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Spectral Theory of Singular Hahn Difference Equation
of the Sturm-Liouville Type

Bilender P. Allahverdiev, Hüseyin Tuna

Abstract. In this work, we consider the singular Hahn difference equation
of the Sturm-Liouville type. We prove the existence of the spectral function
for this equation. We establish Parseval equality and an expansion formula
for this equation on a semi-unbounded interval.

1 Introduction
Spectral expansion theorems have attracted mathematicians for a long time. The
first results of this type go back to Weyl [37]. Additional results were obtained
by Stone [34], [35], Naimark [31], Berezanskii [13] and Titchmarsh [36]. Usually, if
we want to solve a partial differential equation using the Fourier method (i.e., the
separation of variables) then we consider the problem of expanding an arbitrary
function as a series of eigenfunctions. Hence the eigenfunction expanding problem
has been studied extensively in the literature (see [2], [3], [4], [5], [6], [7], [13], [15],
[16], [21], [22], [29], [30], [31], [34], [35], [36], [38], [39]).

The study of the Hahn difference operator dates back to Hahn’s works [17]
and [18]. In 1949, Hahn introduced the quantum difference operator Dω,q defined
by

Dω,qf(x) =
f(ω + qx)− f(x)

ω + (q − 1)x
,

where q ∈ (0, 1) and ω > 0 (see [17], [18]). The Hahn difference operator Dω,q is
a generalization of the two well-known difference operators; namely, the quantum
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q-difference operator (see [23]) and the forward difference operator (see [24], [25]).
This operator has numerous applications in the construction of families of orthog-
onal polynomials and approximation problems (see [8], [12], [14], [27], [28], [32]).
A proper inverse of Dω,q and the associated integral calculus were studied in [1], [9].
Next, in [19], Hamza et al. established the theory of linear Hahn difference equa-
tions. They investigated also the existence and uniqueness of the solution of initial
value problems for Hahn difference equations. Moreover, they obtained Gron-
wall’s and Bernoulli’s inequalities with respect to the Hahn difference operator,
and investigated the mean value theorems for this calculus. Later, Hamza and
Makharesh [20] studied Leibniz’s rule and Fubini’s theorem associated with the
Hahn difference operator. Sitthiwirattham [33] investigated the nonlocal boundary
value problem for nonlinear Hahn difference equation. Recently, in [10], Annaby
et al. established a Sturm-Liouville theory associated with the Hahn difference op-
erator in the regular setting. In [11], the authors introduce a couple of sampling
theorems of Lagrange-type interpolation for ω, q-integral transforms whose kernels
are either solutions or Green’s function of the ω, q-Hahn-Sturm-Liouville problem.

In this paper, we study Hahn difference equations of the Sturm-Liouville type.
Having the solutions of such equations we define the new Hilbert space and con-
struct on it the Fourier transform and prove the Parseval equation. Therefore,
we prove the existence of a spectral function for the Hahn difference equations
of the Sturm-Liouville type in Lemma 3. In Theorem 5, a Parseval equality and
an expansion formula in eigenfunctions are established in terms of this spectral
function.

2 Notation and basic results
In this section, our aim is to present some basic concepts concerning the theory of
Hahn calculus. For more details, the reader may refer to [9], [10], [17] and [18].
Throughout the paper, let q ∈ (0, 1) and ω > 0.

Let ω0 := ω/(1− q) and let I be a real interval containing ω0.

Definition 1 ([17], [18]). Let f : I → R := (−∞,∞) be a function. The Hahn
difference operator is defined by

Dω,qf(x) =


f(ω + qx)− f(x)

ω + (q − 1)x
, x 6= ω0,

f ′(ω0) , x = ω0,
(1)

provided that f is differentiable at ω0. We call Dω,qf a ω, q-derivative of f .

Remark 1. The Hahn difference operator unifies two well known operators. When
q → 1, we get the forward difference operator which is defined by

∆ωf(x) :=
f(ω + x)− f(x)

(ω + x)− x
, x ∈ R.

When ω → 0, we get the Jackson q-difference operator which is defined by

Dqf(x) :=
f(qx)− f(x)

(qx)− x
, x 6= 0.
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Furthermore, under appropriate conditions, we have

lim
q→1
ω→0

Dω,qf(x) = f ′(x).

In what follows, we present several important properties of the ω, q-derivative.

Theorem 1 ([9]). Let f, g : I → R be ω, q-differentiable at x ∈ I and h(x) :=
ω + qx. Then, for all x ∈ I we have

i) Dω,q(af + bg)(x) = aDω,qf(x) + bDω,qg(x), a, b ∈ I,

ii) Dω,q(fg)(x) = Dω,q(f(x))g(x) + f(ω + xq)Dω,qg(x),

iii) Dω,q

(f
g

)
(x) =

Dω,q(f(x))g(x)− f(x)Dω,qg(x)

g(x)g(ω + xq)
,

iv) Dω,q(h
−1(x)) = D−ωq−1,q−1f(x).

The concept of the ω, q-integral of the function f can be defined as follows.

Definition 2 (Jackson-Nörlund Integral [9]). Let f : I → R be a function and
a, b, ω0 ∈ I. We define the ω, q-integral of the function f from a to b by∫ b

a

f(x) dω,q(x) :=

∫ b

ω0

f(x) dω,q(x)−
∫ a

ω0

f(x) dω,q(x),

where ∫ x

ω0

f(t) dω,q(t) := ((1− q)x− ω)

∞∑
n=0

qnf
(
ω

1− qn

1− q
+ xqn

)
, x ∈ I

provided that the series converges at x = a and x = b. In this case, f is called
ω, q-integrable on [a, b].

Similarly, one can define the ω, q-integral of a function f over (ω0,∞) by∫ ∞
ω0

f(x) dω,q(x) := lim
b→∞

∫ b

ω0

f(x) dω,q(x) .

The following properties of ω, q-integration can be found in [9].

Lemma 1 ([9]). Let f, g : I → R be ω, q-integrable on I and let a, b, c ∈ I where
a < c < b and α, β ∈ R. Then the following formulae hold:

i)
∫ b

a

(αf(x) + βg(x)) dω,q(x) = α

∫ b

a

f(x) dω,q(x) + β

∫ b

a

g(x) dω,q(x),

ii)
∫ a

a

f(x) dω,q(x) = 0,
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iii)
∫ b

a

f(x) dω,q(x) =

∫ c

a

f(x) dω,q(x) +

∫ b

c

f(x) dω,q(x),

iv)
∫ b

a

f(x) dω,q(x) = −
∫ a

b

f(x) dω,q(x).

Next, we present the ω, q-integration by parts.

Lemma 2 ([9]). Let f, g : I → R be ω, q-integrable on I and let a, b ∈ I where
a < b. Then the following formula holds:∫ b

a

f(x)Dω,qg(x) dω,q(x) +

∫ b

a

g(ω + qx)Dω,qf(x) dω,q(x) = f(b)g(b)− f(a)g(a) .

The next result is the fundamental theorem of Hahn calculus.

Theorem 2 ([9]). Let f : I → R be continuous at ω0. Define

F (x) :=

∫ x

ω0

f(t) dω,q(t), x ∈ I.

Then F is continuous at ω0. Moreover, Dω,qF (x) exists for every x ∈ I and
Dω,qF (x) = f(x). Conversely,∫ b

a

Dω,qF (x) dω,q(x) = F (b)− F (a).

Let L2
ω,q(ω0,∞) be the space of all complex-valued functions defined on [ω0,∞)

such that

‖f‖ :=
(∫ ∞

ω0

|f(x)|2 dω,qx
)1/2

<∞.

The space L2
ω,q(ω0,∞) is a separable Hilbert space with the inner product

(f, g) :=

∫ ∞
ω0

f(x)g(x) dω,qx, f, g ∈ L2
ω,q(ω0,∞)

(see [9]).

The ω, q-Wronskian of y(·), z(·) is defined by

Wω,q(y, z)(x) := y(x)Dω,qz(x)− z(x)Dω,qy(x), x ∈ [ω0,∞). (2)

Now we recall the following well-known theorems of Helly.

Theorem 3 ([26]). Let (wn)n∈N (N := {1, 2, . . . }) be a uniformly bounded se-
quence of real nondecreasing functions on a finite interval a ≤ λ ≤ b. Then there
exists a subsequence (wnk)k∈N and a nondecreasing function w such that

lim
k→∞

wnk(λ) = w(λ), a ≤ λ ≤ b.
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Theorem 4 ([26]). Assume (wn)n∈N is a real, uniformly bounded sequence of non-
decreasing functions on a finite interval a ≤ λ ≤ b, and suppose

lim
n→∞

wn(λ) = w(λ), a ≤ λ ≤ b.

If f is any continuous function on a ≤ λ ≤ b, then

lim
n→∞

∫ b

a

f(λ) dwn(λ) =

∫ b

a

f(λ) dw(λ) .

3 Main Results
Let us consider the Hahn difference equations of the Sturm-Liouville type given by

Γ(y) := −q−1D−ωq−1,q−1Dω,qy(x) + v(x)y(x) = λy(x), x ∈ (ω0,∞) (3)

with the boundary condition

D−ωq−1,q−1y(ω0) sinβ + y(ω0) cosβ = 0, β ∈ R, (4)

where λ is a complex eigenvalue parameter, v is a real-valued continuous function
at ω0 defined on [ω0,∞).

If we endow the problem (3)–(4) with the boundary condition

D−ωq−1,q−1y(q−n) sinα+ y(q−n) cosα = 0, α ∈ R, n ∈ N, (5)

then we deduce that the problem given by (3), (4) and (5) is a regular problem.
In [10], Annaby et al. showed that the boundary value problem (3) with the

boundary conditions (4) and (5) has a compact resolvent, thus this problem has
a purely discrete spectrum.

Let ϕ(x) be a solution of the system (3) satisfying the initial conditions

ϕ(ω0) = sinβ, D−ωq−1,q−1ϕ(ω0) = − cosβ. (6)

Let % be any nondecreasing function on R. Denote by L2
%(R) the Hilbert space of

all functions f : R→ R measurable with respect to the Lebesgue-Stieltjes measure
defined by % and such that ∫ ∞

−∞
f2(λ) d%(λ) <∞,

with the inner product

(f, g)% :=

∫ ∞
−∞

f(λ)g(λ) d%(λ).

The main result of this section is the following.

Theorem 5. There exists a nondecreasing function %(λ) on −∞ < λ <∞, a spec-
tral function for the boundary value problem given by (3)–(4), with the following
properties.
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i) If f is a real-valued function and f ∈ L2
ω,q(ω0, q

−n), then there exists a
function F ∈ L2

%(R) such that

lim
n→∞

∫ ∞
−∞

{
F (λ)−

∫ q−n

ω0

f(x)ϕ(x, λ) dω,qx

}
d%(λ) = 0, (7)

and the Parseval equality∫ ∞
ω0

f2(x) dω,qx =

∫ ∞
−∞

F 2(λ) d%(λ) (8)

holds.

ii) The integral ∫ ∞
−∞

F (λ)ϕ(x, λ) d%(λ)

converges to f in L2
ω,q(ω0,∞). That is,

lim
n→∞

∫ q−n

ω0

{
f(x)−

∫ n

−n
F (λ)ϕ(x, λ) d%(λ)

}2

dω,qx = 0. (9)

Remark 2. The expression

f(x) =

∫ ∞
−∞

F (λ)ϕ(x, λ) d%(λ),

where the equality is in the sense of (9), is called the expansion theorem.

Let λm,q−n (where m,n ∈ N) denote the eigenvalues of the regular problem
given by (3)–(5), and ϕ(x, λ) be the solution of the equation (3) satisfying the initial
conditions in (6). The function ϕm,q−n(x) = ϕ(x, λm,q−n) will be an eigenfunction
corresponding to the eigenvalue λm,q−n .

Let f(·) be an arbitrary real-valued function on L2
ω,q(ω0, q

−n) and

α2
m,q−n =

∫ q−n

ω0

ϕ2
m,q−n(x) dω,qx

where m ∈ N. Then we have∫ q−n

ω0

f2(x) dω,qx =

∞∑
m=1

1

α2
m,q−n

{∫ q−n

ω0

f(x)ϕm,q−n(x) dω,qx

}2

, (10)

which is called the Parseval equality (see [10]).
Now we will introduce the nondecreasing step function %q−n on [0,∞) by

%q−n(λ) =


−

∑
λ<λm,q−n<0

1

α2
m,q−n

, for λ ≤ 0,

∑
0≤λm,q−n<λ

1

α2
m,q−n

, for λ ≥ 0.
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Then the equality (10) can be written as∫ q−n

ω0

f2(x) dω,qx =

∫ ∞
−∞

F 2(λ) d%q−n(λ), (11)

where

F (λ) =

∫ q−n

ω0

f(x)ϕ(x, λ) dω,qx.

We will show that the Parseval equality for the problem given by (3) and (4) can
be obtained from (11) by letting n→∞. To this end, we shall prove the following
lemma.

Lemma 3. The total variation of the functions %q−n(λ) is uniformly bounded with
respect to q−n in each finite interval in the domain λ, i.e., for s > 0, there exists a
constant M = M(s) > 0 not depending on q−n such that

s∨
−s
{%q−n(λ)} =

∑
−s≤λm,q−n<s

1

α2
m,q−n

= %q−n(s)− %q−n(−s) < M. (12)

Proof. Let sinβ 6= 0. Since ϕ(x, λ) is continuous at ω0, we deduce from the condi-
tion ϕ(ω0, λ) = sinβ that there exists a positive number k such that k − ω0 is so
small and

1

k

(∫ k

ω0

ϕ(x, λ) dω,qx
)2

>
1

2
sin2 β. (13)

Let us define fk(x) by the formula

fk(x) =


1

k
, ω0 ≤ x < k

0, x > k.

By virtue of (11) and (13), we conclude that∫ k

ω0

f2k (x) dω,qx =
1

k
=

∫ ∞
−∞

(1

k

∫ k

ω0

ϕ(x, λ) dω,qx
)2

d%q−n(λ)

≥
∫ s

−s

(1

k

∫ k

ω0

ϕ(x, λ) dω,qx
)2

d%q−n(λ)

>
1

2
sin2 β

∫ s

−s
d%q−n(λ)

=
1

2
sin2 β{%q−n(s)− %q−n(−s)} ,

which is the desired result.
If sinβ = 0, then we can define the function fk(x) by the formula

fk(x) =


1

k2
, ω0 ≤ x < k

0, x > k.

By virtue of (10), we get the inequality (12). �
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Proof of Theorem 5. Suppose that the function fξ(x) satisfies the following condi-
tions:

i) fξ(x) vanishes outside the interval [ω0, q
−ξ], q−ξ < q−n.

ii) The functions fξ(x) and Dω,qfξ(x) are continuous on [ω0,∞).

iii) fξ(x) satisfies the boundary condition (4).

Applying (11) to fξ(x), we deduce that∫ q−ξ

ω0

f2ξ (x) dω,qx =

∫ ∞
−∞

F 2(λ) d%(λ), (14)

where

F (λ) =

∫ q−ξ

ω0

fξ(x)ϕ(x, λ) dω,qx . (15)

Since ϕ(x, λ) is a solution of the equation (3), we have

ϕ(x, λ) =
1

λ
Γ(ϕ(x, λ)) .

By (15), we obtain

Fn(λ) =
1

λ

∫ q−n

ω0

fξ(x)Γ(ϕ(x, λ)) dω,qx .

Since fξ(x) vanishes in a neighbourhood of the point q−n, and since fξ(x) and
ϕ(x, λ) satisfy the boundary condition (6), by using Lemma 2 we obtain that

Fn(λ) =
1

λ

∫ q−n

ω0

ϕ(x, λ)Γ(fξ(x)) dω,qx .

By virtue of (11), for any finite s > 0, we conclude that∫
|λ|>s

F 2
n(λ) d%q−n(λ) ≤ 1

s2

∫
|λ|>s

{∫ q−n

ω0

ϕ(x, λ)Γ(fξ(x)) dω,qx

}2

d%q−n(λ)

≤ 1

s2

∫ ∞
−∞

{∫ q−n

ω0

ϕ(x, λ)Γ(fξ(x)) dω,qx

}2

d%q−n(λ)

=
1

s2

∫ q−ξ

ω0

[Γ(fξ(x))]2 dω,qx .

By the formula (14), we deduce that∣∣∣∣∫ q−ξ

ω0

f2ξ (x)dω,qx−
∫ s

−s
F 2
n(λ)d%q−n(λ)

∣∣∣∣
<

1

s2

∫ q−ξ

ω0

[−q−1D−ωq−1,q−1Dω,qfξ(x) + v(x)fξ(x)]2 dω,qx . (16)
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From Lemma 3, it follows that the set {%q−n(λ)} is bounded. Using Theorems 3
and 4, one can find a sequence {q−nk} such that the sequence %q−nk (λ) converges
to a monotone function %(λ) as k →∞. Passing to the limit with respect to {q−nk}
in (16), we conclude that∣∣∣∣∫ q−ξ

ω0

f2ξ (x) dω,qx−
∫ s

−s
F 2
n(λ) d%(λ)

∣∣∣∣ < 1

s2

∫ q−ξ

ω0

[Γ(fξ(x))]2 dω,qx .

Letting s→∞, we see that∫ q−ξ

ω0

f2ξ (x) dω,qx =

∫ ∞
−∞

F 2
n(λ) d%(λ) .

Now, let f be an arbitrary real-valued function on L2
ω,q(ω0,∞). It is known that

there exists a sequence {fξ(x)} satisfying the conditions i)–iii) and such that

lim
ξ→∞

∫ ∞
ω0

(f(x)− fξ(x))2 dω,qx = 0 .

Let

Fξ(λ) =

∫ ∞
ω0

fξ(x)ϕ(x, λ) dω,qx .

Then, we have ∫ ∞
ω0

f2ξ (x) dω,qx =

∫ ∞
−∞

F 2
ξ (λ) d%(λ).

Since ∫ ∞
ω0

(fξ1(x)− fξ2(x))2 dω,qx→ 0 as ξ1, ξ2 →∞ ,

we have ∫ ∞
−∞

(Fξ1(λ)− Fξ2(λ))2 d%(λ) =

∫ ∞
ω0

(fξ1(x)− fξ2(x))2 dω,qx→ 0

as ξ1, ξ2 → ∞. It follows from the completeness of the space L2
%(R) that there

exists a limit function F which satisfies∫ ∞
ω0

f2(x) dω,qx =

∫ ∞
−∞

F 2(λ) d%(λ).

Our next aim is to prove that the function

Kξ(λ) =

∫ q−ξ

ω0

f(x)ϕ(x, λ) dω,qx

converges to F as ξ → ∞, in the metric of the space L2
%(R). Let g be another

function in L2
ω,q(ω0,∞). Similarly, let G(λ) be defined by g. It is evident that∫ ∞
ω0

(f(x)− g(x))2 dω,qx =

∫ ∞
−∞
{F (λ)−G(λ)}2 d%(λ).
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We define

g(x) =

{
f(x), x ∈ [ω0, q

−ξ]

0, x ∈ (q−ξ,∞).

Then we obtain that∫ ∞
−∞
{F (λ)−Kξ(λ)}2 d%(λ) =

∫ ∞
q−ξ

f2(x) dω,qx→ 0 (ξ →∞),

i.e., Kξ converges to F in L2
%(R) as ξ →∞. This proves i).

Now, we will prove ii). Suppose that the real-valued functions f, g are in
L2
ω,q(ω0, q

−n); and F (λ) and G(λ) are their Fourier transforms, respectively. Then
F ±G are the transforms of f ± g. Consequently, in view of (8), we have∫ ∞

ω0

[f(x) + g(x)]2 dω,qx =

∫ ∞
−∞

(F (λ) +G(λ))2 d%(λ),∫ ∞
ω0

[f(x)− g(x)]2 dω,qx =

∫ ∞
−∞

(F (λ)−G(λ))2 d%(λ).

Subtracting the second relation from the first one, we deduce that∫ ∞
ω0

f(x)g(x) dω,qx =

∫ ∞
−∞

F (λ)G(λ) d%(λ). (17)

We set

fτ (x) =

∫ τ

−τ
F (λ)ϕ(x, λ) d%(λ),

where F is the function defined in (7). Let g(·) be a real-valued function which is
equal to zero outside the finite interval [ω0, q

−µ]. Thus we obtain∫ q−µ

ω0

fτ (x)g(x) dω,qx =

∫ q−µ

ω0

{∫ τ

−τ
F (λ)ϕ(x, λ) d%(λ)

}
g(x) dω,qx

=

∫ τ

−τ
F (λ)

{∫ q−µ

ω0

ϕ(x, λ)g(x) dω,qx

}
d%(λ)

=

∫ τ

−τ
F (λ)G(λ) d%(λ). (18)

By (17), we have ∫ ∞
ω0

f(x)g(x) dω,qx =

∫ ∞
−∞

F (λ)G(λ) d%(λ). (19)

By (18) and (19), we obtain∫ ∞
ω0

(f(x)− fτ (x))g(x) dω,qx =

∫
|λ|>τ

F (λ)G(λ) d%(λ).
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By using Cauchy-Schwarz inequality, we see that∣∣∣∣∫ ∞
ω0

(f(x)− fτ (x))g(x) dω,qx

∣∣∣∣2 ≤ ∫
|λ|>τ

F 2(λ) d%(λ)

∫
|λ|>τ

G2(λ) d%(λ)

≤
∫
|λ|>τ

F 2(λ) d%(λ)

∫ ∞
−∞

G2(λ) d%(λ).

Applying this inequality to the function

g(x) =

{
fτ (x)− f(x), x ∈ [ω0, q

−µ]

0, x ∈ (q−µ,∞),

we deduce that ∫ q−µ

ω0

(f(x)− fτ (x))2 dω,qx ≤
∫
|λ|>τ

F 2(λ) d%(λ). (20)

Let us mention that the right-hand side of the inequality (20) does not depend on µ.
Hence passing to the limit as τ → ∞ gives the desired result. Thus Theorem 5 is
proved. �
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