}(t)=\frac{\operatorname{det}\left(U y_{1},\left(y_{1}(t) y_{2}(b)-y_{2}(t) y_{1}(b)\right)\left[\begin{array}{l}
p_{1} \tag{3.9}\\
p_{2}
\end{array}\right]+\left(y_{1}(t) y_{2}^{\prime}(b)-y_{2}(t) y_{1}^{\prime}(b)\right)\left[\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right]\right)}{\operatorname{det}\left(U y_{1}, U y_{2}\right)}
$$

for all $t \in[a, b]$.
Proof. Since y_{1}, y_{2} are of bounded variation on $[a, b]$ it follows that $K(x, \cdot)$, c_{1} and c_{2} are of bounded variation on $[a, b]$ for all $x \in[a, b]$. Thus y is well defined. Let us consider the function z defined in (3.3). Then

$$
y(x)=z(x)+y_{1}(x) \int_{a}^{b} c_{1}(t) f(t) \mathrm{d} t+y_{2}(x) \int_{a}^{b} c_{2}(t) f(t) \mathrm{d} t,
$$

and so by Lemma 3.4, $y \in \mathcal{A}$ and

$$
L y=L z+\int_{a}^{b} c_{1}(t) f(t) \mathrm{d} t L y_{1}+\int_{a}^{b} c_{2}(t) f(t) \mathrm{d} t L y_{2}=f
$$

a.e. on $[a, b]$. On the other hand, observe that

$$
U K(\cdot, t)=\left(\begin{array}{cc}
p_{1} & q_{1} \\
p_{2} & q_{2}
\end{array}\right)\binom{K(b, t)}{K_{1}(b, t)}=\left(\begin{array}{cc}
p_{1} & q_{1} \\
p_{2} & q_{2}
\end{array}\right)\binom{y_{2}(t) y_{1}(b)-y_{1}(t) y_{2}(b)}{y_{2}(t) y_{1}^{\prime}(b)-y_{1}(t) y_{2}^{\prime}(b)}
$$

for all $t \in(a, b)$, where K_{1} denotes the derivative of K with respect to the first variable. Let A be the matrix whose columns are $U y_{1}$ and $U y_{2}$, and let

$$
M=\left(\begin{array}{cc}
p_{1} & q_{1} \\
p_{2} & q_{2}
\end{array}\right) \quad \text { and } \quad B(t)=\binom{-K(b, t)}{-K_{1}(b, t)} .
$$

From (3.8) and (3.9) we have that $\left(c_{1}(t), c_{2}(t)\right)$ is the unique solution of the linear system

$$
A X=M B(t)
$$

for all $t \in(a, b)$. Thus,

$$
c_{1}(t) U y_{1}+c_{2}(t) U y_{2}=M B(t)=-U K(\cdot, t)
$$

for all $t \in(a, b)$. Then

$$
\begin{aligned}
U y & =\int_{a}^{b}\left[c_{1}(t) U y_{1}+c_{2}(t) U y_{2}+U K(\cdot, t)\right] f(t) \mathrm{d} t \\
& =\int_{a}^{b}[-U K(\cdot, t)+U K(\cdot, t)] f(t) \mathrm{d} t=0
\end{aligned}
$$

The uniqueness of the solution is obtained by the theorem of the alternative.

4. The inverse of the Schrödinger operator

In the rest of this paper we will assume that the problem (B) has only a trivial solution.

Remark 4.1. Consider y_{1}, y_{2}, K, c_{1} and c_{2} as in Theorem 3.5. We set

$$
G(x, t)=K(x, t)+c_{1}(t) y_{1}(x)+c_{2}(t) y_{2}(x)
$$

and let

$$
\mathcal{D}_{*}=\{y \in \mathcal{A}: U y=0\} .
$$

Then $L: \mathcal{D}_{*} \rightarrow \operatorname{HK}([a, b])$ is invertible and its inverse $\Gamma: \operatorname{HK}([a, b]) \rightarrow \mathcal{D}_{*}$ is given by

$$
\Gamma(f)(x)=\int_{a}^{b} G(x, t) f(t) \mathrm{d} t
$$

Indeed, if $y \in \mathcal{D}_{*}$ then $L y \in \operatorname{HK}([a, b])$ by Theorems 2.1 and 2.3. Thus by Theorem 3.5, $\Gamma(L(y))$ is the unique solution of the problem

$$
\left\{\begin{array}{l}
L z=L y \quad \text { a.e. } \\
U(z)=0
\end{array}\right.
$$

therefore $y=\Gamma(L(y))$. On the other hand, using Theorem 3.5 again, we have that $\Gamma(f) \in \mathcal{D}_{*}$ and $L(\Gamma(f))=f$ a.e. on $[a, b]$ for all $f \in \operatorname{HK}([a, b])$.

Theorem 4.2. If $\left(f_{n}\right)$ is a sequence in $\operatorname{HK}([a, b])$ with $\left\|f_{n}\right\|_{[a, b]} \leqslant 1$ for all $n \in \mathbb{N}$, then there exist a subsequence $\left(f_{n_{k}}\right)$ of $\left(f_{n}\right)$ and $g \in C([a, b])$ such that $\Gamma\left(f_{n_{k}}\right) \rightarrow g$ uniformly on $[a, b]$.

Proof. Let $\left(f_{n}\right)$ be a sequence in $\operatorname{HK}([a, b])$ such that $\left\|f_{n}\right\|_{[a, b]} \leqslant 1$ for all $n \in \mathbb{N}$. Considering $\mathcal{F}=\left\{\Gamma\left(f_{n}\right): n \in \mathbb{N}\right\}$, we prove that \mathcal{F} is equicontinuous. Choose $M_{1}, M_{2}>0$ such that the variations of c_{1}, c_{2}, y_{1} and y_{2} on $[a, b]$ are bounded by M_{1} and the functions $y_{1}, y_{2}, y_{1}^{\prime}, y_{2}^{\prime}$ are bounded by M_{2}. Let $\varepsilon>0$; since G is continuous on $[a, b] \times[a, b]$ and y_{1}, y_{2} are continuous on $[a, b]$, there exists $\delta_{1}>0$ such that if $x_{1}, x_{2} \in[a, b]$ with $\left|x_{2}-x_{1}\right|<\delta_{1}$ then

$$
\left|G\left(x_{2}, a\right)-G\left(x_{1}, a\right)\right|<\frac{\varepsilon}{2}
$$

and

$$
\left|y_{1}\left(x_{2}\right)-y_{1}\left(x_{1}\right)\right|<\frac{\varepsilon}{16 M_{1}}, \quad\left|y_{2}\left(x_{2}\right)-y_{2}\left(x_{1}\right)\right|<\frac{\varepsilon}{16 M_{1}} .
$$

Let $\delta=\min \left\{\varepsilon /\left(8 M_{2}^{2}\right), \delta_{1}\right\}$. Take $n \in \mathbb{N}$ and $x_{1}, x_{2} \in[a, b]$ with $\left|x_{2}-x_{1}\right|<\delta$. Without loss of generality we may suppose that $x_{1}<x_{2}$. By Theorem 2.2,

$$
\begin{aligned}
& \left|\Gamma\left(f_{n}\right)\left(x_{2}\right)-\Gamma\left(f_{n}\right)\left(x_{1}\right)\right|=\left|\int_{a}^{b}\left[G\left(x_{2}, t\right)-G\left(x_{1}, t\right)\right] f_{n}(t) \mathrm{d} t\right| \\
& \quad \leqslant \inf _{t \in[a, b]}\left|G\left(x_{2}, t\right)-G\left(x_{1}, t\right)\right|\left|\int_{a}^{b} f_{n}\right|+\left\|f_{n}\right\|_{[a, b]} V_{[a, b]}\left[G\left(x_{2}, \cdot\right)-G\left(x_{1}, \cdot\right)\right] \\
& \quad \leqslant\left|G\left(x_{2}, a\right)-G\left(x_{1}, a\right)\right|+V_{[a, b]}\left[G\left(x_{2}, \cdot\right)-G\left(x_{1}, \cdot\right)\right] \\
& \quad<\frac{\varepsilon}{2}+V_{[a, b]}\left[G\left(x_{2}, \cdot\right)-G\left(x_{1}, \cdot\right)\right] .
\end{aligned}
$$

Now, observe that

$$
\begin{aligned}
V_{[a, b]}\left[G\left(x_{2}, \cdot\right)-G\left(x_{1}, \cdot\right)\right] \leqslant & V_{[a, b]}\left[K\left(x_{2}, \cdot\right)-K\left(x_{1}, \cdot\right)\right]+\mid y_{1}\left(x_{2}\right) \\
& -y_{1}\left(x_{1}\right)\left|V_{[a, b]} c_{1}+\left|y_{2}\left(x_{2}\right)-y_{2}\left(x_{1}\right)\right| V_{[a, b]} c_{2}\right.
\end{aligned}
$$

and

$$
\begin{aligned}
V_{[a, b]}\left[K\left(x_{2}, \cdot\right)-K\left(x_{1}, \cdot\right)\right]= & V_{\left[a, x_{1}\right]}\left[\left(y_{1}\left(x_{2}\right)-y_{1}\left(x_{1}\right)\right) y_{2}-\left(y_{2}\left(x_{2}\right)-y_{2}\left(x_{1}\right)\right) y_{1}\right] \\
& +V_{\left[x_{1}, x_{2}\right]}\left[y_{1}\left(x_{2}\right) y_{2}-y_{2}\left(x_{2}\right) y_{1}\right] \\
\leqslant & \left|y_{1}\left(x_{2}\right)-y_{1}\left(x_{1}\right)\right| V_{[a, b]} y_{2}+\left|y_{2}\left(x_{2}\right)-y_{2}\left(x_{1}\right)\right| V_{[a, b]} y_{1} \\
& +\left|y_{1}\left(x_{2}\right)\right| V_{\left[x_{1}, x_{2}\right]} y_{2}+\left|y_{2}\left(x_{2}\right)\right| V_{\left[x_{1}, x_{2}\right]} y_{1} .
\end{aligned}
$$

Moreover, since y_{1}, y_{2} are differentiable on $[a, b]$ and $y_{1}^{\prime}, y_{2}^{\prime}$ are bounded by M_{2}, we have $V_{\left[x_{1}, x_{2}\right]} y_{i} \leqslant M_{2}\left(x_{2}-x_{1}\right), i=1,2$. Thus

$$
\begin{aligned}
V_{[a, b]}\left[G\left(x_{2}, \cdot\right)-G\left(x_{1}, \cdot\right)\right] \leqslant & \left|y_{1}\left(x_{2}\right)-y_{1}\left(x_{1}\right)\right| 2 M_{1} \\
& +\left|y_{2}\left(x_{2}\right)-y_{2}\left(x_{1}\right)\right| 2 M_{1}+2 M_{2}^{2}\left(x_{2}-x_{1}\right)<\frac{\varepsilon}{2} .
\end{aligned}
$$

Therefore, $\left|\Gamma\left(f_{n}\right)\left(x_{2}\right)-\Gamma\left(f_{n}\right)\left(x_{1}\right)\right|<\varepsilon$. Repeating the same procedure as above we find a constant $M>0$ such that $\left|\Gamma\left(f_{n}\right)(x)\right| \leqslant M$ for all $x \in[a, b]$ and $n \in \mathbb{N}$. Then $\overline{\left\{\Gamma\left(f_{n}\right)(x)\right\}}$ is a compact set in \mathbb{C} for all $x \in[a, b]$. Consequently, from Arzelà-Ascoli theorem, $\overline{\mathcal{F}}$ is a compact set in $C([a, b])$, therefore there exists a subsequence $\left(f_{n_{k}}\right)$ of $\left(f_{n}\right)$ and $g \in \overline{\mathcal{F}}$ such that $\Gamma\left(f_{n_{k}}\right)$ converges uniformly to g on $[a, b]$.

Remark 4.3. The operator $\Gamma:\left(\operatorname{HK}([a, b]),\|\cdot\|_{[a, b]}\right) \rightarrow \mathcal{D}_{*} \subseteq\left(C([a, b]),\|\cdot\|_{\infty}\right)$ is compact.

Let $y \in \operatorname{BV}([a, b])$ and $f \in \operatorname{HK}([a, b])$. We denote the integrals $\int_{a}^{b} y(t) \overline{f(t)} \mathrm{d} t$ and $\int_{a}^{b} f(t) \overline{y(t)} \mathrm{d} t$ by $\langle y, f\rangle$ and $\langle f, y\rangle$, respectively. The following properties hold:
(1) $\langle y+u, f\rangle=\langle y, f\rangle+\langle u, f\rangle$ and $\langle y, f+g\rangle=\langle y, f\rangle+\langle y, g\rangle$ for all $g \in \operatorname{HK}([a, b])$ and $u \in \operatorname{BV}([a, b])$.
(2) $\langle\alpha y, f\rangle=\alpha\langle y, f\rangle$ and $\langle y, \alpha f\rangle=\bar{\alpha}\langle y, f\rangle$ for all $\alpha \in \mathbb{C}$.
(3) $\langle y, f\rangle=\overline{\langle f, y\rangle}$.
(4) $|\langle y, f\rangle| \leqslant\|y\|_{\mathrm{BV}}\|f\|_{[a, b]}$, where $\|y\|_{\mathrm{BV}}=|y(a)|+V_{[a, b]} y$. This inequality is true by Theorem 2.2.

Proposition 4.4. If $y, z \in \mathcal{A}$ then

$$
\langle L y, z\rangle=W_{b}(y, \bar{z})-W_{a}(y, \bar{z})+\langle y, L z\rangle
$$

Proof. First note that

$$
\langle L y, z\rangle=-\int_{a}^{b} y^{\prime \prime}(t) \overline{z(t)} \mathrm{d} t+\int_{a}^{b} q(t) y(t) \overline{z(t)} \mathrm{d} t
$$

By Corollary 2.4,

$$
\int_{a}^{b} y^{\prime \prime}(t) \overline{z(t)} \mathrm{d} t=y^{\prime}(b) \overline{z(b)}-y^{\prime}(a) \overline{z(a)}-\int_{a}^{b} y^{\prime}(t) \overline{z^{\prime}(t)} \mathrm{d} t
$$

and

$$
\int_{a}^{b} \overline{z^{\prime \prime}(t)} y(t) \mathrm{d} t=\overline{z^{\prime}(b)} y(b)-\overline{z^{\prime}(a)} y(a)-\int_{a}^{b} \overline{z^{\prime}(t)} y^{\prime}(t) \mathrm{d} t
$$

Therefore

$$
\begin{aligned}
\langle L y, z\rangle= & -y^{\prime}(b) \overline{z(b)}+y^{\prime}(a) \overline{z(a)}+\int_{a}^{b} y^{\prime}(t) \overline{z^{\prime}(t)} \mathrm{d} t+\int_{a}^{b} q(t) y(t) \overline{z(t)} \mathrm{d} t \\
= & -y^{\prime}(b) \overline{z(b)}+y^{\prime}(a) \overline{z(a)}+\overline{z^{\prime}(b)} y(b)-\overline{z^{\prime}(a)} y(a)-\int_{a}^{b} \overline{z^{\prime \prime}(t)} y(t) \mathrm{d} t \\
& +\int_{a}^{b} q(t) y(t) \overline{z(t)} \mathrm{d} t=W_{b}(y, \bar{z})-W_{a}(y, \bar{z})+\langle y, L z\rangle .
\end{aligned}
$$

Remark 4.5. Let $y, z \in \mathcal{A}$; if $y(a)=y(b)=y^{\prime}(a)=y^{\prime}(b)=0$ or $z(a)=z(b)=$ $z^{\prime}(a)=z^{\prime}(b)=0$ then

$$
\langle L y, z\rangle=\langle y, L z\rangle .
$$

Let $f \in L^{2}([a, b])$ then by taking $g=1 \in L^{2}([a, b])$ we have $f=f g \in L([a, b])$. Thus,

$$
\begin{equation*}
L^{2}([a, b]) \subseteq \operatorname{HK}([a, b]) . \tag{4.1}
\end{equation*}
$$

In the following theorem we use the notation $\bar{D}\|\cdot\|$ to represent the closure of a set D with respect to the norm $\|\cdot\|$.

Theorem 4.6. The following propositions hold.
(1) $L^{2}([a, b])$ is a dense subspace of $\operatorname{HK}([a, b])$ with the Alexiewicz semi-norm.
(2) $\Gamma\left(L^{2}([a, b])\right)$ is a dense subspace of $L^{2}([a, b])$ with the semi-norm $\|\cdot\|_{2}$.

Proof. (1) Consider $S([a, b])$ to be the space of all step functions defined on $[a, b]$. By [6], it follows that

$$
\operatorname{HK}([a, b])=\overline{S([a, b])}^{\|\cdot\|_{[a, b]} \subseteq{\overline{L^{2}([a, b])}}^{\|\cdot\|_{[a, b]}} \subseteq \operatorname{HK}([a, b])}
$$

(2) We set $\Delta:=\Gamma\left(L^{2}([a, b])\right)$. We show that $\bar{\Delta}\|\cdot\|_{2}=L^{2}([a, b])$. Suppose to the contrary that $\bar{\Delta}\|\cdot\|_{2} \neq L^{2}([a, b])$, then there exists $k \in L^{2}([a, b]) \cap \Delta^{\perp}$ such that $k \neq 0$ on a set with positive measure. This implies that $\langle z, k\rangle=0$ for all $z \in \Delta$. From (4.1) and Lemma 3.4, there exists $h \in \mathcal{A}$ such that $L h=k$ a.e. on $[a, b]$.

Let $l, l_{i}: C([a, b]) \rightarrow \mathbb{C}, i=1,2$, be defined as

$$
l(g)=\int_{a}^{b} g(t) \overline{h(t)} \mathrm{d} t \quad \text { and } \quad l_{i}(g)=\int_{a}^{b} g(t) y_{i}(t) \mathrm{d} t
$$

Since $W\left(y_{1}, y_{2}\right)=1$, it follows that l_{1}, l_{2} are linearly independent. Let $g \in$ $\operatorname{ker}\left(l_{1}\right) \cap \operatorname{ker}\left(l_{2}\right)$, then

$$
\int_{a}^{b} g(t) y_{1}(t) \mathrm{d} t=\int_{a}^{b} g(t) y_{2}(t) \mathrm{d} t=0
$$

Consider $f:[a, b] \rightarrow \mathbb{C}$ defined as

$$
f(x)=y_{1}(x) \int_{a}^{x} y_{2}(t) g(t) \mathrm{d} t-y_{2}(x) \int_{a}^{x} y_{1}(t) g(t) \mathrm{d} t .
$$

From Lemma 3.4, we have $f \in \mathcal{A}$,

$$
f^{\prime}(x)=y_{1}^{\prime}(x) \int_{a}^{x} y_{2}(t) g(t) \mathrm{d} t-y_{2}^{\prime}(x) \int_{a}^{x} y_{1}(t) g(t) \mathrm{d} t
$$

and $L(f)=g$ a.e. on $[a, b]$. Thus, $f(a)=f(b)=f^{\prime}(a)=f^{\prime}(b)=0$ and hence $f \in \mathcal{D}_{*}$. This implies that $f=\Gamma(g)(\in \Delta)$ and using Remark 4.5 we obtain

$$
\int_{a}^{b} g(t) \overline{h(t)} \mathrm{d} t=\int_{a}^{b} L(f)(t) \overline{h(t)} \mathrm{d} t=\langle L(f), h\rangle=\langle f, L(h)\rangle=\langle f, k\rangle=0
$$

Thus $g \in \operatorname{ker}(l)$. Consequently, by [2], Lemma 3.2, $l=\alpha_{1} l_{1}+\alpha_{2} l_{2}$ for some scalars $\alpha_{1}, \alpha_{2} \in \mathbb{C}$.

Therefore for each $g \in C([a, b])$,

$$
\int_{a}^{b} g(t)\left[\overline{h(t)}-\alpha_{1} y_{1}(t)-\alpha_{2} y_{2}(t)\right] \mathrm{d} t=0
$$

This shows that $\bar{h}=\alpha_{1} y_{1}+\alpha_{2} y_{2}$ and so $\bar{k}=\overline{L(h)}=L(\bar{h})=\alpha_{1} L\left(y_{1}\right)+\alpha_{2} L\left(y_{2}\right)=0$ a.e. on $[a, b]$, i.e. $k=0$ a.e. on $[a, b]$, which is a contradiction.

5. Adding the condition of symmetry to Γ

In this section we show that if Γ is a symmetric operator, i.e. for each $f, g \in$ $\operatorname{HK}([a, b]),\langle\Gamma f, g\rangle=\langle f, \Gamma g\rangle$, then the solution of (3.7) can be represented as a series (see Theorem 5.5).

Remark 5.1. If Γ is a symmetric operator then the following propositions hold: (1) $\sigma_{p}(\Gamma) \subseteq \mathbb{R}$, where $\sigma_{p}(\Gamma)$ is the point spectrum of Γ.
(2) Let $\phi_{0}, \phi_{1} \in \mathcal{D}_{*}$ be such that $\Gamma \phi_{0}=\lambda_{0} \phi_{0}$ and $\Gamma \phi_{1}=\lambda_{1} \phi_{1}$. If $\lambda_{0} \neq \lambda_{1}$ then $\left\langle\phi_{0}, \phi_{1}\right\rangle=0$.
(3) Let $\lambda \in \mathbb{R}$ with $\lambda \neq 0$ and $\phi \in \mathcal{D}_{*}$. Then $L \phi=\lambda \phi$ if and only if $\Gamma \phi=\phi / \lambda$.
(4) For each $\lambda \in \sigma_{p}(\Gamma) \backslash\{0\}$, we have $1 \leqslant \operatorname{dim} \operatorname{ker}(\lambda-\Gamma) \leqslant 2$. In fact, define L_{1} as $L_{1} y=-y^{\prime \prime}+(q-1 / \lambda) y$, then $\operatorname{ker}(\Gamma-\lambda) \subseteq \operatorname{ker}(L-1 / \lambda) \subseteq\{y \in \mathcal{A}$: $L_{1} y=0$ a.e. on $\left.[a, b]\right\}$, now by replacing the operator L by L_{1} in Proposition 3.1, we obtain that $\operatorname{dim}\left\{y \in \mathcal{A}: L_{1} y=0\right.$ a.e. on $\left.[a, b]\right\}=2$, thus $\operatorname{dim} \operatorname{ker}(\lambda-\Gamma) \leqslant 2$.

Proposition 5.2. If Γ is a symmetric operator then there exists a sequence $\left(\lambda_{n}\right)$ such that $\sigma_{p}(\Gamma) \backslash\{0\}=\left\{\lambda_{n}: n \in \mathbb{N}\right\}$, and there exists $\left(\phi_{n}\right)$ in $\mathcal{D}_{*} \backslash\{0\}$ such that $\left\{\phi_{1}, \phi_{2}, \ldots\right\}$ is a complete orthonormal system in $L^{2}([a, b])$ and $\Gamma\left(\phi_{n}\right)=\lambda_{n} \phi_{n}$ for all $n \in \mathbb{N}$.

Proof. Let $\Psi=\left.\Gamma\right|_{L^{2}([a, b])}$. Then Ψ is symmetric and, by Remark 4.1, Ψ is injective and so $\Psi \neq 0$. Moreover, by Theorem 4.6, case (2), $\Psi\left(L^{2}([a, b])\right)$ is a dense subspace of $L^{2}([a, b])$. Therefore, by Theorem 2.6, there exist two sequences $\left(\lambda_{n}\right)$ in $\mathbb{R} \backslash\{0\}$ and $\left(\phi_{n}\right)$ in $\Psi\left(L^{2}([a, b])\right) \backslash\{0\}$ such that
(1) $\left\|\phi_{n}\right\|_{2}=1, \Psi\left(\phi_{n}\right)=\lambda_{n} \phi_{n}$ and $\left|\lambda_{n+1}\right| \leqslant\left|\lambda_{n}\right|$ for all $n \in \mathbb{N}$,
(2) $\lim _{n \rightarrow \infty}\left|\lambda_{n}\right|=0$,
(3) $\left\{\phi_{1}, \phi_{2}, \ldots\right\}$ is a complete orthonormal system in $L^{2}([a, b])$.

If there exists $\lambda \in \sigma_{p}(\Gamma) \backslash\{0\}$ for which $\lambda \neq \lambda_{n}$ for all $n \in \mathbb{N}$, then there exists $\phi \in \mathcal{D}_{*} \backslash\{0\}$ such that $\Gamma(\phi)=\lambda \phi$ and, by Remark 5.1, case $(2),\left\langle\phi, \phi_{n}\right\rangle=0$ for all $n \in \mathbb{N}$. This implies that

$$
\|\phi\|_{2}=\sum_{k=1}^{\infty}\left|\left\langle\phi, \phi_{n}\right\rangle\right|^{2}=0
$$

and so $\phi=0$ which is a contradiction.
Remark 5.3. If $L: \mathcal{D}_{*} \rightarrow \operatorname{HK}([a, b])$ is a symmetric operator then Γ : $\operatorname{HK}([a, b]) \rightarrow \mathcal{D}_{*}$ is symmetric. Indeed, we set $u=\Gamma(f)$ and $v=\Gamma(g)$, this implies that $\langle\Gamma(f), g\rangle=\langle\Gamma(f), L(\Gamma(g))\rangle=\langle u, L v\rangle=\langle L u, v\rangle=\langle L(\Gamma(f)), \Gamma(g)\rangle=\langle f, \Gamma(g)\rangle$.

Proposition 5.4. Suppose that $L: \mathcal{D}_{*} \rightarrow \operatorname{HK}([a, b])$ is a symmetric operator and consider $\left(\mu_{k}\right)$, a sequence in \mathbb{C}, with $\mu_{k} \neq \mu_{j}$ if $k \neq j$, such that $\sigma_{p}(L) \backslash\{0\}=$ $\left\{\mu_{k}: k \in \mathbb{N}\right\}$. Let $P=\left\{k \in \mathbb{N}: \operatorname{dim} \operatorname{ker}\left(\mu_{k}-L\right)=2\right\}$. If for every $k \in P$, $\varphi_{k}, \varphi_{k}^{*} \in \operatorname{ker}\left(\mu_{k}-L\right)$ are such that $\left\{\varphi_{k}, \varphi_{k}^{*}\right\}$ is an orthonormal set and for each $k \in \mathbb{N} \backslash P, \varphi_{k} \in \operatorname{ker}\left(\mu_{k}-L\right)$ is such that $\left\|\varphi_{k}\right\|=1$, then

$$
\Omega=\left\{\varphi_{k}, \varphi_{k}^{*}: k \in P\right\} \cup\left\{\varphi_{k}: k \in \mathbb{N} \backslash P\right\}
$$

is a complete orthonormal system in $L^{2}([a, b])$.
Proof. Let $\left(\lambda_{n}\right)$ and $\left(\phi_{n}\right)$ be the same as in Proposition 5.2. We set $Q=$ $\left\{n \in \mathbb{N}: \operatorname{dim} \operatorname{ker}\left(\lambda_{n}-\Gamma\right)=2\right\}$. Take $n \in Q$ and suppose that for each $m \neq n$, $\phi_{m} \notin \operatorname{ker}\left(\lambda_{n}-\Gamma\right)$. This implies that for every $g \in \operatorname{ker}\left(\lambda_{n}-\Gamma\right)$ and $m \neq n,\left\langle g, \phi_{m}\right\rangle=0$. Thus by completeness of $\left(\phi_{n}\right), g=\left\langle g, \phi_{n}\right\rangle \phi_{n}$ holds for all $g \in \operatorname{ker}\left(\lambda_{n}-\Gamma\right)$, i.e. $\operatorname{dim} \operatorname{ker}\left(\lambda_{n}-\Gamma\right)=1$, which is a contradiction. Consequently, for each $n \in Q$, there exists a unique $m_{n} \in \mathbb{N}$ with $m_{n} \neq n$ such that $\phi_{m_{n}} \in \operatorname{ker}\left(\lambda_{n}-\Gamma\right)$. We show that

$$
\begin{equation*}
\left\{\left\langle f, \varphi_{k}\right\rangle \varphi_{k}+\left\langle f, \varphi_{k}^{*}\right\rangle \varphi_{k}^{*}: k \in P\right\}=\left\{\left\langle f, \phi_{n}\right\rangle \phi_{n}+\left\langle f, \phi_{m_{n}}\right\rangle \phi_{m_{n}}: n \in Q\right\} . \tag{5.1}
\end{equation*}
$$

Let us denote by \mathcal{F}_{1} the first family in (5.1) and by \mathcal{F}_{2} the second one. Let $n \in Q$, then there exists $k_{n} \in P$ such that $\lambda_{n}=1 / \mu_{k_{n}}$. We set $h_{1}=\left\langle f, \phi_{n}\right\rangle \phi_{n}+\left\langle f, \phi_{m_{n}}\right\rangle \phi_{m_{n}}$ and $h_{2}=\left\langle f, \varphi_{k_{n}}\right\rangle \varphi_{k_{n}}+\left\langle f, \varphi_{k_{n}}^{*}\right\rangle \varphi_{k_{n}}^{*}$, then $y=h_{1}+\left(f-h_{1}\right)=h_{2}+\left(f-h_{2}\right)$, $h_{1}, h_{2} \in \operatorname{ker}\left(\lambda_{n}-\Gamma\right)$ and $f-h_{1}, f-h_{2} \in \operatorname{ker}\left(\lambda_{n}-\Gamma\right)^{\perp}$. Therefore, $h_{1}=h_{2}$ and so $h_{1} \in \mathcal{F}_{1}$. In a similar way the opposite inclusion is proved.

On the other hand, it is clear that

$$
\begin{equation*}
\left\{\left\langle f, \varphi_{k}\right\rangle \varphi_{k}: k \in \mathbb{N} \backslash P\right\}=\left\{\left\langle f, \phi_{n}\right\rangle \phi_{n}: n \in \mathbb{N} \backslash Q\right\} \tag{5.2}
\end{equation*}
$$

Let us denote by \mathcal{G}_{1} the first family in (5.2) and by \mathcal{G}_{2} the second one. Then

$$
\begin{aligned}
f & =\sum_{n \in \mathbb{N}}\left\langle f, \phi_{n}\right\rangle \phi_{n}=\sum_{n \in Q}\left\langle f, \phi_{n}\right\rangle \phi_{n}+\sum_{n \in \mathbb{N} \backslash Q}\left\langle f, \phi_{n}\right\rangle \phi_{n} \\
& =\sum_{F \in \mathcal{F}_{2}} F+\sum_{G \in \mathcal{G}_{2}} G=\sum_{F \in \mathcal{F}_{1}} F+\sum_{G \in \mathcal{G}_{1}} G \\
& =\sum_{k \in P}\left(\left\langle f, \varphi_{k}\right\rangle \varphi_{k}+\left\langle f, \varphi_{k}^{*}\right\rangle \varphi_{k}^{*}\right)+\sum_{k \in \mathbb{N} \backslash Q}\left\langle f, \varphi_{k}\right\rangle \varphi_{k} .
\end{aligned}
$$

Theorem 5.5. Suppose that L is symmetric and take $\left(\mu_{k}\right)$ and Ω as in Proposition 5.4. Let $\left(\beta_{n}\right)$ and $\left(\omega_{n}\right)$ be an indexation of $\left(\mu_{k}\right)$ and Ω, respectively, such that $L \omega_{n}=\beta_{n} \omega_{n}$ for all $n \in \mathbb{N}$. If there exists a constant $M \geqslant 0$ such that for each $u \in \operatorname{HK}([a, b])$,

$$
\begin{equation*}
\left|\sum_{k=1}^{n}\left\langle u, \omega_{k}\right\rangle \frac{1}{\beta_{k}} \omega_{k}(x)\right| \leqslant\|u\|_{[a, b]} M \tag{5.3}
\end{equation*}
$$

for all $x \in[a, b]$ and $n \in \mathbb{N}$, then for every $f \in \operatorname{HK}([a, b])$,

$$
\Gamma(f)=\sum_{k=1}^{\infty}\left\langle f, \omega_{k}\right\rangle \frac{1}{\beta_{k}} \omega_{k}
$$

uniformly on $[a, b]$.
Proof. Let $f \in \operatorname{HK}([a, b])$. Since $L^{2}([a, b])$ is a dense subspace of $\operatorname{HK}([a, b])$ with the Alexiewicz semi-norm, it follows that there exists a sequence $\left(f_{p}\right)$ in $L^{2}([a, b])$ such that $\left\|f_{p}-f\right\|_{[a, b]} \rightarrow 0$. By Theorem 4.2, there exists a subsequence $\left(f_{p_{m}}\right)$ of $\left(f_{p}\right)$ and $g \in C([a, b])$ such that $\Gamma\left(f_{p_{m}}\right)$ converges uniformly to g on $[a, b]$. Moreover, by Remark 4.3, $\Gamma:\left(\operatorname{HK}([a, b]),\|\cdot\|_{[a, b]}\right) \rightarrow\left(C([a, b]),\|\cdot\|_{\infty}\right)$ is bounded and so $\Gamma\left(f_{p_{m}}\right) \rightarrow \Gamma(f)$. Therefore $\|g-\Gamma(f)\|_{\infty}=0$ and so $g=\Gamma(f)$. Let $\varepsilon>0$, we consider $m \in \mathbb{N}$ such that

$$
\left|\Gamma\left(f_{p_{m}}\right)(x)-\Gamma(f)(x)\right|<\frac{\varepsilon}{3}
$$

for all $x \in[a, b]$ and

$$
\left\|f_{p_{m}}-f\right\|_{[a, b]}<\frac{\varepsilon}{3 M}
$$

On the other hand, by Proposition 5.4, $\left\{\omega_{1}, \omega_{2}, \ldots\right\}$ is a complete system in $L^{2}([a, b])$. Thus, there exists $N \in \mathbb{N}$ such that for every $n \geqslant N$,

$$
\left\|f_{p_{m}}-\sum_{k=1}^{n}\left\langle f_{p_{m}}, \omega_{k}\right\rangle \omega_{k}\right\|_{2}<\frac{\varepsilon}{3 \max _{x \in[a, b]}\|G(x, \cdot)\|_{2}} .
$$

Therefore, for each $n \geqslant N$ and every $x \in[a, b]$ we have

$$
\begin{aligned}
\mid \Gamma(f)(x) & -\sum_{k=1}^{N}\left\langle f, \omega_{k}\right\rangle \frac{1}{\beta_{k}} \omega_{k}(x)\left|\leqslant\left|\Gamma(f)(x)-\Gamma\left(f_{p_{m}}\right)(x)\right|\right. \\
& +\left|\Gamma\left(f_{p_{m}}\right)(x)-\sum_{k=1}^{N}\left\langle f_{p_{m}}, \omega_{k}\right\rangle \frac{1}{\beta_{k}} \omega_{k}(x)\right|+\left|\sum_{k=1}^{N}\left\langle f_{p_{m}}-f, \omega_{k}\right\rangle \frac{1}{\beta_{k}} \omega_{k}(x)\right| \\
< & \frac{\varepsilon}{3}+\|G(x, \cdot)\|_{2}\left\|f_{p_{m}}-\sum_{k=1}^{N}\left\langle f_{p_{m}}, \omega_{k}\right\rangle \omega_{k}\right\|_{2}+\left\|f_{p_{m}}-f\right\|_{[a, b]} M<\varepsilon .
\end{aligned}
$$

Theorem 5.6. Suppose that L is symmetric and take $\left(\beta_{n}\right)$ and $\left(\omega_{n}\right)$ as in Theorem 5.5. If there exists $M>0$ such that $\left|\omega_{n}(x)\right| \leqslant M$ for all $n \in \mathbb{N}$ and $x \in[a, b]$, and

$$
\sum_{k=1}^{\infty} \frac{1}{\left|\beta_{k}\right|}<\infty
$$

then for every $f \in \operatorname{HK}([a, b])$,

$$
\Gamma(f)=\sum_{k=1}^{\infty}\left\langle f, \omega_{k}\right\rangle \frac{1}{\beta_{k}} \omega_{k}
$$

uniformly on $[a, b]$.
Proof. Due to Theorem 5.5, we only need to prove that the inequallity (5.3) holds. In a way similar to the proof of Theorem 4.6 (1), it follows that $\overline{L([a, b])})^{\|\cdot\|_{[a, b]}=}$ $\operatorname{HK}([a, b])$. Let $u \in \operatorname{HK}([a, b])$, then there exists $\left(s_{n}\right)$ in $L([a, b])$ such that $\left\|s_{n}-u\right\|_{[a, b]} \rightarrow 0$. This implies that

$$
\left|\left|\left\langle s_{n}, \omega_{k}\right\rangle\right|-\left|\left\langle u, \omega_{k}\right\rangle\left\|\leqslant\left|\left\langle s_{n}-u, \omega_{k}\right\rangle\right| \leqslant\right\| s_{n}-u\left\|_{[a, b]}\right\| \omega_{k} \|_{\mathrm{BV}} \underset{n \rightarrow \infty}{\longrightarrow} 0\right.\right.
$$

Therefore $\left|\left\langle u, \omega_{k}\right\rangle\right|=\lim _{n \rightarrow \infty}\left|\left\langle s_{n}, \omega_{k}\right\rangle\right|$. Suppose that $\|u\|_{[a, b]}>0$, then there exists $N \in \mathbb{N}$ such that $\left\|s_{n}\right\|_{1}=\left\|s_{n}\right\|_{[a, b]}<2\|u\|_{[a, b]}$ for every $n \geqslant N$. Thus

$$
\left|\left\langle s_{n}, \omega_{k}\right\rangle\right| \leqslant \int_{a}^{b}\left|s_{n}(t)\right|\left|\omega_{k}(t)\right| \mathrm{d} t \leqslant M\left\|s_{n}\right\|_{1}<2 M\|u\|_{[a, b]}
$$

for all $k \in \mathbb{N}$ and $n \geqslant N$. Consequently, $\left|\left\langle u, \omega_{k}\right\rangle\right|=\lim _{N \leqslant n \rightarrow \infty}\left|\left\langle s_{n}, \omega_{k}\right\rangle\right| \leqslant 2 M\|u\|_{[a, b]}$ for all $k \in \mathbb{N}$, and so

$$
\left|\sum_{k=1}^{n}\left\langle u, \omega_{k}\right\rangle \frac{1}{\beta_{k}} \omega_{k}(x)\right| \leqslant 2 M^{2}\|u\|_{[a, b]} \sum_{k=1}^{\infty} \frac{1}{\left|\beta_{k}\right|} .
$$

Example 5.7. Separated and periodic boundary conditions.
The separated boundary conditions are those that in (3.2) correspond to the matrix

$$
\left(\begin{array}{cccc}
m_{1} & n_{1} & 0 & 0 \tag{5.4}\\
0 & 0 & p_{2} & q_{2}
\end{array}\right)
$$

and the periodic conditions correspond to the matrix

$$
\left(\begin{array}{rrrr}
1 & 0 & -1 & 0 \tag{5.5}\\
0 & 1 & 0 & -1
\end{array}\right) .
$$

If U is defined by the matrix given in (5.4) or in (5.5) then L is a symmetric operator. Indeed, by Proposition 4.4, $\langle L u, \bar{v}\rangle=W_{b}(u, v)-W_{a}(u, v)+\langle u, L \bar{v}\rangle$ for all $u, v \in \mathcal{D}_{*}$. Suppose that separated conditions hold. Thus

$$
\begin{aligned}
m_{1} u(a)+n_{1} u^{\prime}(a) & =0, & m_{1} v(a)+n_{1} v^{\prime}(a) & =0, \\
p_{2} u(b)+q_{2} u^{\prime}(b) & =0, & p_{2} v(b)+q_{2} v^{\prime}(b) & =0 .
\end{aligned}
$$

If $W_{a}(u, v) \neq 0$ then $m_{1}=n_{1}=0$, which contradicts our assumption that the problem (B) has only a trivial solution. Therefore $W_{a}(u, v)=0$. The equality $W_{b}(u, v)=0$ is proved in a similar way. Now, if we consider periodic conditions then we have that $u(a)=u(b), u^{\prime}(a)=u^{\prime}(b), v(a)=v(b)$ and $v^{\prime}(a)=v^{\prime}(b)$. Therefore, $W_{b}(u, v)-W_{a}(u, v)=0$. Thus, in any case, we have $\langle L u, v\rangle=\langle u, L v\rangle$ for all $u, v \in \mathcal{D}_{*}$.

Example 5.8. Let f be a function defined on $[0,1]$ as

$$
f(x)= \begin{cases}\frac{2 \pi}{x} \sin \left(\frac{\pi}{x^{2}}\right), & \text { if } x \in(0,1] \\ 0, & \text { if } x=0\end{cases}
$$

This is an unbounded HK-integrable function on $[0,1]$. Consider the boundary value problem

$$
\left\{\begin{array}{l}
-y^{\prime \prime}+y=f \quad \text { a.e. } \tag{5.6}\\
y(0)=0 \\
y(1)=1
\end{array}\right.
$$

By Theorem 3.2, this problem has a unique solution, moreover from Remark 3.3 and Theorem 3.5, the solution of the problem (5.6) is given by

$$
y(t)=\Gamma(f)(t)-\left(\mathrm{e}-\mathrm{e}^{-1}\right) \mathrm{e}^{-t}+\left(\mathrm{e}-\mathrm{e}^{-1}\right) \mathrm{e}^{t}
$$

The boundary conditions of this problem are separated, thus by Example 5.7, L is symmetric, and for every $\mu \in \sigma_{p}(L), \operatorname{dim} \operatorname{ker}(\lambda-L)=1$. For each $k \in \mathbb{N}$, let $\mu_{k}=1+k^{2} \pi^{2}$ and $\varphi_{k}(x)=\sqrt{2} \sin (k \pi x)$. Then $\sigma_{p}(L) \backslash\{0\}=\left\{\mu_{k}: k \in \mathbb{N}\right\}$, $\sum_{k=1}^{\infty} 1 / \mu_{k}<\infty$ and $\left(\varphi_{k}\right)$ is a sequence in \mathcal{D}_{*} such that for each $k \in \mathbb{N},\left\|\varphi_{k}\right\|_{2}=1$, $L \varphi_{k}=\mu_{k} \varphi_{k}$ and $\left|\varphi_{k}(x)\right| \leqslant 1$ for all $x \in[a, b]$. Consequently, by Theorem 5.6,

$$
y(t)=\sum_{k=1}^{\infty}\left\langle f, \varphi_{k}\right\rangle \frac{1}{\mu_{k}} \varphi_{k}(t)-\left(\mathrm{e}-\mathrm{e}^{-1}\right) \mathrm{e}^{-t}+\left(\mathrm{e}-\mathrm{e}^{-1}\right) \mathrm{e}^{t} .
$$

The function f is not Lebesgue integrable on $[0,1]$. Hence, this example is not covered by any result using the Lebesgue integral. Thus, the results presented in this document are more extensive.

Acknowledgements. The authors are highly grateful for the referee's comments on this paper that led to the improvement of the original manuscript.

References

[1] R. G. Bartle: A Modern Theory of Integration. Graduate Studies in Mathematics 32, AMS, Providence, 2001.
zbl MR doi
[2] H. Brezis: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York, 2011.
[3] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4, AMS, Providence, 1994.
[4] I. Peral: Primer Curso de Ecuaciones en Derivadas Parciales. Addison Wesley, Boston, 1995. (In Spanish.)
[5] S. Sánchez-Perales: The initial value problem for the Schrödinger equation involving the Henstock-Kurzweil integral. Rev. Unión Mat. Argent. 58 (2017), 297-306.
[6] C.Swartz: Norm convergence and uniform integrability for the Henstock-Kurzweil integral. Real Anal. Exch. 24 (1998), 423-426.
[7] E. Talvila: Henstock-Kurzweil Fourier transforms. Ill. J. Math. 46 (2002), 1207-1226.

