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1. Introduction

Let R be an associative ring with 1 and let a ∈ R. The element a is said to be

group invertible if there exists a# ∈ R such that

aa#a = a, a#aa# = a#, aa# = a#a.

The element a# is called a group inverse of a, which is uniquely determined by the

above equations, see [3]. We denote the set of all group invertible elements of R

by R#.

An involution in R is an anti-isomorphism ∗ : R → R, a 7→ a∗ of degree 2, that is,

(a∗)∗ = a, (a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

If a∗a = aa∗, then the element a is called normal.
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An element a† is called the Moore-Penrose inverse (or MP-inverse) of a, see [14], if

aa†a = a, a†aa† = a†, (aa†)∗ = aa†, (a†a)∗ = a†a.

If a† exists, then it is unique, see [6], [7], [8]. Denote by R† the set of all MP-invertible

elements of R. An element a is called a partial isometry if aa∗a = a, that is, a ∈ R†

and a∗ = a†. An element a ∈ R# ∩ R† satisfying a# = a† is said to be EP. We

denote the set of all EP elements of R by REP. Note that if a ∈ R† is normal, then

a ∈ REP, see [9]. An element a is called a normal EP element if a ∈ R† is normal.

We denote the set of all normal EP elements of R by RNEP. Obviously, if a ∈ REP

is normal, then a ∈ RNEP. If a ∈ REP is a partial isometry, we say a is a strongly

EP element. Denote by RSEP the set of all strongly EP elements of R.

In [1], Baksalary, Styan and Trenkler explored various classes of matrices, such as

partial isometries and EP elements, by using the representation of complex matrices

and the matrix rank described in [7]. Recent researches on partial isometries in

rings with involution have produced some interesting findings, see [10], [11]. At the

same time, various characterizations of EP elements in rings with involution were

investigated in [2], [5], [12], [13]. In general, EP elements are considered in the

contexts of semigroups, rings and C∗-algebras.

Motivated by the above results, this work is intended to provide some equiva-

lent conditions for an element to be an EP element and partial isometry in rings

with involution by using solutions of some equations. Normal EP elements and

strongly EP elements, two special classes of EP elements, are also investigated. Let

χa = {a, a#, a†, a∗, (a#)∗, (a†)∗}. We show that a ∈ REP if and only if the equation

axa# + axa∗ = xaa† + a∗ax has at least one solution in χa. Replacing the above

equation by xa∗a = xaa∗, we obtain a ∈ RNEP. We also prove that if the equation

x = xaa∗ or the equation x = xa∗a has at least one solution in χa, then a is a partial

isometry. Finally, we describe an element a to be a strongly EP element by discussing

the solutions of equations x = axa∗, xa†a = xaa∗, axa∗ = xa†a and a∗xa = xaa†

in χa.

2. Results

Lemma 2.1. Let a ∈ R# ∩R†. Then the following conditions are satisfied:

(1) a∗R = a∗a2R = a∗aa#R = (a#)∗R;

(2) Ra = Ra# = Raa∗a# = Ra∗a = Ra∗a∗a = Ra†a∗a;

(3) (a#)∗aa†R = (a#)∗a#a†R = (a#)∗a#a∗R;

(4) a#R = aR and Ra∗ = Ra†.
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P r o o f. We only give the proof of the item (1), the rest of them are left to the

reader to be proven by similar techniques.

a∗R = (aa†a)∗R = a∗aa†R = a∗a2a#a†R ⊆ a∗a2R = a∗aa#a2R ⊆ a∗aa#R ⊆ a∗R

= (a2a#)∗R = (a#)∗a∗a∗R ⊆ (a#)∗R = ((a#)2a)∗R ⊆ a∗R.

�

Lemma 2.2 ([15], Theorem 3.9). Let a ∈ R#. Then a ∈ REP if and only if one

of the following conditions holds:

(1) a∗R ⊆ aR; (2) aR ⊆ a∗R; (3) Ra ⊆ Ra∗; (4) Ra∗ ⊆ Ra.

The following lemma follows from Lemmas 2.1 and 2.2.

Lemma 2.3. Let a ∈ R# ∩R†. Then a ∈ REP if and only if one of the following

conditions holds:

(1) a∗R ⊆ a#R; (2) Ra# ⊆ Ra†; (3) Ra# ⊆ Ra∗; (4) Ra ⊆ Ra†;

(5) Ra† ⊆ Ra; (6) a†R ⊆ aR; (7) Ra† ⊆ Ra; (8) aR ⊆ a†R.

Let a ∈ R# ∩R† and χa = {a, a#, a†, a∗, (a#)∗, (a†)∗}.

We first consider the equation

(2.1) axa# + axa∗ = xaa† + a∗ax.

By discussing the solutions of the equation (2.1) in χa, we give a novel characteriza-

tion of EP elements.

Theorem 2.4. Let a ∈ R# ∩R†. Then a ∈ REP if and only if the equation (2.1)

has at least one solution in χa.

P r o o f. ⇒ The conclusion is proved by writing x = a†.

⇐ (1) If x = a, then a2a# + a2a∗ = a2a† + a∗a2. That is,

a+ a2a∗ = a2a† + a∗a2.

It follows from Lemma 2.1 that

a∗R = a∗a2R = (a+ a2a∗ − a2a†)R ⊆ aR.

Hence a ∈ REP.
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(2) If x = a#, then aa#a# + aa#a∗ = a#aa† + a∗aa#. Indeed that

a# + a#aa∗ = a#aa† + a∗aa#.

By Lemma 2.1, we have

a∗R = a∗aa#R = (a# + a#aa∗ − a#aa†)R ⊆ a#R = aR.

It follows from Lemma 2.2 that a ∈ REP.

(3) If x = a†, then aa†a# + aa†a∗ = a†aa† + a∗aa†. That is,

a# + aa†a∗ = a† + a∗.

We thus get

Ra# = R(a† + a∗ − aa†a∗) ⊆ Ra† +Ra∗ = Ra†

by Lemma 2.1. The fact that a ∈ REP follows from Lemma 2.3.

(4) If x = a∗, then aa∗a# + aa∗a∗ = a∗aa† + a∗aa∗. It is immediate that

aa∗a# + aa∗a∗ = a∗ + a∗aa∗.

Lemma 2.1 now leads to

Ra# = Raa∗a# = R(a∗ + a∗aa∗ − aa∗a∗) ⊆ Ra∗.

Therefore a ∈ REP by Lemma 2.3.

(5) If x = (a#)∗, then a(a#)∗a# + a(a#)∗a∗ = (a#)∗aa† + a∗a(a#)∗. It is easy to

see that

a(a#)∗a# + a(a#)∗a∗ = (a#)∗ + a∗a(a#)∗.

Applying involution to the above equality, we deduce that

(a#)∗a#a∗ + aa#a∗ = a# + a#a∗a.

We conclude from Lemma 2.1 that

a∗R = (a#)∗R = (aa†a#)∗R = (a#)∗aa†R = (a#)∗a#a†R

= (a#)∗a#a∗R = (a# + a#a∗a− aa#a∗)R ⊆ aR.

Hence, a ∈ REP.

(6) If x = (a†)∗, then a(a†)∗a#+a(a†)∗a∗ = (a†)∗aa†+a∗a(a†)∗. Taking involution

of the above equality, we obtain that

(a#)∗a†a∗ + aa†a∗ = aa†a† + a†a∗a.

By Lemma 2.1, we get

Ra = Ra†a∗a = R((a#)∗a†a∗ + aa†a∗ − aa†a†) ⊆ Ra∗ +Ra† = Ra†.

Therefore, a ∈ REP. �
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Many achievements have been made in partial isometry, see [4], [10], [11]. Moti-

vated by some known results, we proceed with this study. Specifically, we establish

the relation between partial isometry and the solutions of equation in χa. Let R be

a ring and w ∈ R. The element w is called a semi-idempotent, if w − w2 ∈ J(R),

where J(R) is the Jacobson radical of R. As usual, denote by E(R) the set of all

idempotents of R.

Theorem 2.5. Let a ∈ R†. Then the following conditions are equivalent:

(1) a is a partial isometry;

(2) aa∗ ∈ E(R);

(3) a∗a ∈ E(R).

P r o o f. (1) ⇒ (2) The equality a∗ = a† implies aa∗ = aa† ∈ E(R).

(2) ⇒ (3) Since aa∗ = aa∗aa∗, pre-multiplying by a†, we know that a∗ = a∗aa∗.

Post-multiplying by a, we get the desired result.

(3) ⇒ (1) From the assumption a∗a = a∗aa∗a, we deduce that

a∗ = a∗aa† = a∗aa∗aa† = a∗aa∗.

It is clear that a†aa∗ = a∗ = a∗aa∗. Post-multiplying by (a†)∗, we get a†a = a∗a. So

a† = a†aa† = a∗aa† = a∗.

�

Theorem 2.6. Let a ∈ R†. Then a is a partial isometry if and only if the following

two conditions hold:

(1) aa∗ is a semi-idempotent;

(2) a† − a∗ ∈ E(R).

P r o o f. The equality a∗ = a† gives

aa∗ − aa∗aa∗ = 0 ∈ J(R) and a† − a∗ = 0 ∈ E(R).

Conversely, write x = aa∗ − aa∗aa∗ ∈ J(R). Then a†aa∗ − a†aa∗aa∗ = a†x, namely

a∗ − a∗aa∗ = a†x. Pre-multiplying by (a†)∗, we obtain that

aa† − aa∗ = (a†)∗a†x.

Pre-multiplying by a†, we get

a† − a∗ = a†(a†)∗a†x.

On the other hand, a† − a∗ ∈ E(R). It is easy to see that a† − a∗ ∈ E(R) ∩ J(R).

This gives a†(a†)∗a†x = 0, because E(R) ∩ J(R) = {0}. Consequently, a† = a∗. �
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Theorem 2.7. Let a ∈ R†. Then a is a partial isometry if and only if aa†−aa∗ ∈

E(R).

P r o o f. ⇒ From the assumption, we know that aa∗ ∈ E(R). It follows that

(aa† − aa∗)(aa† − aa∗) = aa† − aa∗ − aa∗ + aa∗ = aa† − aa∗.

⇐ We first consider the equality

aa† − aa∗ = (aa† − aa∗)2 = aa† − 2aa∗ + aa∗aa∗.

From this equality, we have aa∗ = aa∗aa∗. That is, aa∗ ∈ E(R). By Theorem 2.5, a is

a partial isometry. �

Theorem 2.8. Let a ∈ R# ∩R†. Then a is a partial isometry if and only if the

equation x = xaa∗ has at least one solution in χa.

P r o o f. ⇒ Since a∗ = a†, the conclusion is obtained by taking x = a†.

⇐ (1) If x = a, then a = a2a∗. This clearly forces Ra = Ra2a∗ ⊆ Ra∗. It follows

from Lemma 2.2 that a ∈ REP. Thus,

aa† = a†a = a†a2a∗ = aa∗.

Pre-multiplying by a†, we get

a† = a†aa∗ = a∗.

(2) If x = a#, then a# = a#aa∗. Now, by Lemma 2.1, we have Ra = Ra# =

Ra#aa∗ = Ra∗. From Lemma 2.2, we observe a ∈ REP. Therefore,

a† = a# = a#aa∗ = a†aa∗ = a∗.

(3) If x = a†, then a† = a†aa∗ = a∗.

(4) If x = a∗, then a∗ = a∗aa∗. By Theorem 2.5, we know a† = a∗.

(5) If x = (a#)∗, then (a#)∗ = (a#)∗aa∗. Thus, a† = a∗ by [10], Theorem 2.2.

(6) If x = (a†)∗, then (a†)∗ = (a†)∗aa∗. Applying involution to the above equality,

we deduce that a† = aa∗a†. It follows that a†R = aa∗a†R ⊆ aR and a ∈ REP by

Lemma 2.3. Moreover,

a†a = aa∗a†a = aa∗aa† = aa∗.

That is, aa† = aa∗, which gives a† = a∗. �
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Theorem 2.9. Let a ∈ R# ∩R†. Then a is a partial isometry if and only if the

equation x = xa∗a has at least one solution in χa.

P r o o f. ⇒ Taking x = a, we complete the proof.

⇐ (1) If x = a, then a = aa∗a. By the definition of partial isometry, we see

a† = a∗.

(2) If x = a#, then a# = a#a∗a. Therefore, a† = a∗ follows from [10], Theo-

rem 2.2.

(3) If x = a†, then a† = a†a∗a. Observe that Ra† = Ra†a∗a ⊆ Ra. So, a ∈ REP.

It is straightforward that

a†a = aa† = aa†a∗a = a†aa∗a = a∗a.

Hence, a† = a∗.

(4) If x = a∗, then a∗ = a∗a∗a. According to the above equality, we conclude that

Ra∗ = Ra∗a∗a ⊆ Ra and a = a∗a2, hence that a ∈ REP and finally

a†a = aa† = a∗a2a† = a∗a.

Consequently, a† = a∗.

(5) If x = (a#)∗, then (a#)∗ = (a#)∗a∗a. Applying involution to (a#)∗ =

(a#)∗a∗a, we have a# = a∗aa#. It is understood that a#R = a∗aa#R ⊆ a∗R.

This means that a ∈ REP. We thus get

a† = a# = a∗aa# = a∗aa† = a∗.

(6) If x = (a†)∗, then

(a†)∗ = (a†)∗a∗a = aa†a = a.

Taking involution of the above equality, we obtain a† = a∗. �

Normal EP elements, a special kind of EP elements, are very important for the

development of matrices and operators on Hilbert spaces. Here some new conclusions

about them are proposed.

Lemma 2.10. Let a ∈ R†. Then (aa∗)# = (a†)∗a† = (aa∗)†.

P r o o f. It is obvious. �

Lemma 2.11. Let a ∈ R#∩R†. Then a ∈ RNEP if and only if (a†)∗a† = a†(a†)∗.
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P r o o f. From the hypothesis (a†)∗a† = a†(a†)∗, post-multiplying by a, we see

that (a†)∗ = a†(a†)∗a. Applying involution to the above equality, we deduce that

a† = a∗a†(a†)∗. It is understood that

Ra† = Ra∗a†(a†)∗ ⊆ R(a†)∗ = Ra.

Therefore, a ∈ REP by Lemma 2.3. Post-multiplying a† = a∗a†(a†)∗ by a∗, we have

a†a∗ = a∗a†(a†)∗a∗ = a∗a†(aa†)∗ = a∗a†.

Pre-multiplying by a, we get a∗ = aa∗a†. Post-multiplying by a, we have

a∗a = aa∗a†a = aa∗a#a = aa∗aa# = aa∗aa† = aa∗.

The converse can easily be verified by a# = a† and the double commutativity of the

group inverse. �

Theorem 2.12. Let a ∈ R# ∩ R†. Then a ∈ RNEP if and only if the equation

xa∗a = xaa∗ has at least one solution in χa.

P r o o f. Using the assumption a∗a = aa∗, we assert that xa∗a = xaa∗ for any

x ∈ χa. The converse is obvious by [9], Theorem 2.2 (v), (ii), (xi), (vi), (iv), (x). �

Strongly EP elements are a special kind of EP elements. At the end of this article,

through the research on solutions of some equations in χa, we present some necessary

and sufficient conditions for an element a of a ring with involution to be a strongly

EP element.

Theorem 2.13. Let a ∈ R# ∩ R†. Then a ∈ RSEP if and only if the equation

x = axa∗ has at least one solution in χa.

P r o o f. Writing x = a†, we complete the proof. In fact,

aa†a∗ = a†aa∗ = a∗ = a†.

The converse follows from [10], Theorem 2.3 (xx), (xviii), (v). �

Theorem 2.14. Let a ∈ R# ∩ R†. Then a ∈ RSEP if and only if the equation

xa†a = xaa∗ has at least one solution in χa.
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P r o o f. ⇒ The conclusion holds if we take x = a†.

⇐ (1) If x = a, then a = aa†a = a2a∗. It follows that a ∈ RSEP by [10],

Theorem 2.3 (xx).

(2) If x = a#, then a#a†a = a#aa∗. Then a ∈ RSEP follows from [10], Theo-

rem 2.3 (v).

(3) If x = a†, then a†a†a = a†aa∗ = a∗. It is clear that Ra∗ = Ra†a†a ⊆ Ra,

which yields a ∈ REP. The above equality implies

a∗ = a†a†a = a#a#a = a# = a†.

(4) If x = a∗, then a∗a†a = a∗aa∗. Applying involution to a∗a†a = a∗aa∗, we get

a†a2 = aa∗a. It is immediate that

aR = aa∗aR = a†a2R ⊆ a†R,

which gives a ∈ REP. We have aa∗ ∈ E(R), because a = a†a2 = aa∗a. Hence

a† = a∗.

(5) If x = (a#)∗, then (a#)∗a†a = (a#)∗aa∗. Taking involution of the above

equality, we deduce that a†aa# = aa∗a#. It is easy to see that

a†R = a†aa#aa†R ⊆ a†aa#R = aa∗a#R ⊆ aR,

which leads to a ∈ REP. On the other hand,

a† = a†aa† = a†aa# = aa∗a#.

Post-multiplying by a, we verify that

a†a = aa∗a#a = aa∗a†a = aa∗.

This clearly forces aa† = aa∗. That is, a† = a∗.

(6) If x = (a†)∗, then (a†)∗a†a = (a†)∗aa∗. Thus, a ∈ RSEP by [10], Theo-

rem 2.3 (xvi). �

Theorem 2.15. Let a ∈ R# ∩ R†. Then a ∈ RSEP if and only if the equation

axa∗ = xa†a has at least one solution in χa.

P r o o f. ⇒ The result holds if we take x = a. In fact,

a2a∗ = a2a† = a2a# = aa#a = aa†a.
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⇐ (1) If x = a, then a2a∗ = aa†a = a. We thus get Ra = a2a∗ ⊆ Ra∗, which

shows that a ∈ REP. It follows that

aa† = aa# = a#a = a#a2a∗ = aa∗.

Therefore, a† = a∗.

(2) If x = a#, then aa#a∗ = a#a†a. Observe that

Ra = Raa†a = Ra2a#a†a ⊆ Ra#a†a = Raa#a∗ ⊆ Ra∗,

which yields a ∈ REP. According to the above, we have

aa∗ = aa#aa∗ = aa#a†a = aa#a#a = aa# = aa†.

Hence a† = a∗.

(3) If x = a†, then aa†a∗ = a†a†a. Taking involution of the equality, we know

a2a† = a†a(a†)∗. It is evident that

aR = a2a#R = a2a†aa#R ⊆ a2a†R = a†a(a†)∗R ⊆ a†R,

which proves that a ∈ REP. It remains to show that a† = a∗. We need only to prove

that aa∗ = aa†. In fact,

aa∗ = a2a#a∗ = a2a†a∗ = aa†a†a = aa#a#a = aa# = aa†.

(4) If x = a∗, then

aa∗a∗ = a∗a†a = a∗(a†a)∗ = (a†a2)∗.

Applying involution to the above equality, we assert a†a2 = a2a∗. It is easy to check

that

Ra = Ra#a2 = Ra#aa†a2 ⊆ Ra†a2 = Ra2a∗ ⊆ Ra∗,

which implies a ∈ REP. Moreover,

aa† = aa# = a#a = (a#)2a2 = a#a†a2 = a#a2a∗ = aa∗.

This means that a† = a∗.

(5) If x = (a#)∗, then a(a#)∗a∗ = (a#)∗a†a. Taking involution of the equality, we

deduce aa#a∗ = a†aa#. Pre-multiplying by a, we see that

aa∗ = a2a#a∗ = aa†aa# = aa#.
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It is straightforward that

Ra# = Ra#aa# ⊆ Raa# = Raa∗ ⊆ Ra∗,

which gives a ∈ REP. Furthermore, aa∗ = aa# = aa†. Consequently, a† = a∗.

(6) If x = (a†)∗, then

a(a†)∗a∗ = (a†)∗a†a = (a†aa†)∗ = (a†)∗.

On the other hand, a(a†)∗a∗ = a2a†. That is, a2a† = (a†)∗. Pre-multiplying by a∗,

we find out that a∗a2a† = a∗(a†)∗ = a†a. It is evident that

Ra = Raa†a ⊆ Ra†a = Ra∗a2a† ⊆ Ra†,

which yields a ∈ REP. Next, we only need to show that aa∗ = aa†. In fact,

aa† = a∗a2a† = a∗a2a# = a∗a.

�

Theorem 2.16. Let a ∈ R# ∩ R†. Then a ∈ RSEP if and only if the equation

a∗xa = xaa† has at least one solution in χa.

P r o o f. ⇒ Taking x = a, we complete the proof. In fact,

a∗a2 = a#a2 = a2a# = a2a†.

⇐ (1) If x = a, then a∗a2 = a2a†. It is clear that

Ra† = Ra†aa† ⊆ Raa† = Ra#a2a† ⊆ Ra2a† = Ra∗a2 ⊆ Ra,

which shows that a ∈ REP. To the dual with a† = a∗, we note that

a∗a = a∗a2a# = a2a†a# = a2(a#)2 = a#a = a†a.

(2) If x = a#, then a∗a#a = a#aa†. It is obvious that

Ra = Raa#a = Ra2(a#)2a ⊆ Ra(a#)2a = Raa†a(a#)2a

= R(a†)∗a∗a#a ⊆ Ra∗a#a = Ra#aa† ⊆ Ra†,
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which implies a ∈ REP. We also have

a∗a = a∗a#a2 = a#aa†a = a#a = a†a.

Consequently, a∗ = a†.

(3) If x = a†, then a∗a†a = a†aa† = a†. It follows that Ra† = Ra∗a†a ⊆ Ra,

which gives a ∈ REP. Furthermore,

a†a = a∗a†aa = a∗a#a2 = a∗a.

Hence a† = a∗.

(4) If x = a∗, then

a∗a∗a = a∗aa† = a∗(aa†)∗ = (aa†a)∗ = a∗.

It is obvious that a ∈ RSEP by [10], Theorem 2.3 (xix).

(5) If x = (a#)∗, then

a∗(a#)∗a = (a#)∗aa† = (a#)∗(aa†)∗ = (aa†a#)∗.

It follows from [10], Theorem 2.3 (vi) that a ∈ RSEP.

(6) If x = (a†)∗, then a∗(a†)∗a = (a†)∗aa†. On the other hand, a†a2 = a∗(a†)∗a.

Thus, a†a2 = (a†)∗aa†. Pre-multiplying by a∗, we get

a∗a†a2 = a∗(a†)∗aa† = a†a2a†.

It is evident that

Ra† = Ra†aa† ⊆ Raa† = Ra#a2a† ⊆ Ra2a†

= Raa†a2a† ⊆ Ra†a2a† = Ra∗a†a2 ⊆ Ra,

which proves that a ∈ REP. Moreover,

a∗a = a∗a#a2 = a∗a†a2 = a†a2a† = a#a2a# = a#a = a†a.

This means a∗ = a†. �

Applying involution to the equations in Theorems 2.15 and 2.16, we have the

following corollaries.

Corollary 2.17. Let a ∈ R# ∩ R†. Then a ∈ RSEP if and only if the equation

axa∗ = a†ax has at least one solution in χa.
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Corollary 2.18. Let a ∈ R# ∩ R†. Then a ∈ RSEP if and only if the equation

a∗xa = aa†x has at least one solution in χa.
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