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Abstract. We discuss dual Ramsey statements for several classes of finite relational
structures (such as finite linearly ordered graphs, finite linearly ordered metric spaces and
finite posets with a linear extension) and conclude the paper with another rendering of the
Nešetřil-Rödl Theorem for relational structures. Instead of embeddings which are crucial for
“direct” Ramsey results, for each class of structures under consideration we propose a special
class of quotient maps and prove a dual Ramsey theorem in such a setting. Although our
methods are based on reinterpreting the (dual) Ramsey property in the language of category
theory, all our results are about classes of finite structures.
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1. Introduction

Generalizing the classical results of Ramsey from the late 1920’s, the structural

Ramsey theory originated at the beginning of the 1970’s in a series of papers, see [8].

We say that a class K of finite structures has the Ramsey property if the following

holds: for any number k > 2 of colors and all A,B ∈ K such that A embeds

into B there is a C ∈ K such that no matter how we color the copies of A in C

with k colors, there is a monochromatic copy B′ of B in C (that is, all the copies

of A that fall within B′ are colored by the same color). In this parlance the Finite

Ramsey Theorem takes the following form:

Theorem 1.1 (Finite Ramsey Theorem [17]). The class of all finite chains has

the Ramsey property.
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Many natural classes of structures expanded with linear orders have the Ram-

sey property. For example, the class of all finite linearly ordered graphs (V,E,⊏),

where (V,E) is a finite graph and ⊏ is a linear order on the set V of vertices of the

graph has the Ramsey property, see [1], [10]. The same is true for metric spaces,

see [9]. In case of finite posets we consider the class of all finite linearly ordered

posets (P,�,⊏), where (P,�) is a finite poset and ⊏ is a linear order on P which

extends �, see [10]. One of the cornerstones of the structural Ramsey theory is the

Nešetřil-Rödl Theorem.

Theorem 1.2 (Nešetřil-Rödl Theorem [1], [10], [12]). The class of all finite lin-

early ordered relational structures all having the same, fixed, relational type has the

Ramsey property.1

The fact that this result has been proved independently by several research teams,

and then reproved in various ways and in various contexts, see [1], [12], [13], [14],

clearly demonstrates the importance and justifies the distinguished status this result

has in discrete mathematics. The search for a dual version of the Nešetřil-Rödl

Theorem was and still is an important research direction and several versions of the

dual of the Nešetřil-Rödl Theorem have been published, most notably by Spencer

in [20], Prömel in [14], Prömel and Voigt in [16], Frankl, Graham, Rödl in [3] and

recently by Solecki in [19].

In this paper we are interested in dual Ramsey statements for classes of finite

relational structures and our primary source of motivation is the Finite Dual Ramsey

Theorem of Graham and Rothschild, see [4].

Theorem 1.3 (Finite Dual Ramsey Theorem [4], [11]). For all positive inte-

gers k, a, m there is a positive integer n such that for every n-element set C and

every k-coloring of the set
[
C

a

]
of all partitions of C with exactly a blocks there is

a partition β of C with exactly m blocks such that the set of all partitions from
[
C

a

]

which are coarser than β is monochromatic.

Since each partition of a finite linearly ordered set can be uniquely represented by

the rigid surjection which takes each element of the underlying set to the minimum

of the block it belongs to (see Subsection 2.1 for the definition of a rigid surjection),

Finite Dual Ramsey Theorem is a structural Ramsey result about finite chains and

special surjections between them. The major insight here is that instead of embed-

dings which are crucial for “direct” Ramsey results, special classes of surjective maps

play the key role in proving dual Ramsey results.

1Note that this is a restricted version of the Nešetřil-Rödl Theorem which does not account
for subclasses defined by forbidden substructures.
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The basic setup of this paper relates strongly to [14], where the Nešetřil-Rödl The-

orem is interpreted in the language of category theory using the concept of indexed

categories. The main result of [14] is the partition theorem for combinatorial cubes.

In this sense it can be considered as a dual of the Nešetřil-Rödl Theorem (without

forbidden substructures): objects are combinatorial cubes with selected combinato-

rial subspaces and morphisms preserve the types of the selected subspaces. In this

paper, however, we consider a dual of the Nešetřil-Rödl Theorem spelled out in the

language of relational structures and base our approach on [7] which can be thought

of as a simplified version of the approach taken in [14].

In Section 2 we give a brief overview of standard notions referring to linear orders,

total quasiorders and first order structures, and prove several technical results.

In Section 3 we provide basics of category theory and give a categorical reinterpre-

tation of the Ramsey property. We define the Ramsey property and the dual Ramsey

property for a category and illustrate these notions using some well-known examples.

As our concluding example we prove a dual Ramsey theorem for the category of finite

linearly ordered metric spaces and nonexpansive rigid surjections.

In Section 4 we prove dual Ramsey theorems for the following categories: the

category EDigsrq whose objects are finite reflexive digraphs with linear extensions

and morphisms are special rigid quotient maps, the category EPossrq whose objects

are finite posets with linear extensions and morphisms are special rigid quotient

maps, the category OHgrsrq(r), r > 2, whose objects are finite linearly ordered re-

flexive r-uniform hypergraphs and morphisms are special rigid quotient maps, the

category OGrasrq whose objects are finite linearly ordered reflexive graphs and mor-

phisms are special rigid quotient maps, and a few more subcategories of OGrasrq.

In section 5 we prove that the class of all finite linearly ordered relational struc-

tures all having the same, fixed, relational type has the dual Ramsey property with

respect to a special class of rigid quotient maps. Note again that this is a restricted

formulation of the Nešetřil-Rödl Theorem which does not account for subclasses

defined by forbidden “quotients”.

The paper concludes with Section 6, where we prove that the category of finite

linearly ordered reflexive tournaments and rigid surjective homomorphisms does not

have the dual Ramsey property.

2. Preliminaries

In order to fix notation and terminology, in this section we give a brief overview of

standard notions referring to linear orders, total quasiorders, first-order structures

and category theory.
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2.1. Linear orders. A chain is a pair A = (A,⊏), where ⊏ is a linear order

on A. In case A is finite we simply write A = {a1 ⊏ a2 ⊏ . . . ⊏ an}. Following [15]

we say that a surjection f : {a1 ⊏ a2 ⊏ . . . ⊏ an} → {b1 ⊏ b2 ⊏ . . . ⊏ bk} between

two finite chains is rigid if

min f−1(x) ⊏ min f−1(y) whenever x ⊏ y.

Equivalently, a rigid surjection maps each initial segment of {a1 ⊏ a2 ⊏ . . . ⊏ an}

onto an initial segment of {b1 ⊏ b2 ⊏ . . . ⊏ bk}; other than that, a rigid surjection is

not required to respect the linear orders in question.

Let (Ai,⊏i) be finite chains, 1 6 i 6 k. The linear orders ⊏i, 1 6 i 6 k, induce

the anti-lexicographic order ⊏alex on A1 × . . .×Ak by

(a1, . . . , ak) ⊏alex (b1, . . . , bk) if and only if there is an s ∈ {1, . . . , k}

such that as ⊏s bs, and aj = bj for all j > s.

In particular, every finite chain (A,⊏) induces the anti-lexicographic order ⊏alex

on An, n > 2. Moreover, every linear order ⊏ on A induces the anti-lexicographic

order ⊏alex on P(A) as follows. For X ∈ P(A) let ~X ∈ {0, 1}|A| denote the charac-

teristic vector of X . (As A is linearly ordered, we can assign a string of 0’s and 1’s

to each subset of A.) Then for X,Y ∈ P(A) we let

X ⊏alex Y if and only if ~X <alex
~Y ,

where < is the usual ordering 0 < 1. It is easy to see that for X,Y ∈ P(A):

X ⊏alex Y if and only if X ⊂ Y, or max
A

(X \ Y ) ⊏ max
A

(Y \X)

in case X and Y are incomparable.

2.2. Total quasiorders. A total quasiorder is a reflexive and transitive binary

relation such that each pair of elements of the underlying set is comparable. Each

total quasiorder σ on a set I induces an equivalence relation ≡σ on I and a linear

order ≺σ on I/ ≡σ in a natural way: i ≡σ j if (i, j) ∈ σ and (j, i) ∈ σ, while

(i/ ≡σ) ≺σ (j/ ≡σ) if (i, j) ∈ σ and (j, i) /∈ σ.

For the considerations that follow we need to linearly order all the total quasiorders

on the same set and have to discuss functions that in a way preserve certain properties

of quasiorders. The rest of this subsection is technical.
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Definition 2.1. Let σ and τ be two distinct total quasiorders on I ={1, 2, . . . , r}.

Let
I/ ≡σ = {S1 <alex S2 <alex . . . <alex Sk},

I/ ≡τ = {T1 <alex T2 <alex . . . <alex Tl}.

(Here, <alex stands for the anti-lexicographic ordering of P({1, 2, . . . , r}) induced by

the usual ordering of the integers.)

We put σ ⊳ τ if k < l, or k = l and (S1, S2, . . . , Sk) (<alex)alex (T1, T2, . . . , Tk).

(Here, (<alex)alex denotes the anti-lexicographic ordering on P({1, 2, . . . , r})k in-

duced by <alex on P({1, 2, . . . , r}).)

Let (A,⊏) be a linearly ordered set, let r be a positive integer, let I = {1, . . . , r}

and let ā = (a1, . . . , ar) ∈ Ar. Then

tp(ā) = {(i, j) : ai ⊑ aj}

is a total quasiorder on I which we refer to as the type of ā. Assume that σ = tp(ā).

Let s = |I/≡σ| and let i1, . . . , is be the representatives of the classes of ≡σ enumer-

ated so that (i1/ ≡σ) ≺σ . . . ≺σ (is/ ≡σ). Then

mat(ā) = (ai1 , . . . , ais)

is the matrix of ā. Note that ai1 ⊏ . . . ⊏ ais .

For a total quasiorder σ on I such that |I/ ≡σ| = s and an arbitrary s-tuple

b̄ = (b1, . . . , bs) ∈ As define an r-tuple

tup(σ, b̄) = (a1, . . . , ar) ∈ Ar

as follows. Let i1, . . . , is be the representatives of the classes of ≡σ enumerated so

that (i1/ ≡σ) ≺σ . . . ≺σ (is/ ≡σ). Then put

aη = bξ if and only if η ≡σ iξ.

(In other words, we put b1 on all the entries in i1/ ≡σ, we put b2 on all the entries

in i2/ ≡σ, and so on.)

It is a matter of routine to check that for every tuple ā and every tuple b̄ =

(b1, b2, . . . , bs) such that b1 ⊏ b2 ⊏ . . . ⊏ bs we have

(2.1) tp(tup(σ, b̄)) = σ, mat(tup(σ, b̄)) = b̄, and tup(tp(ā),mat(ā)) = ā.

Definition 2.2. Let (A,⊏) be a finite chain and let n > 2. Define the

linear order ⊏sal on An as follows (“sal” in the subscript stands for “special
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anti-lexicographic”). Take any ā, b̄ ∈ An, where ā = (a1, a2, . . . , an) and b̄ =

(b1, b2, . . . , bn).

⊲ If tp(ā) ⊳ tp(b̄) then ā ⊏sal b̄.

⊲ If tp(ā) = tp(b̄) and {a1, a2, . . . , an} 6= {b1, b2, . . . , bn} then ā ⊏sal b̄ if and only if

{a1, a2, . . . , an} ⊏alex {b1, b2, . . . , bn}.

(Note that tp(ā) = tp(b̄) and {a1, a2, . . . , an} = {b1, b2, . . . , bn} imply ā = b̄.)

Lemma 2.3. Let (A,⊏) be a finite chain and let n > 2 be an integer.

(a) For all ā, b̄ ∈ An we have that ā = b̄ if and only if mat(ā) = mat(b̄) and

tp(ā) = tp(b̄).

(b) Assume that tp(ā) = tp(b̄) for some ā, b̄ ∈ An. Then ā ⊏sal b̄ if and only if

mat(ā) ⊏sal mat(b̄).

(c) Assume that tp(ā1) = tp(ā2) = . . . = tp(āk) for some ā1, ā2, . . . , āk ∈ An.

Then min{mat(ā1),mat(ā2), . . . ,mat(āk)} = mat(min{ā1, ā2, . . . , āk}), where

both minima are taken with respect to ⊏sal.

P r o o f. Case (a) is obvious, and case (c) follows directly from case (b). So, let us

show case (b). Let ā = (a1, a2, . . . , an) and b̄ = (b1, b2, . . . , bn). If {a1, a2, . . . , an} =

{b1, b2, . . . , bn} then tp(ā) = tp(b̄) implies ā = b̄. Assume that {a1, a2, . . . , an} 6=

{b1, b2, . . . , bn}. Let mat(ā) = (ai1 , ai2 , . . . , air ) for some indices i1, i2, . . . , ir.

Then tp(ā) = tp(b̄) implies that mat(b̄) = (bi1 , bi2 , . . . , bir ). Note, also, that

{a1, a2, . . . , an} = {ai1 , ai2 , . . . , air} and that {b1, b2, . . . , bn} = {bi1 , bi2 , . . . , bir}.

Therefore, ā ⊏sal b̄ if and only if {a1, a2, . . . , an} ⊏alex {b1, b2, . . . , bn} if and only if

{ai1 , ai2 , . . . , air} ⊏alex {bi1 , bi2 , . . . , bir} if and only if mat(ā) ⊏sal mat(b̄). �

Lemma 2.4. Let (A,⊏) and (B,⊏′) be finite chains. For every n > 2 and every

mapping f : A→ B define f̂ : An → Bn by

f̂(a1, a2, . . . , an) = (f(a1), f(a2), . . . , f(an)).

(a) For every total quasiorder σ such that |A/ ≡σ| = n and every ā ∈ An we have

that tup(σ, f̂ (ā)) = f̂(tup(σ, ā)).

(b) Take any ā = (a1, a2, . . . , an) ∈ An and assume that ai ⊏ aj ⇒ f(ai) ⊏
′ f(aj)

for all i and j. Then tp(f̂(ā)) = tp(ā) and mat(f̂(ā)) = f̂(mat(ā)).

P r o o f. Both (a) and (b) are straightforward. �

Lemma 2.5. Let (A,⊏) and (B,⊏′) be finite chains. Let n > 2 be an integer and

let θ ⊆ An and θ′ ⊆ Bn be relations. Let σ be a total quasiorder on {1, 2, . . . , n},
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let r = |{1, 2, . . . , n}/ ≡σ| > 2 and let

̺ = {mat(x̄) : x̄ ∈ θ and tp(x̄) = σ} ⊆ Ar,

̺′ = {mat(x̄) : x̄ ∈ θ′ and tp(x̄) = σ} ⊆ Br.

Furthermore, let f : A→ B be a mapping such that

⊲ for every (x1, x2, . . . , xn) ∈ θ, if f↾{x1,x2,...,xn} is not a constant map then xi ⊏

xj ⇒ f(xi) ⊏
′ f(xj) for all i and j, and

⊲ f̂↾θ : θ → θ′ is well defined (that is, f̂(x̄) ∈ θ′ for all x̄ ∈ θ) and surjective.

Then f̂↾̺ : ̺ → ̺′ is well defined, surjective, and for all p̄ ∈ θ′ such that tp(p̄) = σ

we have that min(f̂↾
−1

̺ (mat(p̄))) = mat(min f̂↾
−1

θ (p̄)), where both the minima are

taken with respect to ⊏sal.

P r o o f. For notational convenience let f̂θ = f̂↾θ and f̺̂ = f̂↾̺. Lemmas 2.3

and 2.4 ensure that f̺̂ : ̺ → ̺′ is well defined and surjective. Take any p̄ ∈ θ′

such that tp(p̄) = σ and let f̂−1
θ (p̄) = {ā1, ā2, . . . , āk}. Let us first show that

f̂−1
̺ (mat(p̄)) = {mat(ā1),mat(ā2), . . . ,mat(āk)}.

⊇: Take any i ∈ {1, 2, . . . , k}. Let us first show that tp(āi) = σ for all i. Since

f̂(āi) = p̄ and r > 2 it follows that f↾{ai
1,a

i
2,...,a

i
n}
is not a constant map. Then by the

assumption (the first item above) we have that ais ⊏ ait ⇒ f(ais) ⊏
′ f(ait) for all s

and t. This now yields that tp(āi) = tp(f̂(āi)). Since f̂(āi) = f̂θ(ā
i) = p̄, it follows

that tp(āi) = tp(p̄) = σ. Applying Lemma 2.4 (b) once again gives f̺̂(mat(āi)) =

mat(f̂θ(ā
i)) = mat(p̄).

⊆: Take any ū ∈ f̂−1
̺ (mat(p̄)). Then ū = mat(x̄) for some x̄ ∈ θ such that

tp(x̄) = σ, so mat(p̄) = f̺̂(ū) = f̺̂(mat(x̄)) = mat(f̂θ(x̄)) (see Lemma 2.4). On

the other hand, tp(p̄) = σ = tp(x̄) = tp(f̂θ(x̄)) using Lemma 2.4 once more. So,

mat(p̄) = mat(f̂θ(x̄)) and tp(p̄) = tp(f̂θ(x̄)) whence, by Lemma 2.3, p̄ = f̂θ(x̄). In

other words, x̄ ∈ f̂−1
θ (p̄) whence x̄ = āi for some i. Then ū = mat(x̄) = mat(āi) for

some i.

Let us now show that min(f̂−1
̺ (mat(p̄))) = mat(min f̂−1

θ (p̄)). Lemma 2.4 yields

that tp(ā1) = tp(ā2) = . . . = tp(āk) so by Lemma 2.3 we have that

min(f̂−1
̺ (mat(p̄))) = min{mat(ā1),mat(ā2), . . . ,mat(āk)}

= mat(min{ā1, ā2, . . . , āk}) = mat(min f̂−1
θ (p̄)).

This concludes the proof. �

2.3. Structures. Let Θ be a set of relational symbols. A Θ-structure A=(A,ΘA)

is a set A together with a setΘA of relations on A which are interpretations of the cor-

responding symbols in Θ. The interpretation of a symbol θ ∈ Θ in the Θ-structure A
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is denoted by θA. The underlying sets of structures A,B, C, . . . are always denoted by

the corresponding roman letter A,B,C, . . ., respectively. A structure A = (A,ΘA)

is finite if A is a finite set. A structure A = (A,ΘA) is reflexive if the following holds

for every θ ∈ Θ, where r = ar(θ):

∆A,r = {(a, a, . . . , a︸ ︷︷ ︸
r

) : a ∈ A} ⊆ θA.

In case of reflexive structures unary relations play no role because every reflexive

unary relation is trivial.

Let A and B be Θ-structures. A mapping f : A→ B is a homomorphism from A

to B, and we write f : A → B, if

(a1, . . . , ar) ∈ θA ⇒ (f(a1), . . . f(ar)) ∈ θB

for each θ ∈ Θ and a1, . . . , ar ∈ A. A homomorphism f : A → B is an embedding

if f is injective and

(f(a1), . . . f(ar)) ∈ θB ⇔ (a1, . . . , ar) ∈ θA

for each θ ∈ Θ and a1, . . . , ar ∈ A. A homomorphism f : A → B is a quotient

map if f is surjective and for every θ ∈ Θ and (b1, . . . , br) ∈ θB there exists an

(a1, . . . , ar) ∈ θA such that f(ai) = bi, 1 6 i 6 r.

Let Θ be a relational language and let ⊏/∈ Θ be a binary relational symbol. A

linearly ordered Θ-structure is a (Θ∪{⊏})-structureA = (A,ΘA,⊏A), where (A,ΘA)

is a Θ-structure and ⊏A is a linear order on A. A linearly ordered Θ-structure

A = (A,ΘA,⊏A) is reflexive if (A,ΘA) is a reflexive Θ-structure.

3. Category theory and the Ramsey property

In order to specify a category C one has to specify a class of objects Ob(C), a set

of morphisms homC(A,B) for all A,B ∈ Ob(C), the identity morphism idA for all

A ∈ Ob(C), and the composition of morphisms · so that idB · f = f · idA = f

for all f ∈ homC(A,B), and (f · g) · h = f · (g · h) whenever the compositions are

defined. A morphism f ∈ homC(B,C) is monic or left cancellable if f · g = f · h

implies g = h for all g, h ∈ homC(A,B), where A ∈ Ob(C) is arbitrary. A morphism

f ∈ homC(B,C) is epimorphism or right cancellable if g · f = h · f implies g = h for

all g, h ∈ homC(C,D), where D ∈ Ob(C) is arbitrary. A morphism f ∈ homC(A,B)

is invertible if there exists a morphism g ∈ homC(B,A) such that g · f = idA

and f · g = idB. Let AutC(A) denote the set of all the invertible morphisms in

homC(A,A). An object A ∈ Ob(C) is rigid if AutC(A) = {idA}.

560



Example 3.1. Let Chemb denote the category whose objects are finite chains

and whose morphisms are embeddings.

Example 3.2. By Rel(Θ,⊏) we denote the category whose objects are finite

linearly ordered Θ-structures and whose morphisms are embeddings.

Example 3.3. The composition of two rigid surjections is again a rigid surjec-

tion, so finite chains and rigid surjections constitute a category which we denote

by Chrs.

For a categoryC, the opposite category, denoted by Cop, is the category whose ob-

jects are the objects of C, morphisms are formally reversed so that homCop(A,B) =

homC(B,A), and so is the composition f ·Cop g = g ·C f .

A category D is a subcategory of a category C if Ob(D) ⊆ Ob(C) and

homD(A,B) ⊆ homC(A,B) for all A,B ∈ Ob(D). A category D is a full sub-

category of a category C if Ob(D) ⊆ Ob(C) and homD(A,B) = homC(A,B) for all

A,B ∈ Ob(D).

A functor F : C → D from a category C to a category D maps Ob(C) to Ob(D)

and maps morphisms of C to morphisms of D so that F (f) ∈ homD(F (A), F (B))

whenever f ∈ homC(A,B), F (f · g) = F (f) · F (g) whenever f · g is defined, and

F (idA) = idF (A).

Categories C and D are isomorphic if there exist functors F : C → D and G :

D → C which are inverses of one another both on objects and on morphisms.

The product of categories C1 and C2 is the category C1 ×C2 whose objects are

pairs (A1, A2), where A1 ∈ Ob(C1) and A2 ∈ Ob(C2), morphisms are pairs (f1, f2) :

(A1, A2) → (B1, B2), where f1 : A1 → B1 is a morphism in C1 and f2 : A2 → B2

is a morphism in C2. The composition of morphisms is carried out componentwise:

(f1, f2) · (g1, g2) = (f1 · g1, f2 · g2).

Let C be a category and S a set. We say that S = X1∪ . . .∪Xk is a k-coloring of S

if Xi ∩ Xj = ∅ whenever i 6= j. Equivalently, a k-coloring of S is any map χ : S →

{1, 2, . . . , k}. For an integer k > 2 and A,B,C ∈ Ob(C) we write C → (B)Ak to

indicate that for every k-coloring homC(A,C) = X1∪. . .∪Xk there is an i ∈ {1, . . . , k}

and a morphism w ∈ homC(B,C) such that w · homC(A,B) ⊆ Xi.

Definition 3.4. A categoryC has the Ramsey property if for every integer k > 2

and all A,B ∈ Ob(C) such that homC(A,B) 6= ∅ there is a C ∈ Ob(C) such that

C → (B)Ak . A category C has the dual Ramsey property if Cop has the Ramsey

property.

Clearly, if C and D are isomorphic categories and one of them has the (dual)

Ramsey property, then so does the other. Actually, even more is true: if C and D

are equivalent categories and one of them has the (dual) Ramsey property, then
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so does the other. We refrain from providing the definition of (the fairly standard

notion of) categorical equivalence as we will have no use for it in this paper, and for

the proof we refer the reader to [7]. Nevertheless, this fact is important because it

demonstrates that the Ramsey property is a genuine categorical property.

Example 3.5. The category Chemb of finite chains and embeddings has the

Ramsey property. This is just a reformulation of the Finite Ramsey Theorem (see

Theorem 1.1).

Example 3.6. The category Rel(Θ,⊏) has the Ramsey property. This is the

Nešetřil-Rödl Theorem (see Theorem 1.2).

Example 3.7. The category Chrs of finite chains and rigid surjections has the

dual Ramsey property. This is just a reformulation of the Finite Dual Ramsey

Theorem (see Theorem 1.3; see also the discussion in the Introduction.)

One of the main benefits of considering the Ramsey property in the setting of

category theory is the Duality Principle which is a metatheorem of category theory.

The Duality Principle. If a statement ϕ is true in a category C, then the opposite

statement ϕop is true in C
op.

For a detailed technical discussion and the precise definition of ϕop we refer the

reader to [2]. Here, however, we would like to stress that the Duality Principle

saves quite a lot of work, in particular in situations, where we want to reuse the

existing Ramsey-type results to infer dual Ramsey-type results. For example, in [7],

Proposition 2.3 we proved that if C is a category, where morphisms are monic and C

has the Ramsey property then all the objects in C are rigid. As an immediate

consequence of the Duality Principle we have the following corollary (bearing in

mind that rigidity is a self-dual notion).

Corollary 3.8. Let C be a category, where morphisms are epimorphisms. If C

has the dual Ramsey property then all the objects in C are rigid.

As another example, the following result is a categorical rendering of the Product

Ramsey Theorem for Finite Structures of Sokić, see [18].

Theorem 3.9 ([5]). Let C1 and C2 be categories such that homCi
(A,B) is finite

for all A,B ∈ Ob(Ci), i ∈ {1, 2}. If C1 and C2 both have the Ramsey property

then C1 ×C2 has the Ramsey property.

The following result now follows for free by The Duality Principle.

Corollary 3.10. Let C1 and C2 be categories such that homCi
(A,B) is finite for

all A,B ∈ Ob(Ci), i ∈ {1, 2}. If C1 and C2 both have the dual Ramsey property

then C1 ×C2 has the dual Ramsey property.
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We will need this corollary in the proof of Proposition 5.3. We will also need the

following simple technical result (actually its categorical dual).

Lemma 3.11. Let C be a category, let A,B,C,D ∈ Ob(C) be arbitrary and let

k > 2 be an integer. If C → (B)Ak and hom(C,D) 6= ∅ then D → (B)Ak .

As our concluding example we prove the dual Ramsey theorem for linearly ordered

metric spaces. A linearly ordered metric space is a triple M = (M,d,⊏), where

d : M2 → R is a metric on M and ⊏ is a linear order on M . For a positive integer n

and a positive real number δ let

Mn,δ = ({1, 2, . . . , n}, dδn, <)

be the linearly ordered metric space, where < is the usual ordering of the integers

and dδn(x, y) = δ whenever x 6= y. A mapping f : M → M ′ is a nonexpansive rigid

surjection from (M,d,⊏) to (M ′, d′,⊏′) if

⊲ f : (M,d) → (M ′, d′) is nonexpansive, that is, d′(f(x), f(y)) 6 d(x, y) for all

x, y ∈M , and

⊲ f : (M,⊏) → (M ′,⊏′) is a rigid surjection.

Let OMetners be the category whose objects are finite linearly ordered metric spaces

and morphisms are nonexpansive rigid surjections.

For a linearly ordered metric space M = (M,d,⊏) let Spec(M) = {d(x, y) :

x, y ∈M and x 6= y}. For a subcategory C of OMetners let

Spec(C) =
⋃

{Spec(M) : M ∈ Ob(C)}.

Lemma 3.12. LetC be a full subcategory of OMetners such that for every positive

integerm and every δ ∈ Spec(C) there is an integer n > m such thatMn,δ ∈ Ob(C).

Then C has the dual Ramsey property. In particular, the following categories have

the dual Ramsey property:

⊲ the category OMetners;

⊲ the category OMetners(S), S ⊆ R, which stands for the full subcategory of

OMetners spanned by all those finite linearly ordered metric spacesM such that

Spec(M) ⊆ S.

P r o o f. Take any k > 2, any A = (A, dA,⊏A) and B = (B, dB,⊏B) in C such

that there is a nonexpansive rigid surjection B → A, and let (C,⊏C) be a finite chain

such that (C,⊏C) → (B,⊏B)
(A,⊏A)
k in Ch

op
rs . Such a chain exists because Ch

op
rs has

the Ramsey property (see Example 3.7). Let δ = max{dB(x, y) : x, y ∈ B}. By the

assumption, there is an integer n > |C| such thatMn,δ ∈ Ob(C).
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Since n > |C|, there is a rigid surjection ({1, 2, . . . , n}, <) → (C,⊏C), so

Lemma 3.11 yields that ({1, 2, . . . , n}, <) → (B,⊏B)
(A,⊏A)
k in Ch

op
rs . Then it is

easy to show thatMn,δ → (B)Ak in C
op because f : Mn,δ → A is a nonexpansive

rigid surjection if and only if f : ({1, 2, . . . , n}, <) → (A,⊏A) is a rigid surjection.

�

What is an acceptable kind of objects? Having in mind Corollary 3.8, a neces-

sary requirement for a category to have the dual Ramsey property is that all of

its objects be rigid. In this paper we consider categories of finite linearly ordered

relational structures, as adding linear orders to finite structures turns out to be

technically the easiest way of achieving rigidity. The morphisms we will be work-

ing with will be surjective so all the structures in the paper will necessarily be

reflexive.

What is an acceptable kind of morphisms? Embeddings have established them-

selves as the only kind of morphisms of interest when considering “direct” Ramsey

results in structural Ramsey theory. For dual Ramsey results, though, there

is no obvious notion that parallels in full the notion of embedding. For exam-

ple, fix a relational language Θ and consider a category C whose objects are

some finite linearly ordered Θ-structures A = (A,ΘA, <A) and morphisms are

just rigid surjections f : (A,<A) → (B,<B). Then C has the dual Ramsey

property provided it contains arbitrarily large finite structures (see Example 3.7

and Lemma 3.11). This is clearly far from satisfactory. The same holds if we

require each morphism f : (A,ΘA, <A) → (B,ΘB, <B) to be a surjective ho-

momorphism f : (A,ΘA) → (B,ΘB) and at the same time a rigid surjection

f : (A,<A) → (B,<B): the dual Ramsey property follows as soon as the category

has arbitrarily large empty structures.

Therefore, when dealing with surjective homomorphisms quotient maps are usually

seen as the more appropriate structure maps. Our main results shall be, therefore,

spelled in the context, where each morphism f : (A,ΘA, <A) → (B,ΘB, <B) under

consideration is a quotient map f : (A,ΘA) → (B,ΘB) and at the same time a rigid

surjection f : (A,<A) → (B,<B).

4. Dual Ramsey theorems for structures and special quotient maps

In this section we turn to the main goal of the paper, which is to prove dual

Ramsey theorems for various categories of structures and special quotient maps. We

first prove our main technical result (see Theorem 4.4), and as a consequence derive

dual Ramsey theorems for acyclic digraphs with linear extensions, posets with linear

extensions, linearly ordered uniform hypergraphs and linearly ordered graphs.
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For an integer r > 2, a reflexive r-structure with a linear extension (or r-erst for

short) is a linearly ordered reflexive structure A = (A, ̺,⊏) such that ⊏ is a linear

extension of ̺ in the sense that

if (a1, a2, . . . , ar) ∈ ̺ \∆A,r then a1 ⊏ a2 ⊏ . . . ⊏ ar,

where r = ar(̺).

Definition 4.1. Let A = (A, ̺,⊏) and A′ = (A′, ̺′,⊏′) be two linearly

ordered relational structures, where ar(̺) = ar(̺′) = r. Then each homomor-

phism f : (A, ̺) → (A′, ̺′) induces a mapping f̂ : ̺ → ̺′ by f̂(a1, a2, . . . , ar) =

(f(a1), f(a2), . . . , f(ar)). A homomorphism f : (A, ̺) → (A′, ̺′) is a strong rigid

quotient map from A to A′ if f̂ : (̺,⊏sal) → (̺′,⊏′
sal) is a rigid surjection.

The following lemma justifies the name for these morphisms: it shows that a strong

rigid quotient map is a rigid surjection and a quotient map. The converse is not true,

see Figure 1.

1 2 3 4 5 6

1 2 3 4

A

A′

f

Figure 1. A rigid surjection and a quotient map which is not strong.

Lemma 4.2. Let A = (A, ̺,⊏) and A′ = (A′, ̺′,⊏′) be two linearly or-

dered reflexive relational structures, where ar(̺) = ar(̺′) = r > 2, and let

f : (A, ̺) → (A′, ̺′) be a homomorphism.

(a) For any u ∈ A′, if f̂−1(u, u, . . . , u) 6= ∅ then min f̂−1(u, u, . . . , u) = (x, x, . . . , x),

where x = min f−1(u).

(b) Assume that f̂ : (̺,⊏sal) → (̺′,⊏′
sal) is a rigid surjection. Then f is a rigid

surjection (A,⊏) → (A′,⊏′) and a quotient map (A, ̺) → (A′, ̺′).

P r o o f. (a) Assume that f̂−1(u, u, . . . , u) 6= ∅ and let

min f̂−1(u, u, . . . , u) = (x1, x2, . . . , xr),
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where |{x1, x2, . . . , xr}| > 2. Then f̂(x1, x2, . . . , xr) = (u, u, . . . , u). So, f(x1) = u,

whence f̂(x1, x1, . . . , x1) = (u, u, . . . , u). But (x1, x1, . . . , x1) ⊏sal (x1, x2, . . . , xr)

because tp(x1, x1, . . . , x1) ⊳ tp(x1, x2, . . . , xr). This contradicts the fact that

min f̂−1(u, u, . . . , u) = (x1, x2, . . . , xr).

Thus, min f̂−1(u, u, . . . , u) = (x, x, . . . , x) for some x ∈ A. Then f(x) = u

whence min f−1(u) ⊑ x. Assume that min f−1(u) = t ⊏ x. Then (t, t, . . . , t) ⊏sal

(x, x, . . . , x) = min f̂−1(u, u, . . . , u), which contradicts the fact that (t, t, . . . , t) ∈

f̂−1(u, u, . . . , u). Therefore, min f−1(u) = x.

(b) Let us start by showing that f is surjective. Take any u ∈ A′. Then

(u, u, . . . , u) ∈ ̺′ because ̺′ is reflexive, so there is an (x1, x2, . . . , xr) ∈ ̺ such

that f̂(x1, x2, . . . , xr) = (u, u, . . . , u) because f̂ is surjective. But then f(x1) = u.

Since f is a homomorphism and f̂ : ̺ → ̺′ is a surjective map it immediately

follows that f is a quotient map.

Finally, let us prove that f is a rigid surjection. Take any u, v ∈ A′ such that

u ⊏′ v and let us show that min f−1(u) ⊏ min f−1(v). From u ⊏′ v it follows that

(u, u, . . . , u)⊏′
sal(v, v, . . . , v), whence min f̂−1(u, u, . . . , u) ⊏sal min f̂−1(v, v, . . . , v)

because f̂ is a rigid surjection. The conclusion now follows from (a). �

For r > 2, let ERstsrq(r) be the category whose objects are finite r-erst’s and whose

morphisms are strong rigid quotient maps. Our goal in this section is to prove that

ERstsrq(r) has the dual Ramsey property for every r > 2. In order to do so, we use

the main idea of [6]. A pair of maps

F : Ob(D) ⇄ Ob(C) : G

is a pre-adjunction between the categories C and D provided there is a family of

maps

ΦY,X : homC(F (Y ), X) → homD(Y,G(X))

indexed by the family {(Y,X) ∈ Ob(D) × Ob(C) : homC(F (Y ), X) 6= ∅} and satis-

fying the following:

(PA) For every C ∈ Ob(C), every D,E ∈ Ob(D), every u ∈ homC(F (D), C)

and every f ∈ homD(E,D) there is a v ∈ homC(F (E), F (D)) satisfying

ΦD,C(u) · f = ΦE,C(u · v).

F (D)
u

C

F (E)

v
u·v

D
ΦD,C(u)

G(C)

E

f
ΦE,C(u·v)

(Note that in a pre-adjunction F and G are not required to be functors, just maps

from the class of objects of one of the two categories into the class of objects of
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the other category; also Φ is just a family of maps between hom-sets satisfying the

requirement above.)

Theorem 4.3 ([6]). Let C and D be categories such that C has the Ramsey

property and there is a pre-adjunction F : Ob(D) ⇄ Ob(C) : G. Then D has the

Ramsey property.

For a finite chain L = {l1 ⊏ l2 ⊏ . . . ⊏ lN} let

r ⊗ L = ({1, 2, . . . , r} × {l1, l2, . . . , lN}, ̺r⊗L,≺)

denote an r-erst on r ·N elements (written il instead of (i, l)), where

̺r⊗L = ∆{1,2,...,r}×{l1,l2,...,lN},r ∪ {(1l, 2l, . . . , rl) : l ∈ L},

and ≺ is the anti-lexicographic ordering of {1, 2, . . . , r} × {l1, l2, . . . , lN} induced by

the respective linear orderings: ik ≺ jl if and only if k ⊏ l, or k = l and i < j.

Theorem 4.4. Let r > 2 be an integer. Let C be a full subcategory of ERstsrq(r)

such that for every finite chain L there is an object in Ob(C) isomorphic to r ⊗ L.

ThenC has the dual Ramsey property. In particular, ERstsrq(r) has the dual Ramsey

property.

P r o o f. Without loss of generality we may assume that r⊗L ∈ Ob(C) for every

finite chain L. In order to prove the theorem we are going to show that there is

a pre-adjunction

F : Ob(Cop) ⇄ Ob(Ch
op
rs ) : G.

The result then follows from Theorem 4.3 and the fact that the category Ch
op
rs has

the Ramsey property (see Example 3.7). Explicitly, unpacking the definition of pre-

adjunction in case of opposite categories, we have to show the following:

(PA) For every finite chain L ∈ Ob(Chrs), all A,B ∈ Ob(C) for every

u ∈ homChrs
(L, F (A)) and every f ∈ homC(A,B) there is a v ∈

homChrs
(F (A), F (B)) satisfying f ◦ ΦA,L(u) = ΦB,L(v ◦ u).

F (A)
u

L

F (B)

v
v◦u

A
ΦA,L(u)

G(L)

B

f
ΦB,L(v◦u)

Take a finite chain L and a finite r-erst A. Without loss of generality we can

assume that L = {1 < 2 < . . . < N} and A = ({1, 2, . . . , n}, ̺A, <), where <
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is the usual ordering of the integers and ̺A = {e1<sale2<sal . . . <saleq(A)}. For

each i let ei = (p1i , p
2
i , . . . , p

r
i ), where, as stipulated by the definition of r-erst, either

p1i = p2i = . . . = pri or p
1
i < p2i < . . . < pri .

Define F and G by F (A) = (̺A, <sal) and G(L) = r ⊗ L. Next, let us define

ΦA,L : homChrs
(L, F (A)) → homC(G(L),A). For a rigid surjection

(4.1) u : {1 < 2 < . . . < N} → {e1<sale2<sal . . . <saleq(A)}

define ϕu : r⊗L → A by ϕu(is) = πi ◦ u(s) and put ΦA,L(u) = ϕu. Here, πi stands

for the ith projection πi(x1, x2, . . . , xr) = xi.

To show that the definition of Φ is correct we have to show that for every rigid

surjection u as in (4.1) the mapping ϕu is a strong rigid quotient map r ⊗ L → A.

Let us first show that ϕu : ({1, 2, . . . , r} × {1, 2, . . . , N}, ̺r⊗L) → (A, ̺A) is a ho-

momorphism. Take any (x1, x2, . . . , xr) ∈ ̺r⊗L. The case x1 = . . . = xr is trivial, so

let us consider the case, where (x1, x2, . . . , xr) = (1s, 2s, . . . , rs) for some s ∈ L:

(ϕu(x1), ϕu(x2), . . . , ϕu(xr)) = (ϕu(1s), ϕu(2s), . . . , ϕu(rs))

= (π1 ◦ u(s), π2 ◦ u(s), . . . , πr ◦ u(s)) = u(s) ∈ ̺A.

Let us now show that ϕ̂u : (̺r⊗L,≺sal) → (̺A, <sal) is a rigid surjection. Note

that ϕ̂u(i1s, i2s, . . . , irs) = (πi1 ◦ u(s), πi2 ◦ u(s), . . . , πir ◦ u(s)).

Claim 1. Take any ek = (p1k, p
2
k, . . . , p

r
k) ∈ ̺A, 1 6 k 6 F (A), and let t =

minu−1(ek). Then the following holds:

1◦ if p1k < p2k < . . . < prk then min ϕ̂−1
u (ek) = (1t, 2t, . . . , rt),

2◦ if p1k = p2k = . . . = prk then min ϕ̂−1
u (ek) = (1t, 1t, . . . , 1t).

P r o o f. 1◦ Assume that p1k < p2k < . . . < prk. From

ϕ̂u((1t, 2t, . . . , rt)) = u(t) = ek

it follows that (1t, 2t, . . . , rt) ∈ ϕ̂−1
u (ek), so it suffices to show that

(1t, 2t, . . . , rt) 4sal (i1s, i2s, . . . , irs)

for every (i1s, i2s, . . . , irs) ∈ ϕ̂−1
u (ek). Take any (i1s, i2s, . . . , irs) ∈ ̺r⊗L such that

ϕ̂u(i1s, i2s, . . . , irs) = ek. Then

(4.2) (πi1 ◦ u(s), πi2 ◦ u(s), . . . , πir ◦ u(s)) = (p1k, p
2
k, . . . , p

r
k).
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Let u(s) = em. Since p
1
k < p2k < . . . < prk, the only possibility to achieve (4.2) is

i1 = 1, i2 = 2, . . . , ir = r and m = k. Therefore, u(s) = ek whence s ∈ u−1(ek), so

t 6 s. Now

(1t, 2t, . . . , rt) 4sal (1s, 2s, . . . , rs) = (i1s, i2s, . . . , irs).

2◦ Assume that p1k = p2k = . . . = prk. From

ϕ̂u(1t, 1t, . . . , 1t) = (p1k, p
1
k, . . . , p

1
k) = ek

it follows that (1t, 1t, . . . , 1t) ∈ ϕ̂−1
u (ek), so it suffices to show that

(1t, 1t, . . . , 1t) 4sal (i1s, i2s, . . . , irs)

for every (i1s, i2s, . . . , irs) ∈ ϕ̂−1
u (ek). Take any (i1s, i2s, . . . , irs) ∈ ̺r⊗L such that

ϕ̂u(i1s, i2s, . . . , irs) = ek. Then

(4.3) (πi1 ◦ u(s), πi2 ◦ u(s), . . . , πir ◦ u(s)) = (p1k, p
1
k, . . . , p

1
k),

whence

(4.4) πiα ◦ u(s) = πiβ ◦ u(s) for all α and β.

Let u(s) = em = (p1m, p
2
m, . . . , p

r
m).

(a) Assume that p1m = p2m = . . . = prm. Then

(p1m, p
1
m, . . . , p

1
m) = (πi1 ◦ u(s), πi2 ◦ u(s), . . . , πir ◦ u(s)) = (p1k, p

1
k, . . . , p

1
k)

whence u(s) = em = ek. Then s ∈ u−1(ek), so t 6 s. Hence,

(1t, 1t, . . . , 1t) 4sal (i1s, i2s, . . . , irs)

for any choice (i1, i2, . . . , ir) ∈ {(1, 1, . . . , 1), . . . , (r, r, . . . , r), (1, 2, . . . , r)}.

(b) Assume now that p1m < p2m < . . . < prm. Then (4.4) implies that i1 =

i2 = . . . = ir. Let i1 = . . . = ir = α. Since tp(p1k, p
1
k, . . . , p

1
k) ⊳ tp(p1m, p

2
m, . . . , p

r
m) it

follows that

ek = (p1k, p
1
k, . . . , p

1
k)≺sal(p

1
m, p

2
m, . . . , p

r
m) = em.

Therefore,

t = minu−1(ek) < minu−1(em) 6 s

whence (1t, 1t, . . . , 1t)≺sal(αs, αs, . . . , αs) = (i1s, i2s, . . . , irs).

This concludes the proof of Claim 1. �
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We are now ready to show that ϕ̂u : (̺r⊗L,≺sal) → (̺A, <sal) is a rigid surjection.

Take any ei = (p1i , p
2
i , . . . , p

r
i ), ej = (p1j , p

2
j , . . . , p

r
j) ∈ ̺A such that ei<salej . Then

minu−1(ei) < minu−1(ej) because u is a rigid surjection. Let s = minu−1(ei) and

t = minu−1(ej).

⊲ If p1i = p2i = . . . = pri and p
1
j = p2j = . . . = prj then, by Claim 1, min ϕ̂−1

u (ei) =

(1s, 1s, . . . , 1s)≺sal(1t, 1t, . . . , 1t) = min ϕ̂−1
u (ej).

⊲ If p1i = p2i = . . . = pri and p
1
j < p2j < . . . < prj then, by Claim 1, min ϕ̂−1

u (ei) =

(1s, 1s, . . . , 1s)≺sal(1t, 2t, . . . , rt) = min ϕ̂−1
u (ej).

⊲ If p1i < p2i < . . . < pri and p
1
j < p2j < . . . < prj then, by Claim 1, min ϕ̂−1

u (ei) =

(1s, 2s, . . . , rs)≺sal(1t, 2t, . . . , rt) = min ϕ̂−1
u (ej).

This proves that ϕ̂u is a rigid surjection and the definition of Φ is correct.

We still have to show that this family of maps satisfies the requirement (PA).

But this is easy. Let B = ({1, 2, . . . , l}, ̺B, <) be a finite r-erst, where < is the

usual ordering of the integers, and let f : A → B be a strong rigid quotient map.

Then f̂ : (̺A, <sal) → (̺B, <sal) is a rigid surjection by definition. Let us show that

f ◦ ϕu = ϕf̂◦u:

f ◦ ϕu(is) = f ◦ πi ◦ u(s) = πi ◦ f̂ ◦ u(s) = ϕf̂◦u(is).

This calculation relies on the fact that f ◦ πi = πi ◦ f̂ , which is clearly true:

f ◦ πi(x1, x2, . . . , xr) = f(xi) = πi(f(x1), f(x2), . . . , f(xr)) = πi ◦ f̂(x1, x2, . . . , xr).

�

Specializing the above result for r = 2 we get the following corollary.

Corollary 4.5. The following categories have the dual Ramsey property:

⊲ the category EDigsrq whose objects are finite reflexive digraphs with linear exten-

sions and morphisms are strong rigid quotient maps,

⊲ the category EPossrq whose objects are finite posets with linear extensions and

morphisms are strong rigid quotient maps.

P r o o f. For the first item it suffices to note that EDigsrq = ERstsrq(2). For the

second item it suffices to note that EPossrq is a full subcategory of EDigsrq such that

2⊗ L ∈ Ob(EPossrq) for every finite chain L. �

As another corollary of Theorem 4.4 we now prove a dual Ramsey theorem for

reflexive graphs and hypergraphs together with special quotient maps.

Definition 4.6. For a chain A = (A,⊏) let us define ⊏sal on P(A) as fol-

lows (“sal” in the subscript stands for “special anti-lexicographic”). Take any

X,Y ∈ P(A).
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⊲ ∅ is the least element of P(A) with respect to ⊏sal,

⊲ if X = {x} and Y = {y} then X ⊏sal Y if and only if x ⊏ y,

⊲ if |X | = 1 and |Y | > 1 then X ⊏sal Y ,

⊲ if |X | > 1 and |Y | > 1 then X ⊏sal Y if and only if X ⊏alex Y .

For a set A and an integer k let
(
A
k

)
denote the set of all the k-element subsets

of A. Let r > 2 be an integer. A linearly ordered reflexive r-uniform hypergraph

is a triple (V,E,⊏), where E =
(
V
1

)
∪ S for some S ⊆

(
V
r

)
and ⊏ is a linear order

on V . A mapping f : V → V ′ between (unordered) reflexive r-uniform hypergraphs

G = (V,E) and G′ = (V ′, E′) is a hypergraph homomorphism if e ∈ E implies

{f(x) : x ∈ e} ∈ E′.

Definition 4.7. Let G = (V,E,⊏) and G′ = (V ′, E′,⊏′) be linearly ordered

reflexive r-uniform hypergraphs. Each hypergraph homomorphism f : (V,E) →

(V ′, E′) induces a mapping f̃ : E → E′ straightforwardly: f̃(e) = {f(x) : x ∈ e}.

A hypergraph homomorphism f : (V,E) → (V ′, E′) is a strong rigid quotient map of

hypergraphs if

⊲ f̃ : (E,⊏sal) → (E′,⊏′
sal) is a rigid surjection and

⊲ for every e = {x1, . . . , xr} ∈ E, if f↾e is not a constant map then xi ⊏ xj ⇒

f(xi) ⊏
′ f(xj) for all i and j.

Example 4.8. Let C3 = ({1, 2, 3}, E3, <) and C4 = ({1, 2, 3, 4}, E4, <) be the re-

flexive 3-cycle and the reflexive 4-cycle, respectively, where E3 = {1, 2, 3, 12, 23, 31},

E4 = {1, 2, 3, 4, 12, 23, 34, 14}, and < is the usual ordering of the integers. Let

f =

(
1 2 3 4

1 1 2 3

)
, g =

(
1 2 3 4

1 2 3 3

)

be two quotient maps ({1, 2, 3, 4}, E4) → ({1, 2, 3}, E3). Then f is a strong rigid

quotient map and g is not. Namely,

f̃ =

(
1 2 3 4 12 23 14 34

1 1 2 3 1 12 13 23

)
, g̃ =

(
1 2 3 4 12 23 14 34

1 2 3 3 12 23 13 3

)

and we can now easily see that f̃ : (E4, <sal) → (E3, <sal) is rigid while g̃ :

(E4, <sal) → (E3, <sal) is not.

Let OHgrsrq(r) be the category whose objects are finite linearly ordered reflex-

ive r-uniform hypergraphs and whose morphisms are strong rigid quotient maps of

hypergraphs. Note that OHgrsrq(2) is the category whose objects are finite linearly

ordered reflexive graphs and whose morphisms are strong rigid quotient maps of

graphs. Let us denote this category by OGrasrq.
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For a finite chain L = {l1 ⊏ l2 ⊏ . . . ⊏ lN} and r > 2 let

r ⊠ L = ({1, 2, . . . , r} × {l1, l2, . . . , lN}, Er⊠L,≺)

denote a linearly ordered reflexive r-uniform hypergraph on r ·N vertices (written il

instead of (i, l)), where

Er⊠L = {{ilj} : 1 6 i 6 r, 1 6 j 6 N} ∪ {{1lj, 2lj, . . . , rlj} : 1 6 j 6 N}

and ≺ is the anti-lexicographic ordering of {1, 2, . . . , r} × {l1, l2, . . . , lN} induced by

the respective linear orderings: il ≺ jk if and only if l ⊏ k, or l = k and i < j.

Corollary 4.9. Let C be a full subcategory of OHgrsrq(r), r > 2, such that for

every finite chain L there is an object in Ob(C) isomorphic to r⊠L. Then C has the

dual Ramsey property. In particular, the following categories have the dual Ramsey

property:

⊲ the category OHgrsrq(r) for every r > 2,

⊲ the category OGrasrq,

⊲ the full subcategory of OGrasrq spanned by bipartite graphs,

⊲ the full subcategory of OGrasrq spanned by Kn-free graphs (where n > 3 is fixed).

P r o o f. Let us start by proving that OHgrsrq(r) and ERstsrq(r) are isomorphic.

Define a functor

F : OHgrsrq(r) → ERstsrq(r) : (V,E,⊏) 7→ (V, ̺,⊏) : f 7→ f,

where

̺ = ∆V,r ∪ {(x1, x2, . . . , xr) ∈ V r : x1 ⊏ x2 ⊏ . . . ⊏ xr and {x1, x2, . . . , xr} ∈ E}.

On the other hand, define a functor

G : ERstsrq(r) → OHgrsrq(r) : (A, ̺,⊏) 7→ (A,E,⊏) : f 7→ f,

where

E = {{x1, x2, . . . , xr} : (x1, x2, . . . , xr) ∈ ̺}.

By construction, F and G are mutually inverse functors, so the categories OHgrsrq(r)

and ERstsrq(r) are isomorphic. However, we still have to show that the functors F

and G are well defined. It is easy to see that both F and G are well defined on

objects. Let us show that both F and G are well defined on morphisms.
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Let f : (V,E,⊏) → (V ′, E′,⊏′) be a morphism in OHgrsrq(r) and let us show that

f : (V, ̺) → (V ′, ̺′) is a homomorphism. Take any (x1, x2, . . . , xr) ∈ ̺ \∆V,r. Then

{x1, x2, . . . , xr} ∈ E and x1 ⊏ x2 ⊏ . . . ⊏ xr.

If f(x1) = f(x2) = . . . = f(xr) we are done. Assume, therefore, that f↾{x1,x2,...,xr}

is not a constant map. Then, by the definition of morphisms in OHgrsrq(r) it follows

that

{f(x1), f(x2), . . . , f(xr)} ∈ E and f(x1) ⊏
′ f(x2) ⊏

′ . . . ⊏′ f(xr).

Therefore, (f(x1), f(x2), . . . , f(xr)) ∈ ̺′.

Conversely, let f : (V, ̺,⊏) → (V ′, ̺′,⊏′) be a morphism in ERstsrq(r) and let

us show that f : (V,E) → (V ′, E′) is a homomorphism of hypergraphs. Take any

{x1, x2, . . . , xr} ∈ E. If f(x1) = f(x2) = . . . = f(xr) we are done. Assume, therefore,

that f↾{x1,x2,...,xr} is not a constant map. Without loss of generality we may assume

that x1 ⊏ x2 ⊏ . . . ⊏ xr. Then (x1, x2, . . . , xr) ∈ ̺, so (f(x1), f(x2), . . . , f(xr)) ∈ ̺′

because f is a morphism in ERstsrq(r). Therefore, {f(x1), f(x2), . . . , f(xr)} ∈ E′ and

f(x1) ⊏
′ f(x2) ⊏

′ . . . ⊏′ f(xr). So, f is a homomorphism satisfying the additional

requirement that for every e = {x1, . . . , xr} ∈ E, if f↾e is not a constant map then

xi ⊏ xj ⇒ f(xi) ⊏
′ f(xj) for all i and j.

In order to complete the proof that F and G are well defined on morphisms we

still have to show that f̂ : (̺,⊏sal) → (̺′,⊏′
sal) is a rigid surjection if and only if

f̃ : (E,⊏sal) → (E′,⊏′
sal) is a rigid surjection. But this follows straightforwardly

from the following facts:

⊲ the mapping ξ : ̺ → E : (x1, x2, . . . , xr) 7→ {x1, x2, . . . , xr} is an isomorphism

from (̺,⊏sal) to (E,⊏sal),

⊲ the mapping ξ′ : ̺′ → E′ : (x1, x2, . . . , xr) 7→ {x1, x2, . . . , xr} is an isomorphism

from (̺′,⊏′
sal) to (E

′,⊏′
sal), and

⊲ f̃ = ξ′ ◦ f̂ ◦ ξ−1.

Therefore, F and G are well defined functors.

The first item in the statement of the theorem now follows immediately from

Theorem 4.4, having in mind that F (r ⊠ L) = r ⊗ L for every chain L. As for

the remaining items, note that OGrasrq = OHgrsrq(2) and that both subcategories

of OGrasrq mentioned in the third and the fourth item contain 2⊠L for every finite

chain L. �

573



5. The Dual Nešetřil-Rödl Theorem

In this section we prove a dual form of the Nešetřil-Rödl Theorem, in its restricted

form which does not account for subclasses defined by forbidden “quotients”. Let Θ

be a relational language and let ⊏/∈ Θ be a new binary relational symbol. A reflexive

Θ-structure with a linear extension (or Θ-erst for short) is a linearly ordered reflexive

Θ-structure A = (A,ΘA,⊏A) such that (A, θA,⊏A) is an ar(θ)-erst for every θ ∈ Θ.

Definition 5.1. Let A = (A,ΘA,⊏A) and B = (B,ΘB,⊏B) be two Θ-erst’s.

A homomorphism f : (A,ΘA) → (B,ΘB) is a strong rigid quotient map from A to B

if f̂ : (θA,⊏A
sal) → (θB,⊏B

sal) is a rigid surjection for every θ ∈ Θ.

Let ERstsrq(Θ,⊏) be the category whose objects are all finite Θ-erst’s and whose

morphisms are strong rigid quotient maps. In order to prove that ERstsrq(Θ,⊏) has

the dual Ramsey property we employ a strategy devised in [5]. Let us recall two

technical statements from [5].

A diagram in a category C is a functor F : ∆ → C, where the category ∆ is

referred to as the shape of the diagram. We say that a diagram F : ∆ → C is

consistent in C if there exist a C ∈ Ob(C) and a family of morphisms (hδ : F (δ) →

C)δ∈Ob(∆) such that for every morphism g : δ → γ in ∆ we have hγ · F (g) = hδ:

C

F (δ)

hδ

F (g)
F (γ)

hγ

We say that C together with the family of morphisms (hδ)δ∈Ob(∆) forms a compatible

cone in C over the diagram F .

A binary category is a finite, acyclic, bipartite digraph with loops, where all the

arrows go from one class of vertices into the other and the out-degree of all the

vertices in the first class is 2 (modulo loops):

◦ ◦ ◦ . . . ◦

◦ ◦ ◦ . . . ◦

A binary diagram in a category C is a functor F : ∆ → C, where ∆ is a binary

category, F takes the bottom row of ∆ onto the same object and takes the top row
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of ∆ onto the same object, see Figure 2. A subcategory D of a category C is closed

for binary diagrams if every binary diagram F : ∆ → D which is consistent in C is

also consistent in D.

◦ ◦ ◦ B B B

◦ ◦ ◦ A

f1

f2
A

f4f3

A
f5

f6

∆
F

C

Figure 2. A binary diagram in C (of shape ∆)

Theorem 5.2 ([5]). Let C be a category such that every morphism in C is monic

and such that homC(A,B) is finite for all A,B ∈ Ob(C), and let D be a (not

necessarily full) subcategory of C. If C has the Ramsey property and D is closed

for binary diagrams, then D has the Ramsey property.

We are now ready to prove the main technical result of this section.

Proposition 5.3. The category ERstsrq(Θ,⊏) has the dual Ramsey property for

every relational language Θ.

P r o o f. Part I. Assume, first, that Θ = {θ1, θ2, . . . , θn} is a finite rela-

tional language and let ri = ar(θi), 1 6 i 6 n. Let Ci denote the category

ERstsrq({θi},⊏), 1 6 i 6 n. For each i we have that ERstsrq({θi},⊏) = ERstsrq(ri),

so ERstsrq({θi},⊏) has the dual Ramsey property (see Theorem 4.4).

For an object A = (A, θA1 , . . . , θ
A
n ,⊏

A) ∈ Ob(ERstsrq(Θ,⊏)) let A(i) =

(A, θAi ,⊏
A) ∈ Ob(Ci). As we have just seen each Ci has the dual Ramsey

property, so the product category C1 × . . .×Cn has the dual Ramsey property by

Corollary 3.10. Let D be the following subcategory of C1 × . . .×Cn:

⊲ every A = (A, θA1 , . . . , θ
A
n ,⊏

A) ∈ Ob(ERstsrq(Θ,⊏)) gives rise to an object Ā =

(A(1), . . . ,A(n)) of D, and these are the only objects in D,

⊲ every morphism f : A → B in ERstsrq(Θ,⊏) gives rise to a morphism f =

(f, . . . , f) : Ā → B in D, and these are the only morphisms in D.

Clearly, the categories D and ERstsrq(Θ,⊏) are isomorphic, so in order to complete

the proof of the lemma it suffices to show that D has the dual Ramsey property.

As D is a subcategory of C1 × . . . ×Cn and the latter one has the dual Ramsey

property, following Theorem 5.2 it suffices to show that Dop is closed for binary

diagrams in (C1 × . . .×Cn)
op.
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Let F : ∆ → D
op be a binary diagram in D

op, where the top row consists of

copies of B ∈ Ob(D) and the bottom row consists of copies of Ā ∈ Ob(D) for some

A = (A, θA1 , . . . , θ
A
n ,⊏

A) and B = (B, θB1 , . . . , θ
B
n ,⊏

B). Assume that F is consistent

in (C1 × . . .×Cn)
op and let (C1, . . . , Cn) together with the morphisms q1, . . . , qk be

a compatible cone in (C1 × . . .×Cn)
op over F :

(C1, . . . , Cn)

B

q1

B

qi

. . . B

qj

B

qk

Ā Ā
v

ū

. . . Ā D

Let Ci = (Ci, θ
Ci

i ,⊏
i) and qi = (q1i , . . . , q

n
i ), where q

s
i : Cs → B(s) is a strong rigid

quotient map. Without loss of generality we can assume that C1, C2, . . . , Cn are

pairwise disjoint sets. Let D = (D, θD1 , . . . , θ
D
n ,⊏

D), where

⊲ D = C1 ∪C2 ∪ . . . ∪Cn,

⊲ θDi = ∆D,ri ∪ θ
Ci

i , 1 6 i 6 n, and

⊲ ⊏D is the linear order on D obtained by concatenating the linear orders

⊏1,⊏2, . . . ,⊏n; in other words, ⊏D is the unique linear order on D such that

⊏D ↾Ci
= ⊏i, 1 6 i 6 n, and if x ∈ Ci and y ∈ Cj , where i < j then x ⊏D y.

Clearly, D ∈ Ob(ERstsrq(Θ,⊏)), so D ∈ Ob(D).

For each morphism qi = (q1i , . . . , q
n
i ) let ϕi : D → B be the mapping

ϕi(x) =





q1i (x), x ∈ C1,

q2i (x), x ∈ C2,

...

qni (x), x ∈ Cn.

Let us show that ϕi : D → B is a strong rigid quotient map, 1 6 i 6 k. It is easy

to see that each ϕi is a homomorphism (D, θD1 , . . . , θ
D
n ) → (B, θB1 , . . . , θ

B
n ). Take

any s and any (x1, x2, . . . , xrs) ∈ θDs \ ∆D,rs . Then (x1, x2, . . . , xrs) ∈ θCs
s whence

{x1, x2, . . . , xrs} ⊆ Cs. But then

(ϕi(x1), ϕi(x2), . . . , ϕi(xrs)) = (qsi (x1), q
s
i (x2), . . . , q

s
i (xrs)) ∈ θBs

because qsi : Cs → B(s) is a homomorphism.
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Next, take any s ∈ {1, 2, . . . , n} and let us show that ϕ̂i : (θDs ,⊏
D
sal) → (θBs ,⊏

B
sal)

is a rigid surjection.

Case 1◦: s = 1. The construction of ⊏D then ensures that

min ϕ̂−1
i (x1, x2, . . . , xr1) = min(q̂1i )

−1(x1, x2, . . . , xr1)

for every (x1, x2, . . . , xr1) ∈ θB1 , so

min ϕ̂−1
i (x1, x2, . . . , xr1) = min(q̂1i )

−1(x1, x2, . . . , xr1) ⊏
D
sal min(q̂1i )

−1(y1, y2, . . . , yr1)

= min ϕ̂−1
i (y1, y2, . . . , yr1)

for all (x1, x2, . . . , xr1), (y1, y2, . . . , yr1) ∈ θB1 satisfying (x1, x2, . . . , xr1) ⊏B
sal

(y1, y2, . . . , yr1) because q
1
i is a strong rigid quotient map.

Case 2◦: s > 1. Take (x1, x2, . . . , xrs), (y1, y2, . . . , yrs) ∈ θBs such that

(x1, x2, . . . , xrs) ⊏
B
sal (y1, y2, . . . , yrs).

Case 2.1◦: (x1, x2, . . . , xrs) ∈ ∆B,rs . Then, by the construction of ⊏
D,

min ϕ̂−1
i (x1, x2, . . . , xrs) = min(q̂1i )

−1(x1, x2, . . . , xrs),

min ϕ̂−1
i (y1, y2, . . . , yrs) = min(q̂ti)

−1(y1, y2, . . . , yrs),

where t = 1 if (y1, y2, . . . , yrs) ∈ ∆B,rs , or t = s if (y1, y2, . . . , yrs) ∈ θCs
s \∆B,rs . If

t = 1 we are done because q1i is a strong rigid quotient map. If, however, t = s, we

are done by the definition of ⊏D
sal.

Case 2.2◦: (x1, x2, . . . , xrs) /∈ ∆B,rs . Then (y1, y2, . . . , yrs) /∈ ∆B,rs by definition

of ⊏D
sal. Therefore,

min ϕ̂−1
i (x1, x2, . . . , xrs) = min(q̂si )

−1(x1, x2, . . . , xrs),

min ϕ̂−1
i (y1, y2, . . . , yrs) = min(q̂si )

−1(y1, y2, . . . , yrs),

and the claim follows because qsi is a strong rigid quotient map.

Therefore, ϕi : D → B is a strong rigid quotient map for each i, whence follows

that ϕ̄i : D → B is a morphism in D for each i. To complete the proof we still have

to show that ū ◦ ϕ̄i = v ◦ ϕ̄j whenever ū ◦ qi = v ◦ qj . Assume that ū ◦ qi = v ◦ qj .

Take any x ∈ D. Then x ∈ Cs for some s, so

u ◦ ϕi(x) = u ◦ qsi (x) = v ◦ qsj (x) = v ◦ ϕj(x),

because ū◦ qi = v ◦ qj means that u ◦ qti = v ◦ qtj for each t. Therefore, ū◦ ϕ̄i = v ◦ ϕ̄j.

This concludes the proof in case Θ is a finite relational language.
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Part II. Assume now that Θ is an arbitrary relational language satisfying ⊏/∈ Θ,

and take any k > 2 and A,B ∈ Ob(ERstsrq(Θ,⊏)) such that there is a strong rigid

quotient map B → A.

Since B is a finite Θ-erst, θB = ∅ for every θ ∈ Θ such that ar(θ) > |B|. Moreover,

on a finite set there are only finitely many relations whose arities do not exceed |B|.

Therefore, there exists a finite Σ ⊆ Θ such that for every θ ∈ Θ \ Σ we have θB = ∅

or θB = σB for some σ ∈ Σ. Since there is a strong rigid quotient map B → A, we

have the following:

⊲ if θB = ∅ for some θ ∈ Θ \ Σ then θA = ∅,

⊲ if θB = σB for some θ ∈ Θ \ Σ and σ ∈ Σ then θA = σA.

The category ERstsrq(Σ,⊏) has the dual Ramsey property because Σ is finite

(Part I), so there is a C = (C,ΣC ,⊏C) ∈ Ob(ERstsrq(Σ,⊏)) such that

C → (B|Σ∪{⊏})
A|Σ∪{⊏}

k

in ERstsrq(Σ,⊏)op. Define C∗ = (C,ΘC∗

,⊏C∗

) ∈ Ob(ERstsrq(Θ,⊏)) as follows:

⊲ ⊏C∗

= ⊏C ,

⊲ if σ ∈ Σ let σC∗

= σC ,

⊲ if θ ∈ Θ \ Σ and θB = ∅ let θC
∗

= ∅,

⊲ if θ ∈ Θ \ Σ and θB = σB for some σ ∈ Σ, let θC
∗

= σC∗

.

Clearly, C∗ is a Θ-erst and C∗ → (B)Ak in ERstsrq(Θ,⊏)op because

homERstsrq(Σ,⊏)(C,A|Σ ∪ {⊏}) = homERstsrq(Θ,⊏)(C
∗,A),

homERstsrq(Σ,⊏)(C,B|Σ ∪ {⊏}) = homERstsrq(Θ,⊏)(C
∗,B).

This concludes the proof. �

Definition 5.4. Let A = (A,ΘA,⊏A) and B = (B,ΘB,⊏B) be two linearly

ordered reflexive Θ-structures. A homomorphism f : (A,ΘA) → (B,ΘB) is a strong

rigid quotient map of structures if the following holds for every θ ∈ Θ:

⊲ f̂ : (θA,⊏A
sal) → (θB,⊏B

sal) is a rigid surjection; and

⊲ for every (x1, x2, . . . , xr) ∈ θA, if f↾{x1,x2,...,xr} is not a constant map then

xi ⊏
A xj ⇒ f(xi) ⊏

B f(xj) for all i and j.

Let Relsrq(Θ,⊏) be the category whose objects are all finite linearly ordered reflex-

ive Θ-structures and whose morphisms are strong rigid quotient maps of structures.

Our final result is a dual version of the Nešetřil-Rödl Theorem.

Theorem 5.5 (Dual Nešetřil-Rödl Theorem (restricted form)). Let Θ be a rela-

tional language and let ⊏ /∈ Θ be a binary relational symbol. Then Relsrq(Θ,⊏) has

the dual Ramsey property.
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P r o o f. Fix a relational language Θ such that ⊏ /∈ Θ. Let

XΘ = {θ/σ : θ ∈ Θ and σ is a total quasiorder on {1, 2, . . . , ar(θ)}}

be a relational language where θ/σ is a new relational symbol (formally, a pair (θ, σ))

such that

ar(θ/σ) = |{1, 2, . . . , ar(θ)}/ ≡σ|.

We are going to show that the categories Relsrq(Θ,⊏) and ERstsrq(XΘ,⊏) are iso-

morphic. The dual Ramsey property for Relsrq(Θ,⊏) then follows directly from

Proposition 5.3.

ForA = (A,ΘA,⊏A) ∈ Ob(Relsrq(Θ,⊏)) define anA† = (A,XA†

Θ ,⊏A†

) as follows:

⊏A†

= ⊏A,

(θ/σ)A
†

= ∆A,ar(θ/σ) ∪ {mat(ā) : ā ∈ θA and tp(ā) = σ}.

On the other hand, take any B = (B,XB
Θ,⊏

B) ∈ Ob(ERstsrq(XΘ,⊏)) and define

B∗ = (B,ΘB∗

,⊏B∗

) ∈ Ob(Relsrq(Θ,⊏)) as follows:

⊏B∗

= ⊏B,

θB
∗

= {tup(σ, ā) : σ is a total quasiorder on {1, 2, . . . , ar(θ)} and ā ∈ (θ/σ)B}.

Consider the functors

F : Relsrq(Θ,⊏) → ERstsrq(XΘ,⊏) : A 7→ A† : f 7→ f,

G : ERstsrq(XΘ,⊏) → Relsrq(Θ,⊏) : B 7→ B∗ : f 7→ f.

Because of (2.1) we have that (A†)∗ = A and (B∗)† = B for all A ∈ Ob(Relsrq(Θ,⊏))

and all B ∈ Ob(ERstsrq(XΘ,⊏)). Hence, F and G are mutually inverse functors, so

Relsrq(Θ,⊏) and ERstsrq(XΘ,⊏) are isomorphic categories. However, we still have

to show that F and G are well defined. Clearly, both functors are well defined on

objects.

Let us show that F is well defined on morphisms. Take any morphism f : A → B

in Relsrq(Θ,⊏), where A = (A,ΘA,⊏A) and B = (B,ΘB,⊏B).

To see that f : (A,XA†

Θ ) → (B,XB†

Θ ) is a homomorphism, take any θ ∈ Θ, any

total quasiorder σ on {1, 2, . . . , ar(θ)} and any (x1, x2, . . . , xr) ∈ (θ/σ)A
†

\ ∆A,r,

where r = ar(θ/σ). Then there exists an ā ∈ θA such that σ = tp(ā) and

(x1, x2, . . . , xr) = mat(ā). If f(x1) = f(x2) = . . . = f(xr) we are done. Assume,

therefore, that f↾{x1,x2,...,xr} is not a constant map. Because f is a homomor-

phism of Θ-structures, f̂(ā) ∈ θB. We also know that tp(f̂(ā)) = tp(ā) = σ (see
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Lemma 2.4), so mat(f̂(ā)) ∈ (θ/σ)B
†

. By using Lemma 2.4 again we have that

mat(f̂(ā)) = f̂(mat(ā)) = f̂(x1, x2, . . . , xr) = (f(x1), f(x2), . . . , f(xr)).

Next, let us show that f̂↾(θ/σ)A† : ((θ/σ)A
†

,⊏A†

sal ) → ((θ/σ)B
†

,⊏B†

sal) is a rigid sur-

jection for every θ ∈ Θ and every total quasiorder σ on {1, 2, . . . , ar(θ)}. For nota-

tional convenience we let f̂θ = f̂↾θA and f̂θ/σ = f̂↾(θ/σ)A† . Take any θ ∈ Θ, any total

quasiorder σ on {1, 2, . . . , ar(θ)} and let r = ar(θ/σ). Note, first, that f̂θ/σ is sur-

jective because f is a quotient map (see Lemma 4.2) and tp(ā) = tp(f̂(ā)) whenever

ā = (a1, a2, . . . , an) ∈ θA and f↾{a1,a2,...,an} is not a constant map (see Lemma 2.4).

Take any (x1, x2, . . . , xr), (y1, y2, . . . , yr) ∈ (θ/σ)B
†

such that (x1, x2, . . . , xr) ⊏B†

sal

(y1, y2, . . . , yr).

Case 1◦: |{x1, x2, . . . , xr}| = |{y1, y2, . . . , yr}| = 1.

By Lemma 4.2 (a) we have that min f̂−1
θ/σ(x1, x1, . . . , x1) = (s, s, . . . , s), where

s = min f−1(x1), and min f̂−1
θ/σ(y1, y1, . . . , y1) = (t, t, . . . , t), where t = min f−1(y1).

Since (x1, x1, . . . , x1) ⊏B†

sal (y1, y1, . . . , y1), we know that x1 ⊏B y1, so s ⊏A t be-

cause f is a rigid surjection (A,⊏A) → (B,⊏B). But then

min f̂−1
θ/σ(x1, x1, . . . , x1) = (s, s, . . . , s) ⊏A†

sal (t, t, . . . , t) = min f̂−1
θ/σ(y1, y1, . . . , y1).

Case 2◦: |{x1, x2, . . . , xr}| = 1 and |{y1, y2, . . . , yr}| > 1.

Then min f̂−1
θ/σ(x1, x1, . . . , x1) = (s, s, . . . , s) and min f̂−1

θ/σ(y1, y2, . . . , yr) =

(t1, t2, . . . , tr), where |{t1, t2, . . . , tr}| > 1, so

tp(min f̂−1
θ/σ(x1, x1, . . . , x1)) ⊳ tp(min f̂−1

θ/σ(y1, y2, . . . , yr)),

whence min f̂−1
θ/σ(x1, x1, . . . , x1) ⊏

A†

sal min f̂−1
θ/σ(y1, y2, . . . , yr).

Case 3◦: |{x1, x2, . . . , xr}| > 1 and |{y1, y2, . . . , yr}| > 1.

Let (x1, x2, . . . , xr) = mat(p̄) and (y1, y2, . . . , yr) = mat(q̄) for some p̄, q̄ ∈ θB such

that tp(p̄) = tp(q̄) = σ. Since

mat(p̄) = (x1, x2, . . . , xr) ⊏
B†

sal (y1, y2, . . . , yr) = mat(q̄)

and tp(p̄) = tp(q̄) we have that p̄ ⊏B
sal q̄ (see Lemma 2.3). Since f̂θ : (θA,⊏A

sal) →

(θB,⊏B
sal) is a rigid surjection, we know that min f̂−1

θ (p̄) ⊏A
sal min f̂−1

θ (q̄). On the

other hand, tp(min f̂−1
θ (p̄)) = tp(ā) = tp(p̄) = tp(q̄) = tp(b̄) = tp(min f̂−1

θ (q̄)) for

some ā ∈ f̂−1
θ (p̄) and b̄ ∈ f̂−1

θ (q̄), where the minimum is achieved, so by Lemma 2.3

we conclude that

mat(min f̂−1
θ (p̄)) ⊏A†

sal mat(min f̂−1
θ (q̄)).

By Lemma 2.5 we finally get min f̂−1
θ/σ(mat(p̄)) ⊏A†

sal min f̂−1
θ/σ(mat(q̄)), that is,

min f̂−1
θ/σ(x1, x2, . . . , xr) ⊏A†

sal min f̂−1
θ/σ(y1, y2, . . . , yr). This concludes the proof of

Case 3◦ and the proof that the functor F is well defined on morphisms.
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Let us show that G is well defined on morphisms. Take any morphism f : A → B

in ERstsrq(XΘ,⊏), where A = (A,XA
Θ ,⊏

A) and B = (B,XB
Θ,⊏

B).

Let us first show that f : (A,ΘA∗

) → (B,ΘB∗

) is a homomorphism. Take any

θ ∈ Θ and any x̄ = (x1, x2, . . . , xn) ∈ θA
∗

. If f↾{x1,x2,...,xn} is a constant map we are

done. Assume, therefore, that this is not the case. Then x̄ = tup(σ, ā) for some σ

and some ā ∈ (θ/σ)A. Because f : A → B is a homomorphism, f̂(ā) ∈ (θ/σ)B,

whence tup(σ, f̂(ā)) ∈ θB
∗

. Therefore, f̂(x̄) = f̂(tup(σ, ā)) = tup(σ, f̂ (ā)) ∈ θB
∗

,

using Lemma 2.4 for the second equality.

Next, let us show that for every θ ∈ Θ and every (x1, x2, . . . , xn) ∈ θA
∗

, if

f↾{x1,x2,...,xn} is not a constant map then xi ⊏A∗

xj ⇒ f(xi) ⊏B∗

f(xj) for

all i and j. Take any θ ∈ Θ, any x̄ = (x1, x2, . . . , xn) ∈ θA
∗

and assume that

f↾{x1,x2,...,xn} is not a constant map. By definition of θ
A∗

we have that x̄ = tup(σ, ā)

for some σ and some ā ∈ (θ/σ)A. Clearly, mat(x̄) = ā. Assume that xi ⊏A∗

xj .

Then xi ⊏
A xj , so

ā = mat(x̄) = (. . . , xi, . . . , xj , . . .) ∈ (θ/σ)A.

Because f : A → B is a homomorphism,

(. . . , f(xi), . . . , f(xj), . . .) ∈ (θ/σ)B,

so f(xi) ⊏
B f(xj), or, equivalently, f(xi) ⊏

B∗

f(xj).

Finally, let us show that f̂↾θA∗ : (θA
∗

,⊏A∗

sal ) → (θB
∗

,⊏B∗

sal) is a rigid surjection

for every θ ∈ Θ. For notational convenience, this time we let f̂θ = f̂↾θA∗ and

f̂θ/σ = f̂↾(θ/σ)A .

Note, first, that f̂θ : θ
A∗

→ θB
∗

is surjective because so is f̂θ/σ : (θ/σ)A → (θ/σ)B

for every σ. Take any x̄, y ∈ θB
∗

such that x̄ ⊏B∗

sal y. Let x̄ = (x1, x2, . . . , xn) and

y = (y1, y2, . . . , yn).

Case 1◦: |{x1, x2, . . . , xn}| = |{y1, y2, . . . , yn}| = 1.

By Lemma 4.2 (a) we have that min f̂−1
θ (x1, x1, . . . , x1) = (s, s, . . . , s), where s =

min f−1(x1), and min f̂−1
θ (y1, y1, . . . , y1) = (t, t, . . . , t), where t = min f−1(y1). Since

(x1, x1, . . . , x1) ⊏
B∗

sal (y1, y1, . . . , y1), we know that x1 ⊏B y1, so s ⊏
A t because f is

a rigid surjection (A,⊏A) → (B,⊏B). But then

min f̂−1
θ (x1, x1, . . . , x1) = (s, s, . . . , s) ⊏A∗

sal (t, t, . . . , t) = min f̂−1
θ (y1, y1, . . . , y1).

Case 2◦: |{x1, x2, . . . , xn}| = 1 and |{y1, y2, . . . , yn}| > 1.

Then min f̂−1
θ (x1, x1, . . . , x1) = (s, s, . . . , s) and min f̂−1

θ (y1, y2, . . . , yn) =

(t1, t2, . . . , tn), where |{t1, t2, . . . , tn}| > 1, so

tp(min f̂−1
θ (x1, x1, . . . , x1)) ⊳ tp(min f̂−1

θ (y1, y2, . . . , yn)),

whence min f̂−1
θ (x1, x1, . . . , x1) ⊏

A∗

sal min f̂−1
θ (y1, y2, . . . , yn).
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Case 3◦: |{x1, x2, . . . , xn}| > 1 and |{y1, y2, . . . , yn}| > 1.

By the definition of θB
∗

we have that x̄ = tup(σ, ā) for some σ, and some

ā ∈ (θ/σ)B and y = tup(τ, b̄) for some τ and some b̄ ∈ (θ/τ)B .

Assume, first, that σ 6= τ . Then x̄ ⊏B∗

sal y actually means that tp(x̄) ⊳ tp(y). Let

min f̂−1
θ (x̄) = ū ∈ θA

∗

and min f̂−1
θ (y) = v ∈ θA

∗

. Lemma 2.4 then yields that

tp(ū) = tp(x̄) ⊳ tp(y) = tp(v), so ū ⊏A∗

sal v.

Assume, now, that σ = τ . Then tp(x̄) = tp(y), so Lemma 2.3 implies that

ā = mat(x̄) ⊏B
sal mat(y) = b̄. Since f̂θ/σ : ((θ/σ)A,⊏A

sal) → ((θ/σ)B ,⊏B
sal) is a rigid

surjection, it follows that min f̂−1
θ/σ(mat(x̄)) ⊏A

sal min f̂−1
θ/σ(mat(y)). Lemma 2.5 yields

that

min f̂−1
θ/σ(mat(x̄)) = mat(min f̂−1

θ (x̄)) and min f̂−1
θ/σ(mat(y)) = mat(min f̂−1

θ (y)).

Therefore, mat(min f̂−1
θ (x̄)) ⊏A

sal mat(min f̂−1
θ (y)). On the other hand, tp(x̄)=tp(y)

implies that tp(min f̂−1
θ (x̄)) = tp(min f̂−1

θ (y)). Lemma 2.3 then ensures that

min f̂−1
θ (x̄) ⊏A∗

sal min f̂−1
θ (y). This concludes the proof of Case 3◦, the proof that the

functor G is well defined on morphisms, and the proof of the theorem. �

6. Tournaments – a non-example

In this section we prove that the category whose objects are finite linearly ordered

reflexive tournaments and whose morphisms are rigid surjective homomorphisms

does not have the dual Ramsey property.

A linearly ordered reflexive tournament is a structure (A,→,⊏), where⊏ is a linear

order on A and → ⊆ A2 is a reflexive relation such that for all x 6= y, either

x → y or y → x. A mapping f : A → A′ is a rigid surjective homomorphism from

A = (A,→,⊏) to A′ = (A′,→′,⊏′) if f : (A,→) → (A′,→′) is a homomorphism and

f : (A,⊏) → (A′,⊏′) is a rigid surjection.

A reflexive tournament (T,→) is an inflation of a reflexive tournament (S,→) if

there exists a surjective homomorphism (T,→) → (S,→). Finite reflexive tourna-

ments (S1,→) and (S2,→) are siblings if there exists a finite reflexive tournament

(T,→) which is an inflation of (S1,→) and an inflation of (S2,→). Let C3 denote

the reflexive tournament ({1, 2, 3},→) whose nontrivial edges are 1 → 2, 2 → 3

and 3 → 1, and let C+
3 denote the reflexive tournament ({1, 2, 3, 4},→) whose non-

trivial edges are 1 → 2, 2 → 3, 3 → 1, 1 → 4, 2 → 4 and 3 → 4.

Lemma 6.1. C3 and C
+
3 are not siblings.
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Suppose, to the contrary, that there is a finite reflexive tournament T and sur-

jective homomorphisms f : T → C3 and g : T → C+
3 . Let Ai = f−1(i), 1 6 i 6 3,

and Bj = f−1(j), 1 6 j 6 4. Let Dij = Ai ∩ Bj , 1 6 i 6 3, 1 6 j 6 4. For

each j, it is not possible that all of the sets D1j , D2j and D3j are empty because

Bj = D1j ∪D2j ∪ D3j is nonempty. Analogously, for each i, it is not possible that

all of the sets Di1, Di2, Di3 and Di4 are empty.

Now, consider Dij and Duv for some 1 6 i, u 6 3 and 1 6 j, v 6 4, and note

that if i → u in C3 and v → j in C+
3 then Dij = ∅ or Duv = ∅. (If this is not the

case, take arbitrary x ∈ Dij and y ∈ Duv. If x → y in T then g(x) → g(y) in C+
3 .

But g(x) = j because x ∈ Dij ⊆ Bj and g(y) = v because y ∈ Duv ⊆ Bv. Hence,

j → v, which contradicts the assumption. The other possibility, y → x in T , leads

analogously to the contradiction with i→ u in C3.) We say that (ij, uv) is a critical

pair if i→ u in C3 and v → j in C+
3 . It is easy to list all the critical pairs:

(11, 23), (11, 32), (11, 34), (12, 21), (12, 33), (12, 34),

(13, 22), (13, 31), (13, 34), (14, 21), (14, 22), (14, 23),

(21, 33), (22, 31), (23, 32), (24, 31), (24, 32), (24, 33).

Let M = [mij ]3×4 be a 01-matrix such that

mij =

{
0, Dij = ∅,

1, Dij 6= ∅,

where 1 6 i 6 3 and 1 6 j 6 4. Then, as we have just seen, M has the following

properties:

(i) each row contains at least one occurrence of 1,

(ii) each column contains at least one occurrence of 1,

(iii) for every critical pair (ij, uv) we have that mij = 0 or muv = 0 (or both).

Let us show that no 01-matrix M = [mij ]3×4 satisfies all the three properties.

There are only seven possibilities to fill the first column by 0’s and 1’s (the option 000

is excluded by (ii)). Let us consider only the case 100, see Figure 3 (a), as the other

cases follow by analogous arguments. The entries 23, 32 and 34 have to be 0 because

of (iii), and the critical pairs (11, 23), (11, 32) and (11, 34), see Figure 3 (b).

1
0
0

(a)

1 0
0 0
0 0 0

(b)

1 0 0
0 0 0
0 0 1 0

(c)

1 0 0
0 1 0 0
0 0 1 0

(d)

Figure 3. C3 and C
+

3
are not siblings.
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Then the entry 33 has to be 1 because of (i), so (iii), and the critical pairs (12, 33)

and (24, 33) force the entries 12 and 24 to be 0, see Figure 3 (c). Using (i) once more,

the entry 22 has to be 1, and the critical pair (14, 22) forces the entry 14 to be 0, see

Figure 3 (d). Now, the last column of the matrix is 000, which contradicts (ii).

Therefore, the assumption that there are a finite reflexive tournament T and sur-

jective homomorphisms f : T → C3 and g : T → C+
3 leads to a contradiction. �

Theorem 6.2. Let T be a category whose objects are finite linearly ordered

reflexive tournaments and whose morphisms are rigid surjective homomorphisms.

Then T does not have the dual Ramsey property.

P r o o f. Let A = (A,→, <) and B = (B,→, <) be linearly ordered tournaments

depicted in Figure 4, where A = {1, 2}, B = {1, 2, 3, 4, 5, 6, 7} and < is the ordering

of the integers. Let us show that no finite linearly ordered reflexive tournament T

satisfies T → (B)A2 in T op. Take any finite linearly ordered reflexive tournament

T = (T,→,⊏) and define the coloring χ : homT (T ,A) → {1, 2} as

χ(f) =

{
1, the subtournament of (T,→) induced by f−1(1) is an inflation of C3,

2, otherwise.

Let ϕ, ψ : {1, 2, 3, 4, 5, 6, 7}→ {1, 2} be the maps

ϕ =

(
1 2 3 4 5 6 7

1 1 1 2 2 2 2

)
and ψ =

(
1 2 3 4 5 6 7

1 1 1 1 2 2 2

)
.

1

2

3

4 5

6

7

B

1 2

A

Figure 4. The tournaments in the proof of Theorem 6.2.

Clearly, ϕ, ψ ∈ homT (B,A). Now, take any w ∈ homT (T ,B). Since

(ϕ ◦ w)−1(1) = w−1(ϕ−1(1)) = w−1({1, 2, 3}),

it follows that (ϕ ◦ w)−1 induces an inflation of C3 in (T,→), so χ(ϕ ◦ w) = 1. Let

us show that χ(ψ ◦ w) = 2. Suppose this is not the case. Then χ(ψ ◦ w) = 1,

whence follows that (ψ ◦ w)−1 = w−1({1, 2, 3, 4}) induces a subtournament (S,→)

of (T,→) which is an inflation of C3. But the subtournament of (B,→) induced

by {1, 2, 3, 4} is C+
3 , whence follows that (S,→) is at the same time an inflation

of C3—contradiction with Lemma 6.1. �
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