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K Y B E R N E T I K A — V O L U M E 5 6 ( 2 0 2 0 ) , N U M B E R 3 , P A G E S 4 3 2 – 4 5 8

A ONE-WAY ANOVA TEST FOR FUNCTIONAL DATA
WITH GRAPHICAL INTERPRETATION

Tomáš Mrkvička, Mari Myllymäki, Milan J́ılek and Ute Hahn

A new functional ANOVA test, with a graphical interpretation of the result, is presented.
The test is an extension of the global envelope test introduced by Myllymäki et al. (2017, Global
envelope tests for spatial processes, J. R. Statist. Soc. B 79, 381–404, doi: 10.1111/rssb.12172).
The graphical interpretation is realized by a global envelope which is drawn jointly for all sam-
ples of functions. If a mean function computed from the empirical data is out of the given
envelope, the null hypothesis is rejected with the predetermined significance level α. The ad-
vantages of the proposed one-way functional ANOVA are that it identifies the domains of the
functions which are responsible for the potential rejection. We introduce two versions of this
test: the first gives a graphical interpretation of the test results in the original space of the func-
tions and the second immediately offers a post-hoc test by identifying the significant pair-wise
differences between groups. The proposed tests rely on discretization of the functions, therefore
the tests are also applicable in the multidimensional ANOVA problem. In the empirical part
of the article, we demonstrate the use of the method by analyzing fiscal decentralization in
European countries.

Keywords: global envelope test, groups comparison, permutation test, Europe, fiscal de-
centralization, nonparametrical methods

Classification: 62H15, 62G10

1. INTRODUCTION

Functional data appear in a number of scientific fields, where the process of interest is
monitored continuously. Those include e. g. monitoring of the share price, the temper-
ature in a given location or monitoring of a body characteristic. A classical statistical
problem is to decide, if there exist differences between the groups of functions (e. g. the
control and treatment group). This problem is usually solved by determining the dif-
ferences among the mean group functions and then we deal with a one-way functional
ANOVA problem.

The functional ANOVA problem, both one-way and more complex designs, was pre-
viously studied by many authors. For example, [10] introduced an asymptotic version
of the ANOVA F -test, and [37] considered asymptotic or bootstrapped versions of a
L2-norm based test, F -type statistic based test and globalizing pointwise F -test. Fur-
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ther, [15] introduced a method based on a basis function representation, [28] described
a bootstrap procedure based on pointwise F -tests, [1] used wavelet smoothing tech-
niques, and [14] used a dimension reduction approach. Furthermore, [9] applied the
F -test on several random univariate projections and bound the tests together through
the false discovery rate (FDR). There is also the possibility to transform the functions
into single numbers and use the classical ANOVA, but such a procedure can be blind
against some alternatives.

Furthermore, nonparametric permutation procedures have been used to address this
problem. [17] used a one-dimensional integral deviation statistic to summarize the de-
viance between groups. Its distribution was obtained by permuting the functions. [23]
based the test either on certain pointwise statistics, such as the F -statistic, and found
the distribution of its maxima by permutation, or alternatively used the size of the area
which is given by exceeding some given threshold. Since these statistics need to satisfy
the homogeneity across the functional domain, [25] recommended to concentrate on the
p-values which are implicitely homogeneous across the domain and find the distribution
of its minima by permutation. This p-min and also F -max methods are able to identify
the regions of rejections by identifying a threshold of the statistics of the interest.

To identify the regions of rejections also other methods were developed in the litera-
ture. [8] developed a method similar to the p-min procedure, but specifically designed for
functional data. They applied the Westfall–Young randomization method to correct for
multiple testing. A global p-value can not be obtained for this method. [36] partitioned
the domain of interest and applied multiple testing correction on the individual parts of
the domain. A disadvantage is that partition has to be prespecified. [26] developed a
functional multi-way ANOVA framework for determining the regions of rejections under
the interval wise control of the error rate. This approach controls false rejection on any
interval, whereas typically the family wise error rate, i. e. false rejection of any pointwise
hypothesis, is controlled. Also the regions with differences between groups can not be
determined by this method. [7] defined a graphical representation of confidence bands
for functional data inference, which can be used for two functional sample testing.

However, none of the available methods is able to give a graphical interpretation of
group specific differences with respect to the null hypothesis or pairwise group differ-
ences, together with providing the global p-value in the family wise error rate sense.
This interpretation can help the user to understand what are the reasons of potential
rejections, when or where the potential differences appear. Our new proposed method
which has such a graphical interpretation is based on the global rank envelope test and
the extreme rank length measure introduced in [21]. Here we extend this procedure for
the functional ANOVA setting by using permutations to obtain the simulations from
the null model which are required for applying the global rank envelope test. We define
the test statistics suitable for testing the functional ANOVA null hypothesis. Further,
we introduce here new graphical interpretation of the test based on the extreme rank
length directly which allows to merge the graphical interpretation with single extreme
rank length p-value rather than with p-interval as it was merged in the original definition
of global rank envelope test. In this work, we concentrate on the one-way functional
ANOVA problem only, because in this case and under homoscedasticity the proposed
Monte Carlo test is exact, i. e. its type I error is exactly the prescribed significance level
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α, under the assumption of all observed functions being from the same distribution. We
also define an extension of our method for the heteroscedastic case.

In Section 2 we introduce two versions of our completely nonparametric method for
the one-way functional ANOVA problem. The graphical interpretation of the second
version of the test also gives an immediate post-hoc test for finding which of the groups
differ from each other. Interestingly, this post-hoc comparison is done simultaneously
with the ANOVA test, thus at the exact significance level α. Therefore, no second
comparison is needed to find which groups differ.

In Section 2.2 we also describe the global rank envelope test applied to the pointwise
F -statistics. This test does not have its graphical representation in the space of the
functions, but we introduce it as another possibility of applying the global envelope test
in the functional ANOVA setting. Further, in Section 2.3 we show, how these methods
can be used to testing the homoscedasticity.

In Section 3, we present results of a simulation study that was performed to com-
pare powers of our graphical procedures with the powers of the procedures which were
already available. In order to be able to compare the performances, we chose to the
comparison only such procedures which were available through the software R [27] and
which provided the global p-value in the sense of the family wise error rate. The simu-
lation study was performed only in order to show that our method, which has a unique
graphical interpretation, has comparable power with respect to other global methods.
All our proposed methods can be found in the R package GET [20, 21].

In Section 4, we apply our methods to the fiscal decentralization issue in European
countries. The empirical analysis aims to capture differences in developments of govern-
ment expenditure decentralization among different groups of European countries. The
assumption is, based on the existing literature, that countries with a longer European
integration history and therefore presumably with deeper economic and political inte-
gration are supposed to decentralize their government expenditure more extensively. We
use the government expenditure centralization ratios of 29 European Union and EFTA
countries in period from 1995 to 2016 sorted into three groups according to the presumed
level of European economic and political integration.

Section 5 is for further discussion.

2. GRAPHICAL FUNCTIONAL ANOVA

Let us assume that we have J groups which contain n1, . . . , nJ functions observed on
the finite interval R = [a, b] and denote the functions by Tij , j = 1, . . . , J, i = 1, . . . , nj .
Assume that {Tij ∈ L∞, i = 1, . . . , ni} is an i.i.d. sample from a stochastic process
SP (µj , γj) with a mean function µj and a covariance function γj(s, t), s, t ∈ R for
j = 1, . . . , J . We want to test the hypothesis

H0 : µ1(r) = . . . = µJ(r), r ∈ R.

We do not need to specify the stochastic process SP in order to define our method and
thus our method can be taken as completely nonparametric comparison of groups of
functions.

The hypothesis H0 is equivalent to the hypothesis

H ′0 : µj′(r)− µj(r) = 0, r ∈ R, j′ = 1, . . . , J − 1, j = j′, . . . , J.
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This hypothesis corresponds to the post-hoc test done usually after the ANOVA test is
significant.

In the following we introduce the test statistics both for the hypothesis H0 and H ′0,
first for the case of equal covariance functions (i. e. for the case of γ1(s, t) = . . . =
γJ(s, t), s, t ∈ R) and then for the case of unequal variance functions (i. e. for the case
of γ1(s, t)/γ1(s, s) = . . . = γJ(s, t)/γJ(s, s), s, t ∈ R) (Sections 2.1 and 2.2). Then we
describe how the permutations are performed under the null hypothesis (Section 2.4)
and show how the rank envelope test can be used for these test statistics (Section 2.5).

The implementation of our method relies on the discretization of functions. We
assume that all functions are discretized in the same way obtaining values at points
(r1, . . . , rK). If this is not the case, we have to apply smoothing techniques (e. g. those
described in [37]) and then make such a necessary discretization. In the simulation
study (see Section 3) we study our method with respect to increasing denseness of the
discretization. Remark here, that the discretization can be arbitrary and equidistances
are not required.

2.1. Test vectors

The hypothesis H0 can be tested by the test vector consisting of the mean of functions in
the first group followed by the mean of test functions in the second group, etc. Shortly,
the test vector is

T = (T 1(r), T 2(r), . . . , T J(r)), (1)

where T j(r) = (T j(r1), . . . , T j(rK)). Thus, the length of the test vector becomes J×K,
where K stands for the number of r values to which the functions are discretized.

The hypothesis H ′0 can be tested by the test vector consisting of the differences of
the group means of functions, i. e. the test vector is

T′ = (T 1(r)− T 2(r), T 1(r)− T 3(r), . . . , T J−1(r)− T J(r)). (2)

Here the length of the test vector becomes J(J − 1)/2×K.

2.1.1. Correction for an unequal variances

To deal with different variances of functions in different groups, we consider the rescaled
functions Sij instead of the original functions Tij ,

Sij(r) =
Tij(r)− Tj(r)√

Var(Tj(r))
·
√

Var(T (r)) + Tj(r), (3)

where the group sample mean Tj(r) and overall sample variance Var(T (r)) are involved
to keep the mean and variability of the functions at the original scale. The group sample
variance Var(Tj(r)) corrects the unequal variances.

For small samples, the sample variance estimators can have big variance, which may
influence the test procedure undesirably. In order to deal with this problem the variances
can be smoothed by applying moving average (MA) to the estimated variance with
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a chosen window size b. Thus, the rescaled functions take the form

Sij(r) =
Tij(r)− Tj(r)√
MAb(Var(Tj(r)))

·
√

MAb(Var(T (r))) + Tj(r). (4)

After transformation, the test vectors are composed in the same way as in the case
of the equal covariance functions but with rescaled functions:

Ts = (S1(r), S2(r), . . . , SJ(r)). (5)

where Sj(r) = (Sj(r1), . . . , Sj(rK), and

T′s = (S1(r)− S2(r), S1(r)− S3(r), . . . , SJ−1(r)− SJ(r)). (6)

2.2. Rank envelope F -type test

When a graphical interpretation for group specific differences is not of interest but the
area of rejection is, one can utilize the F -type test for each r ∈ R separately and form
the test vector from the r-wise F -statistics,

TF = (F (r1), F (r2), . . . , F (rK)),

where F (rk) stands for the F -statistic computed from the univariate ANOVA model at
point rk. In this case the correction for unequal variances can be done by choosing the
variance corrected F -statistic.

2.3. Homoscedasticity tests

Following the Levene’s test of homoscedasticity, it is possible to test the equality of
variances in functional ANOVA design by setting the test vector TV = T, TV = T′ or
TV = TF , where instead of the original functions Tij , the functions

Zij(r) = |Tij(r)− T j(r)| (7)

are used. Similarly, in order to test the equality of lag s covariance, it is possible to set
the test vector TC = T, TC = T′ or TC = TF , where instead of the original functions
Tij , the functions

Wij(r) =

√
|(Tij(r)− T j(r))(Tij(r + s)− T j(r + s))|

·sign[(Tij(r)− T j(r))(Tij(r + s)− T j(r + s))], (8)

for r ∈ [a, b− s], are used.

2.4. Permutations and exchangebility of the test vectors

The most important aspect of the permutation tests is the manner in which data are
shuffled under the null hypothesis. In all our one-way ANOVA tests, we perform the
simple permutation of raw functions among the groups. That is, if G is a vector of
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group indices of length N =
∑J
j=1 nj , then the permutation P is N × N matrix that

has all elements being either 0 or 1, each row and column having exactly one 1. Pre-
multiplicating the group indices G by the matrix P permutes the group indices. Note
that the possible correction for unequal variances is performed prior to the permutation
and the permutations are consequently done for the rescaled functions (3) or (4).

We say that a test vector T is exchangeable if the observed and simulated (permuted)
test vectors T1, . . . ,Ts are exchangeable, i. e. the joint distribution of T1, . . . ,Ts is not
affected by permutation.

Proposition 2.1. Under the assumption that all the functions Tij , j = 1, . . . , J, i =
1, . . . , nj follow the same stochastic process, the test vectors T, T′, TF and also TV , TC

are exchangeable for permutations P. Under the assumption of normality of stochastic
processes SP (µj , γj) the test vectors Ts, T

′
s and TF with variance corrected F -statistics

are asymptotically exchangeable for permutations P for the case of unequal variances
and the null hypothesis of equal means. The asymptotics is taken over minJj=1 nj .

P r o o f . Since the permutations are performed on the whole functions (i. e. the block
permutation scheme is used) and we assume that the functions form an i.i.d. sample
from a stochastic process, the joint distribution of T (T′, TF , TV , TC) is equal to the
joint distribution of T (T′, TF , TV , TC) for permuted groups PG.

In the case of unequal variances the functions are first scaled by the sample group
variance for computation of Ts and T′s. The sample group variance Var(T j(r)) con-
verges a.s. to the true group variance. This holds similarly for the group sample mean
and overall sample variance. Thus the stochastic process Sij converges in distribution
to SP (µ, γj(s, t)γ(s, s)/γj(s, s)), where γ(s, s) is the overall variance. Under the null
hypotheses of equal means and unequal variances and assumption of normality these
stochastic processes are equal and thus the test vectors are asymptotically exchange-
able. A similar proof can be made for TF in the case of unequal variances. �

2.5. Global rank envelope test

The idea of the global rank envelope was introduced in [21] for testing in spatial statistics.
Further [19] extended the notion of this global envelope for general multivariate test
vectors. This extension applies, e. g., to the case where the multivariate vector consists
of values of two or more functions at once. We first recall the measures and associated
p-values introduced in [21]. Second, we define the global extreme rank length envelope
as a refinement of the global rank envelope.

Assume the general multivariate vector of the form

V =
(
V1, . . . , Vd).

Let V1, . . . ,Vs be the multivariate vectors generated by permutations under the null
hypothesis. Let V1 denote the vector obtained by identical permutation.

First we define the extreme rank Ri of the vector Vi = (Vi1, . . . , Vid) as the minimum
of its pointwise ranks, namely

Ri = min
k=1,...,d

Rik, (9)
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where the pointwise rank Rik is the rank of the element Vik among the corresponding
elements V1k, V2k, . . . , Vsk of the s vectors such that the lowest ranks correspond to
the most extreme values of the statistics. How the pointwise ranks are determined,
depends on whether a one-sided or a two-sided envelope test is to be performed: Let
r1k, r2k, . . . , rsk be the raw ranks of V1k, V2k, . . . , Vsk, such that the smallest Vik has
rank 1. In the case of ties, the raw ranks are averaged. The pointwise ranks are then
calculated as

Rik =


rik, for one-sided test, small V is considered extreme

s+ 1− rik, for one-sided test, large V is considered extreme

min(rik, s+ 1− rik), for two-sided test.

(10)

The extreme ranks can contain many ties, e. g. in a one-sided test with d-variate
vectors, up to d out of the s vectors can take the rank 1. Therefore we need to break
these ties in an efficient way. Ordering of the vectors by the extreme rank length [21]
refines the extreme rank ordering in order to minimize the possibility of ties.

Consider the vectors of pointwise ordered ranks Ri = (Ri[1], Ri[2], . . . , Ri[d]), where
{Ri[1], . . . , Ri[d]} = {Ri1, . . . , Rid} and Ri[k] ≤ Ri[k′] whenever k ≤ k′. The extreme rank
given in (9) corresponds to Ri = Ri[1]. The extreme rank length measure of the vectors
Ri is equal to

Rerl
i =

1

s

s∑
i′=1

1(Ri′ ≺ Ri), (11)

where

Ri′ ≺ Ri ⇐⇒ ∃n ≤ d : Ri′[k] = Ri[k]∀k < n, Ri′[n] < Ri[n].

We remark here that [22] independently defined the two-sided extreme rank length
measure as a functional depth and called it extremal depth.

2.5.1. p-values

We distinguish three different p-values attached to the rank envelope test. All the p-
values are based on Monte Carlo testing principles. The conservative and liberal p-values
are given as

p+ =

s∑
i=1

1(Ri ≤ R1)
/
s, p− =

s∑
i=1

1(Ri < R1)
/
s. (12)

The p-value based on the extreme rank length ordering is given as

perl = 1−
s∑
i=1

1(R1 ≺ Ri)
/
s. (13)

According to [21, Proposition 6.1], it holds that p− < perl ≤ p+.
Note here, that there still can appear some ties between R1 and Ri, i = 2, . . . , s.

However, since these ties are unlikely to happen, we define perl as the conservative p-
value. Alternatively these ties could be broken by randomization.
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2.5.2. The new graphical envelope

Myllymäki et al. [21] defined the graphical global envelope with respect to the ordering of
the extreme ranks Ri, i = 1, . . . , s. This ordering can have a lot of ties and consequently
the graphical envelope based on this ordering requires a lot of permutations in order to
be precise. We eliminate this problem in this paper by defining the graphical envelope
with respect to the extreme rank length ordering (11).

Assuming that all the Vi follow the same joint distribution, we construct rank en-

velopes with level (1 − α) as sets {V(α)
low,V

(α)
upp} such that, the probability that V =

(V1, . . . , Vd) falls outside this envelope in any of the d points is less or equal to α,

Pr
(
∃ k ∈ {1, . . . , d} : Vk /∈ [V

(α)
low k, V

(α)
upp k]) ≤ α.

Let Rerl
(α) be the largest value in {Rerl

1 , . . . , Rerl
s } for which

s∑
i=1

1
(
Rerl
i < Rerl

(α)

)
≤ αs, (14)

and Iα = {i ∈ 1, . . . , s : Rerl
i ≥ Rerl

(α)} be the index set of vectors whose extreme rank

length measure is larger than or equal to the critical value Rerl
(α). Then define

V
(α)
low k = min

i∈Iα
Vik, V

(α)
upp k = max

i∈Iα
Vik

for the two-sided test, following the idea of [22]. For one-sided tests, let V
(α)
low k = −∞

or V
(α)
upp k = ∞, respectively, for all k = 1, . . . , d. This envelope has the graphical

interpretation described in the next subsection.
The following theorem states that inference based on the perl and the global envelope

specified by V
(α)
low k and V

(α)
upp k are equivalent. Therefore, we can refer to this envelope as

the 100 · (1− α)% global extreme rank length envelope.

Theorem 2.2. Let perl be as given in (13), and V
(α)
low k, V

(α)
upp k define the 100 · (1− α)%

global extreme rank length envelope. Then, assuming that there are no pointwise ties
with probability 1, it holds that:

1. V1k < V
(α)
low k or V1k > V

(α)
upp k for some k = 1, . . . , d iff perl ≤ α, in which case the

null hypothesis is rejected;

2. V
(α)
low k ≤ V1k ≤ V

(α)
upp k for all k = 1, . . . , d iff perl > α, and thus the null hypothesis

is not rejected;

P r o o f . According to the definition of perl is perl ≤ α iff number of Ri smaller or equal
to R1 is smaller or equal to αs. That is equivalent, according to the definition of Rerl

(α), to

the Rerl
1 < Rerl

(α). This holds iff 1 /∈ Iα, which is equivalent to V1k < V
(α)
low k or V1k > V

(α)
upp k

for some k = 1, . . . , d according to the definition of the extreme rank length envelope.
The second part of the proof can be proven equivalently. �
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In the following theorem, we will prove that the global extreme rank length envelope
is contained in the global rank envelope. The lth rank envelope was defined in [21] by

V
(l)
low k = minl

i=1,...,s
Vik and V

(l)
upp k = maxl

i=1,...,s
Vik for k = 1, . . . , d, (15)

where minl and maxl denote the lth smallest and largest values, respectively, and l =
1, 2, . . . , b(s+ 1)/2c.

Lemma 2.1. Let
W

(l)
low k = min

i∈Il
Vik, W

(l)
upp k = max

i∈Il
Vik

for Il = {i ∈ 1, . . . , s : Ri ≥ l}. Then W
(l)
low k ≥ V

(l)
low k and W

(l)
upp k ≤ V

(l)
upp k.

P r o o f . Since all vectors in Il have the extreme rank greater or equal to l and thus
Rik ≥ l or Rik ≤ s− l + 1 (for two-sided test), the envelope defined by W is contained
in the envelope defined by V . �

Theorem 2.3. The 100 · (1− α)% global extreme rank length envelope is contained in
the 100 · (1− α)% global rank envelope.

P r o o f . This is a direct consequence of Lemma 2.1 and the fact that Iα contains a
smaller number of functions than Il for l = lα = max {l :

∑s
i=1 1(Ri < l) ≤ αs}, which

is the critical rank for the 100 · (1− α)% global rank envelope. �

Remark here that the (l + 1)th rank envelope given by V
(l+1)
low k and V

(l+1)
upp k is not

necessarily contained in the lth extreme rank length envelope given by W
(l)
low k and W

(l)
upp k.

2.6. One-way graphical functional ANOVA test

The proposed tests are performed in three steps. First the test vector is chosen. Second
s permutations are applied to the raw functions (or on the rescaled functions in the case
of unequal variance) and the chosen test vector is computed for each permutation. Third
the global rank envelope test is applied to the set of s test vectors. The following theorem
specifies the graphical interpretation of our proposed tests and claims the exactness of
the graphical method.

Theorem 2.4. Consider one-way graphical functional ANOVA test with T, T′ or TF

chosen as the test vector. Assume that all the functions Tij , j = 1, . . . , J, i = 1, . . . , nj
follow the stochastic process SP (µj , γ). Let perl be as given in (13), and Tαlow k and
Tαupp k define the 100 · (1 − α)% global extreme rank length envelope. Then, assuming
that there are no pointwise ties with probability 1 in the stochastic process SP (µ, γ), it
holds that:

1. T1k < Tαlow k or T1k > Tαupp k for some k iff perl ≤ α, in which case the null
hypothesis is rejected;

2. Tαlow k ≤ T1k ≤ Tαupp k for all k iff perl > α, and thus the null hypothesis is not
rejected.
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Theorem 2.4 is direct consequence of Proposition 2.1 and Theorem 2.2. The same
theorem holds for the proposed homoscedasticity tests. For the case of unequal variances
the above interpretation is due to the Proposition 2.1 achieved only asymptotically with
the additional assumption of normality.

Since we apply here the global extreme rank length envelope and not the global rank
envelope as it was the case in our previous works, a lower number of permutations can
be used. Anyway we recommend to use some thousands of permutations at minimum
for repeatability. In case of many groups the number of permutations has to increased
in order to not loose the power of the test, as it is demonstrated in the simulation study.

It is important to mention here that the graphical interpretion automatically identifies
which groups are responsible for the potential rejection and also it identifies which
parts of the functions are responsible for the rejection. This is very important for the
interpretation of the result of the test.

Note that for the test vector TF the one-sided rank test has to be used, whereas for
the other test vectors the two-sided rank test is used.

2.7. Comparison to other permutation methods

The nonparametric permutation methods often used in the brain image statistics are
similar to our proposed methods, therefore we would like to stress the differences. The
single threshold test [23] of a certain statistic whose maximum is permuted is limited
to the statistics that are homogeneous across the functional domain, in order to be
sensitive in the whole functional domain and not only in the part of the domain where
the functions are the most varying. The p-min permutation procedure used e. g. in
[25] solves this problem. This method can be viewed as our rank envelope F -type
test. However, the p-min permutation procedure uses the conservative p-value of our
rank envelope F -type test, i. e. the upper bound of the p-interval, p+ in (13). On
the other hand, our rank envelope F -type test is equipped also with the extreme rank
length p-value which solves the problem of ties in the p-min distribution and therefore
it significantly reduces the conservativeness of the test.

Further, our graphical functional ANOVA test gives the graphical interpretation in
the original space of functions and for each group of functions, whereas the p-min test
gives it only in the transformed space of p-values and for all groups simultaneously.
Therefore the p-min test is able only to identify the regions of rejection. Our graphical
functional ANOVA test is also equipped with the global extreme rank length envelope
which informs the user about the variability of the curves in the study. Finally, the
graphical functional ANOVA test is defined here also for combining several post-hoc
tests together in one test and therefore it indicates which two groups are different and
where they are different.

3. SIMULATION STUDY

Our simulation study has four parts. First we compared our methods with some existing
methods on a design taken from the study of [10] in order to check if our methods are
comparable in power and significance level to the existing methods. We chose meth-
ods which were available in the software R, especially in the packages fda.usc [13] and
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fdANOVA [16], and which are fundamentally different of each other. Second we checked
the robustness of the studied methods with respect to heteroscedasticity. Third we
changed the design from comparing three groups into comparing ten groups in order to
check how much of the power is lost by having a long test vector T or T′ with respect
to other procedures. Fourth we studied the dependence of the powers on the level of
discretization of the functions. The tests included in our study are listed in Table 1.

Abbr. Introduced/described in Test description
AsF [10] a bootstrapped version of the asymptotic F -test
RPM [9] a random univariate projection method
Fb [37] a bootstrapped version of the F -type statistic test
GPF [37] a globalizing pointwise F -test
FP [15] a method based on a basis function representation
IPT [17] a one-dimensional integral permutation test
F-max [23] the F -max permutation procedure
p-min [25] the p-min permutation procedure
GFAM here the graphical functional ANOVA based

on the test vector (1) (group means)
GFAC here the graphical functional ANOVA based

on the test vector (2) (group mean contrasts)
REF here the rank envelope F -type test

Tab. 1. List of tests included in the simulation study with their

abbreviations (Abbr.) and short description.

First we compared all the tests of Table 1 using an artificial example of J = 3 groups
and n = 10 functions in each group observed in the interval [0, 1] through 100 evenly
spread discrete points. Four different models with two different autocorrelation error
structures were considered. The models were

• M1: Tij(r) = r(1− r) + eij(r), i = 1, 2, 3, j = 1, . . . , 10,

• M2: Tij(r) = ri(1− r)6−i + eij(r), i = 1, 2, 3, j = 1, . . . , 10,

• M3: Tij(r) = ri/5(1− r)6−i/5 + eij(r), i = 1, 2, 3, j = 1, . . . , 10,

• M4: Tij(r) = 1 + i/50 + eij(r), i = 1, 2, 3, j = 1, . . . , 10.

The mean function for each model and group is shown in Figure 1.

The first autocorrelation structure of errors was modelled by the Gaussian random
process with exponential correlation structure with scale parameter equal to 0.1 and
standard deviation σ. In the second structure, the errors eij(r) were modelled by the
Brownian process with dispersion parameter σ. For each combination of the four models
and two autocorrelation structures, we considered six different contaminations for the
deterministic part of the model given by six different standard deviations σ1 = 0.05, σ2 =
0.1, σ3 = 0.15, σ4 = 0.2, σ5 = 0.4, σ6 = 0.8. Every standard deviation was twice the



A one-way ANOVA test for functional data with graphical interpretation 443

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
10

0.
20

M1

r

E
T

(r
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

M2

r

E
T

(r
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

M3

r

E
T

(r
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

M4

r

E
T

(r
)

Fig. 1. The mean functions of the models M1, M2, M3 and M4. The

first group (i = 1) corresponds to the solid line, second (i = 2) dashed

and third (i = 3) dotted. In M1, the three lines coincide.

previous one, except σ3 which was added in the middle of σ2 and σ4 in order to increase
the sensitivity of the simulation study.

The model M1 corresponds to the situation where H0 is true. Thus, in this case, the
predetermined significance level was estimated. It was set to α = 0.05 in all cases. The
other models represent different situations where H0 is false. The mean functions in the
models M2 and M3 have different shape, whereas the mean functions in the model M4
are constant.

Although the permutation tests are exact, they contain variability in sampled per-
mutations and further in the resulted p-value. [18] recommended to use at least 1000
Monte Carlo replicates in order to control this variability. Therefore, all the tested pro-
cedures were run using 2000 Monte Carlo replications or permutations in order to keep
the running time manageable and fulfil the above requirement. The RPM was run with
30 random projections, as it was found by [9] to be high enough in a general case, and
the false discovery rate p-value computed out of these projections was used as a final
output of this procedure. The extreme rank length p-value was used as the output of all
our new tests (GFAM, GFAC, REF). We performed 1000 simulations for each combina-
tion of model, autocorrelation structure and standard deviation, and we computed the
proportion of rejections to obtain the estimates of significance levels and powers. All
the results are summarized in Table 3 for the Gaussian process cases and in Table 2 for
the Brownian error cases.
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/ M1 σ1 = 0.05 σ2 = 0.1 σ3 = 0.15 σ4 = 0.2 σ5 = 0.4 σ6 = 0.8
AsF 0.066 0.063 0.060 0.060 0.060 0.069
RPM 0.055 0.039 0.042 0.042 0.038 0.045
Fb 0.033 0.032 0.038 0.032 0.030 0.039
GPF 0.068 0.071 0.068 0.071 0.071 0.077
FP 0.047 0.056 0.050 0.048 0.048 0.054
IPT 0.050 0.044 0.053 0.056 0.049 0.062
F-max 0.058 0.041 0.059 0.050 0.047 0.058
p-min 0.046 0.042 0.050 0.047 0.045 0.057
GFAM 0.047 0.047 0.056 0.050 0.052 0.054
GFAC 0.053 0.050 0.066 0.044 0.049 0.053
REF 0.053 0.037 0.054 0.048 0.048 0.057

M2 σ1 = 0.05 σ2 = 0.1 σ3 = 0.15 σ4 = 0.2 σ5 = 0.4 σ6 = 0.8
AsF 0.660 0.134 0.091 0.080 0.077 0.062
RPM 0.993 0.623 0.255 0.134 0.065 0.049
Fb 0.393 0.065 0.048 0.037 0.042 0.026
GPF 1.000 0.663 0.279 0.171 0.102 0.071
FP 0.645 0.106 0.066 0.064 0.065 0.049
IPT 1.000 0.600 0.227 0.129 0.074 0.049
F-max 1.000 0.958 0.599 0.337 0.110 0.059
p-min 1.000 0.954 0.584 0.330 0.105 0.050
GFAM 1.000 0.949 0.548 0.321 0.112 0.053
GFAC 1.000 0.930 0.540 0.308 0.116 0.048
REF 1.000 0.955 0.598 0.338 0.108 0.053

M3 σ1 = 0.05 σ2 = 0.1 σ3 = 0.15 σ4 = 0.2 σ5 = 0.4 σ6 = 0.8
AsF 1.000 0.506 0.194 0.122 0.073 0.055
RPM 1.000 0.997 0.894 0.652 0.159 0.064
Fb 0.997 0.230 0.098 0.047 0.040 0.031
GPF 1.000 1.000 1.000 0.996 0.329 0.099
FP 1.000 0.455 0.158 0.092 0.057 0.042
IPT 1.000 1.000 1.000 0.994 0.259 0.073
F-max 1.000 1.000 1.000 1.000 1.000 0.608
p-min 1.000 1.000 1.000 1.000 1.000 0.592
GFAM 1.000 1.000 1.000 1.000 0.996 0.436
GFAC 1.000 1.000 1.000 1.000 0.994 0.476
REF 1.000 1.000 1.000 1.000 1.000 0.598

M4 σ1 = 0.05 σ2 = 0.1 σ3 = 0.15 σ4 = 0.2 σ5 = 0.4 σ6 = 0.8
AsF 0.746 0.226 0.132 0.096 0.105 0.063
RPM 0.920 0.288 0.110 0.072 0.060 0.040
Fb 0.590 0.144 0.077 0.060 0.053 0.038
GPF 1.000 0.667 0.295 0.190 0.115 0.074
FP 0.691 0.193 0.116 0.077 0.079 0.049
IPT 1.000 0.596 0.240 0.143 0.091 0.052
F-max 1.000 1.000 0.981 0.808 0.188 0.075
p-min 1.000 1.000 0.978 0.791 0.180 0.068
GFAM 1.000 0.999 0.903 0.628 0.155 0.070
GFAC 1.000 0.997 0.893 0.648 0.146 0.069
REF 1.000 1.000 0.981 0.798 0.187 0.074

Tab. 2. The proportions of rejections (at level 0.05) over 1000 runs

in the case of Brownian errors for models M1, M2, M3, M4. See text

for the model specifications and Table 1 for descriptions of different

test abbreviations.
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M1 σ1 = 0.05 σ2 = 0.1 σ3 = 0.15 σ4 = 0.2 σ5 = 0.4 σ6 = 0.8
AsF 0.031 0.029 0.023 0.031 0.026 0.035
RPM 0.057 0.061 0.055 0.057 0.077 0.056
Fb 0.011 0.005 0.009 0.009 0.007 0.007
GPF 0.061 0.063 0.048 0.058 0.067 0.062
FP 0.059 0.055 0.040 0.056 0.060 0.050
IPT 0.062 0.061 0.042 0.052 0.060 0.047
F-max 0.058 0.063 0.046 0.051 0.052 0.048
p-min 0.034 0.041 0.025 0.028 0.035 0.029
GFAM 0.062 0.058 0.041 0.046 0.060 0.054
GFAC 0.047 0.061 0.038 0.043 0.058 0.051
REF 0.054 0.062 0.046 0.046 0.055 0.048

M2 σ1 = 0.05 σ2 = 0.1 σ3 = 0.15 σ4 = 0.2 σ5 = 0.4 σ6 = 0.8
AsF 0.615 0.133 0.058 0.048 0.026 0.024
RPM 0.515 0.143 0.088 0.071 0.069 0.062
Fb 0.437 0.055 0.022 0.017 0.007 0.005
GPF 0.729 0.209 0.113 0.086 0.055 0.056
FP 0.717 0.197 0.104 0.084 0.050 0.054
IPT 0.699 0.192 0.104 0.074 0.051 0.054
F-max 0.576 0.128 0.085 0.067 0.051 0.050
p-min 0.486 0.096 0.053 0.043 0.030 0.028
GFAM 0.613 0.166 0.094 0.065 0.063 0.055
GFAC 0.600 0.144 0.084 0.062 0.055 0.057
REF 0.586 0.134 0.084 0.063 0.054 0.057

M3 σ1 = 0.05 σ2 = 0.1 σ3 = 0.15 σ4 = 0.2 σ5 = 0.4 σ6 = 0.8
AsF 1.000 0.479 0.190 0.094 0.035 0.029
RPM 0.991 0.442 0.201 0.118 0.069 0.059
Fb 0.994 0.319 0.086 0.033 0.009 0.006
GPF 1.000 0.610 0.284 0.165 0.073 0.054
FP 1.000 0.615 0.275 0.152 0.065 0.057
IPT 1.000 0.586 0.260 0.150 0.069 0.050
F-max 1.000 0.628 0.230 0.141 0.068 0.050
p-min 1.000 0.527 0.168 0.096 0.041 0.036
GFAM 1.000 0.637 0.260 0.146 0.071 0.057
GFAC 1.000 0.659 0.267 0.160 0.063 0.059
REF 1.000 0.634 0.259 0.138 0.064 0.049
M4 σ1 = 0.05 σ2 = 0.1 σ3 = 0.15 σ4 = 0.2 σ5 = 0.4 σ6 = 0.8
AsF 0.813 0.202 0.086 0.053 0.035 0.025
RPM 0.686 0.195 0.096 0.066 0.061 0.052
Fb 0.694 0.113 0.041 0.018 0.010 0.006
GPF 0.888 0.290 0.134 0.106 0.077 0.054
FP 0.876 0.280 0.131 0.096 0.065 0.052
IPT 0.861 0.265 0.125 0.093 0.069 0.048
F-max 0.548 0.156 0.098 0.069 0.068 0.043
p-min 0.468 0.116 0.061 0.060 0.042 0.029
GFAM 0.617 0.185 0.095 0.081 0.067 0.045
GFAC 0.623 0.181 0.097 0.072 0.067 0.056
REF 0.574 0.162 0.098 0.066 0.067 0.042

Tab. 3. The proportions of rejections (at level 0.05) over 1000 runs

in the case of Gaussian process errors for models M1, M2, M3, M4.

See text for the model specifications and Table 1 for descriptions of

different test abbreviations.
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The empirical significance level should be in the interval (0.037, 0.064) with the prob-
ability 0.95 (given by the 2.5% and 97.5% quantiles of the binomial distribution with
parameters 1000 and 0.05). This was satisfied, except for the AsF and Fb procedures in
the case of the Gaussian process errors. This exception was caused by the high number
of discretized points. For 20 discretized points these methods did not show this feature.

Our three tests had very good power in the Brownian error case and slightly lower
power than the best methods (GPF, FP, IPT) in the Gaussian process error case. This
different behaviour was obviously caused by the fact that the Gaussian process error is
better captured by integral based methods, whereas Brownian error case with increas-
ing variability is better captured by maximum based methods. Surprisingly the REF
test did not have greater powers than the RECM and RECMD tests which are fully
nonparametric (the errors were normally distributed in the considered models).

In the second part of our simulation study, we studied the robustness of all studied
methods to heteroscedasticity. We computed the empirical significance levels of all
tests in the case of Gaussian process error structure and a) with standard deviations
σ · 0.5(i−1), where i is the group indicator, and b) with the same standard deviations
σ · 0.5(i−1) and further with scale parameter of the Gaussian error process equal to
i/10. The setting a) corresponds to the case of unequal variances, where our tests are
asymptotically exact. In the setting b), the variances as well as covariance structures are
unequal. First, we used the tests without any corrections (Table 4 rows 1-9). Second,
we explored the corrected versions of our three tests (Table 4 rows 12-14) as well as
of IPT and RPM for comparison. For IPT, a variance transformation similar to the
transformation (4) employed for GFAM and GFAC tests was used. The RPM method
relies instead on the variance correction of the F -statistic, similarly as REF method.
The other methods of the table were not corrected for heteroscedasticity due to the fact
that their implementation in R did not support it, but it is shown in [10] that the AsF
is robust to heteroscedasticity.

The second part of the study shows that the methods based on the maximum (F -max,
p-min, GFAM, GFAC, REF) are much more sensitive to the heteroscedasticity than the
methods based on the integral principle (Fb, GPF, IPT). The FP method, which is
based on the basis representation, was least affected by heteroscedasticity. The AsF
and Fb methods were clearly conservative as in the homoscedastic case. Considering
the methods with correction for unequal variances, i. e. GFAMU, GFACU, REFU, IPT,
RPM (Table 4 rows 10-14), the GFACU test was the least liberal method in the small
sample case of ten functions per group. The GFACU test was even less liberal than
FP. The unequality of covariance structures did not affect the liberality of the methods.
Thus, we conclude that our variance correction by transformation (4) of functions can
be used even for small sample sizes with expecting small liberality.

In the third part of our simulation study we took the model M3 and extended it for
ten groups, considering

M: Tij(r) = ri/5(1− r)6−i/5 + eij(r), i = 2, . . . , 11, j = 1, . . . , 10.

We used again the two correlation structures in the model and six levels of contamination
as in the first part of the study. Table 5 summarizes the results both for the Gaussian
process error (upper part) and the Brownian error case (lower part). The relations
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Unequal variances Unequal variances and covariances
σ1 = 0.05 σ2 = 0.1 σ3 = 0.15

AsF 0.031 0.035 0.017
Fb 0.007 0.008 0.006
GPF 0.103 0.100 0.084
FP 0.087 0.095 0.072
F-max 0.282 0.267 0.272
p-min 0.181 0.184 0.180
GFAM 0.173 0.163 0.178
GFAC 0.204 0.194 0.184
REF 0.241 0.226 0.234
RPM 0.107 0.103 0.117
IPT 0.109 0.116 0.103
GFAMU 0.111 0.107 0.081
GFACU 0.074 0.063 0.054
REFU 0.156 0.168 0.163

σ1 = 0.05 σ2 = 0.1 σ3 = 0.15
AsF 0.032 0.029 0.032
Fb 0.011 0.006 0.011
GPF 0.090 0.081 0.076
FP 0.077 0.073 0.066
F-max 0.285 0.279 0.272
p-min 0.208 0.202 0.195
GFAM 0.154 0.158 0.147
GFAC 0.198 0.186 0.160
REF 0.244 0.247 0.228
RPM 0.096 0.096 0.101
IPT 0.104 0.102 0.093
GFAMU 0.067 0.071 0.079
GFACU 0.042 0.048 0.030
REFU 0.144 0.143 0.124

Tab. 4. The proportions of rejections (at level 0.05) over 1000 runs

for model M1 for the Gaussian error process and heteroscedastic case.

The results shown in last three rows correspond to our three tests

with correction for unequal variances. Also the RPM and IPT

methods (below the horizontal line) were corrected, while the other

tests (above the horizontal line) were used without corrections.

between powers of different methods were the same as in the case of the three groups.
Also there was no observable decrease in the power for the GFAM and GFAC methods
with respect to the REF and p-min methods in the Gaussian process error case. On
the other hand, there was such decrease in the Brownian error case. This loss of power
in the GFAM and GFAC tests can be prevented by increasing number of permutations:
We performed the experiment also with 10000 permutations and obtained very similar
powers as with 2000 permutations for all the other methods except GFAM and GFAC:
the power of GFAM increased from 0.360 to 0.884 and the power of GFAC from 0.360
to 0.688 in the case of σ6 and Brownian errors. Thus the power of the graphical tests
was comparable to the power of the REF and p-min tests with 10000 permutations.

In the last part of the simulation study we studied the powers of all test with respect
to increasing discretization of the functions. For this purpose we simulated the model
M3 with Gaussian process error with standard deviation equal to 0.15. Table 6 shows
the estimated powers for five different levels of discretizations expressed by the num-
ber of observations of functions. The powers did not decrease with increasing level of
discretization. The only exception was the AsF method, whose power decreased, which
is correspondence with our finding in the first part of the study that this method was
conservative for resolution with 100 points.



448 T. MRKVIČKA, M. MYLLYMÄKI, M. JÍLEK AND U. HAHN

iid σ1 = 0.05 σ2 = 0.1 σ3 = 0.15 σ4 = 0.2 σ5 = 0.4 σ6 = 0.8
AsF 1.000 0.950 0.493 0.262 0.057 0.045
RPM 1.000 0.982 0.573 0.275 0.106 0.055
Fb 1.000 0.899 0.271 0.065 0.007 0.005
GPF 1.000 0.996 0.743 0.421 0.085 0.092
FP 1.000 0.996 0.725 0.414 0.077 0.071
IPT 1.000 0.990 0.715 0.394 0.102 0.107
F-max 1.000 0.997 0.775 0.408 0.112 0.065
p-min 1.000 0.997 0.704 0.344 0.095 0.049
GFAM 1.000 1.000 0.786 0.449 0.120 0.077
GFAC 1.000 1.000 0.842 0.521 0.119 0.078
REF 1.000 1.000 0.760 0.425 0.106 0.078

Brown σ1 = 0.05 σ2 = 0.1 σ3 = 0.15 σ4 = 0.2 σ5 = 0.4 σ6 = 0.8
AsF 1.000 0.996 0.656 0.364 0.092 0.064
RPM 1.000 1.000 1.000 0.996 0.544 0.104
Fb 1.000 0.944 0.208 0.148 0.036 0.012
GPF 1.000 1.000 1.000 1.000 0.724 0.148
FP 1.000 1.000 0.564 0.268 0.048 0.052
IPT 1.000 1.000 1.000 1.000 0.656 0.124
F-max 1.000 1.000 1.000 1.000 1.000 0.912
p-min 1.000 1.000 1.000 1.000 1.000 0.892
GFAM 1.000 1.000 1.000 1.000 0.976 0.360
GFAC 1.000 1.000 1.000 1.000 1.000 0.360
REF 1.000 1.000 1.000 1.000 1.000 0.904

Tab. 5. The proportions of rejections (at level 0.05) over 1000 runs

for model M. The Gaussian error process cases are shown in the upper

part and the Brownian error cases are shown in the lower part of the

table. See text for the model specification and Table 1 for descriptions

of different test abbreviations.

4. FISCAL DECENTRALIZATION EXAMPLE

The topic of fiscal federalism was brought about into the normative theory of public
finance in the middle of twentieth century. The main issue was to solve the extent
to which fiscal competences and responsibilities should be decentralized from central
to sub-central levels of government. The gradual development of the theory of fiscal
decentralization led to distinguishing between the first and the second generation theories
of fiscal decentralization, as explained in details by [24] and [35].

Generally, there are two types of empirical studies on fiscal decentralization. Within
the first type, the concern is in the consequences of fiscal decentralization in terms of
economic growth and the growth of public sector. The second type of studies deal with
the determinants of fiscal decentralization including a growing body of literature dealing
with the issues of globalization, economic and political integration and its consequences
on decentralization or secession. Our empirical example deals with the effects of Euro-
pean integration on fiscal decentralization dynamics in individual European countries.
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K 25 50 100 200 400
AsF 0.157 0.16 0.164 0.160 0.165
RPM 0.183 0.192 0.178 0.19 0.182

Fb 0.07 0.075 0.077 0.075 0.078
GPF 0.254 0.264 0.273 0.276 0.274
FP 0.234 0.248 0.254 0.255 0.250
IPT 0.235 0.248 0.252 0.253 0.253

F-max 0.228 0.252 0.255 0.246 0.236
p-min 0.210 0.196 0.190 0.194 0.033
GFAM 0.234 0.254 0.268 0.267 0.256
GFAC 0.229 0.254 0.268 0.254 0.264
REF 0.233 0.245 0.249 0.238 0.231

Tab. 6. The proportions of rejections (at level 0.05) over 1000 runs

for model M3, Gaussian process error with standard deviation equal

to 0.15 and various levels of discretizations (K = number of

discretized values of functions).

4.1. Decentralization under European economic and political integration

The decentralization has been a characteristic feature of social development in many
democratic countries since the last decades of 20th century. The usual presumption is
that the federated countries are more decentralized than unitary ones. The process of de-
centralization, however, is not derived only from the switch to the federal structure, but
it is usually more gradual and it is influenced by a number of factors. Even though the
institutional (constitutional) changes might be crucial, there are usually many gradual
and subtle changes in de facto decentralization. Moreover, as [4] noted, constitutional
changes are discrete events which in certain contexts may be difficult culturally and po-
litically to achieve. The gradual changes are more likely to be reflected in a continuous
measure, such as the ratio of state and local governments in total general government
expenditures or revenue.

Recently, the issue of centralization versus decentralization of government has at-
tracted attention in Europe. On the one hand, there are efforts to further integrate or
even federalize the European Union (EU), on the other hand there is resistance to further
integration, or even process of (br)exit from the EU (the case of United Kingdom). Also
some secession tendencies at the sub-national level of individual countries, i. e. in Spain,
Italy, Belgium or the UK, are quite strong [30]. The prominent argument behind these
tendencies is an insufficient (fiscal) decentralization. The EU and its member countries
are experiencing two parallel tendencies of decentralization and centralization.

[2] claims that there is a continuum between international treaties based integration
and the federal constitutions and thus between international organizations and federa-
tions. European Community, even before it became the European Union, has moved a
long way along the continuum towards the federation. This is true mostly with regards
to the capacity to legislate or regulate. The EU budget is still rather small, amounting
to approximately one percent of gross national income (GNI). According to [31], the EU
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is entity sui generis, not a federation, although this might be contested. The EU already
has institutions of a federation including a Second Chamber in the form of the European
Council and powerful exclusive policy competencies in competition and commerce.

A deep insight into the causes of decentralization or even secession trends is provided
by [3]. They formulated the trade-off between the benefits of large jurisdictions and
the cost of heterogeneity of large and diverse populations, which determine the size of
countries. By reducing the political and economic transaction cost, economic integration
extends the size of market and lowers the benefits of large jurisdictions, thus enhancing
incentives to secession. They conclude that the democratization (as is in the case of the
EU) lead to secessions. Decentralization can however be associated with lower cost and
may be preferred over secession [5]. Because the EU enlargements, whilst keeping the
European diversity, have gradually created large single internal market, the EU economy
as a whole became much less open compared to individual countries. Therefore, we
can hypothesize tendency to the European integration conditioned decentralization of
government budgets in individual EU countries. Similar conclusions of positive effects
of economic, political and social integration on fiscal decentralization were found by [33]
and [11] for OECD countries. National governments in the integrating EU therefore
run the risk of getting squeezed between the supranational and the sub-national levels
of government. Lower government expenditure centralization ratio may be expected in
this case.

[29] formulated the positive effect of economic openness on the size of the public
sector as well as on the fiscal centralization due to higher government expenditures for
centralized redistribution and macroeconomic stabilization. If the economic integration
strengthens incentives to fiscally decentralize, under some circumstances, an increased
integration may cause fiscal centralization. Such circumstances may come with macroe-
conomic imbalances in economic crisis.

4.2. Decentralization characteristic, data and hypothesis formulation

To analyze the fiscal decentralization, a suitable characteristic is needed. There are
variety of approaches of expressing the fiscal decentralization phenomenon (for complex
overview see [32, 34]). This paper follows in principle the approach of [6] and [4],
using the ratio of centralization. The advantage of this simple approach is twofold: it
avoids the problems with various, complicated and not easily comparable structures of
decentralized levels of governments, and it gives the largest dataset.

We use the government expenditure centralization ratio (GEC) in percent. It is the
ratio of central government expenditure to the total general government expenditure.
Because it includes all kinds of government expenditure (consumption, investment and
transfers), it is the most general measure of expenditure decentralization. Data were
collected from the [12] database. European countries were selected in order to achieve
the maximum size of dataset. Only those countries were included, where the data were
available from 1995 to 2016 without interruption. Finally, 29 countries were classified
into three groups in the following way:

Group 1: Countries joining EC between 1958 and 1986 (Belgium, Denmark,
France, Germany (until 1990 former territory of the FRG), Greece, Ireland, Italy,
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Luxembourg, Netherlands, Portugal, Spain, United Kingdom. These countries
have long history of European integration, representing the core of integration
process.

Group 2: Countries joining the EU in 1995 (Austria, Sweden, Finland) and 2004
(Malta, Cyprus), except CEEC (separate group), plus highly economically inte-
grated non-EU countries, EFTA members (Norway, Switzerland). Countries in this
group have been, or in some case even still are standing apart from the integration
mainstream. Their level of economic integration is however very high.

Group 3: Central and Eastern European Countries (CEEC), having similar fea-
tures in political end economic history. The process of economic and political
integration have been initiated by political changes in 1990s. CEEC joined the EU
in 2004 and 2007 (Bulgaria, Czech Republic, Estonia, Hungary, Latvia, Lithua-
nia, Poland, Romania, Slovakia, Slovenia, data for Croatia joining in 2013 are
incomplete, therefore not included).

Finally, based on the discussion presented in Section 4.1, we formulate the null hypothesis
that the trend of the fiscal centralization is same in all three groups of countries.

4.3. Data analysis

The data were first centred with respect to country average in order to remove the
differences in absolute values of GEC between countries and in order to keep the shape
of GEC functions. Thus we study the functions

CGECij(r) = GECij(r)−
1

22

2016∑
r=1995

GECij(r), j = {1, 2, 3}, i = 1, . . . , nj ,

where n1 = 12, n2 = 7, n3 = 10 and r = 1995, 1996, . . . , 2016. The curves are shown in
Figure 2.

First we checked the assumption of equality of covariance structure which is required
by our tests. This we propose to do by testing the equality of lag 1 covariances. Figure
reffig:CovarianceTest shows the result of the REF test applied to the transformed func-
tions (8) (p = 0.392).

The next step is to decide if the correction for unequal variances should be used.
Figure 4 shows the results of the GFAM test applied to the transformed functions (7).
Since the global p-value is 0.163, we have no evidence that the group variances differ
and we therefore prefer to use no correction. Figure 4 also shows the mean absolute
deviation across the three groups with the global 95% envelope reflecting the overall
variation of the mean absolute deviation among all groups over the years.

Finally, we performed the GFAM and GFAC tests for equality of means. The Figure
5 shows the mean centred GEC functions across the groups and their time develop-
ments together with the global 95% envelope reflecting the overall variation of the mean
function among all groups. Figure 6 shows the group differences of the mean centred
GEC functions and their time developments together with the global 95% envelope re-
flecting the variation of these differences. Both tests shows the deviation from the null
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Fig. 2. The centred GEC index for the years from 1995 to 2016 in
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Fig. 3. The test for equality of lag 1 covariances of the centred GEC

indices in the three groups using the rank envelope F -type test (REF).

hypothesis in the year 2006 and the difference of the groups is supported by p-values
equal to 0.045 and 0.021 respectively. According to the GFAM test, the first group is
significantly different from the other two. According to the GFAC test in the post-hoc
fashion, only groups 1 and 3 significantly differ. All the shown test were performed with
9999 permutations.
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Fig. 4. The GFAM test for equality of variances of the centred GEC

indices in the three groups.

For comparison, we also performed the other tests of the simulation study (see Table
1). First, our REF test was borderline significant (p = 0.055). The data statistic had
a peak very close to envelope for the year 2006, but the test was not able to reject the
null hypothesis at the strict significance level 0.05 (figure omitted). The p-values of the
other tests were for AsF equal to 0.467, for RPM method equal to 0.375, Fb 0.531, GPF
0.304, FP 0.559, IPT 0.265 and F -max 0.046. Since the deviation is present mainly only
in one year, the integral based methods are not capable to detect this small difference,
whereas the maximum type method F -max and all our methods are able to detect this
difference.

4.4. Interpretation of the tests results

The permutation based tests F -max, GFAM and GFAC found differences between the
groups. The GFAM test (Figure 5) shows greater downward departure from the central
function of government expenditure centralization in the period between 2001 and 2008
in the group 1 than in other groups. This tendency is supported by significant difference
observed in the year 2006. This period roughly corresponds to the period between Euro
introduction and start of financial crises. The tendency of the countries in the first group
to centralize after the year 2008 could be caused by the need of central governments to
increase the control over the general government budgets at the onset of the crisis.
Also the well known phenomenon of rather pro-cyclical fiscal behaviour of sub-national
governments supports this argument.

The GFAC test (Figure 6) shows that the difference in trends of mean group gov-
ernment expenditure centralization is realized between groups 1 and 3. This result is
consistent with the expectation, because the difference in the depth of integration be-
tween these groups is the largest.
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5. DISCUSSION

A new one-way graphical functional ANOVA test was introduced in this paper. Under
the assumption that the all the data come from the same distribution, the test has exact
type I error. It provides a graphical interpretation which is essential for the interpretation
of the results. Also tests and corrections for heteroscedasticity were presented. Two
different test vectors can be used leading to two different graphical interpretations.
The first option compares every group with the rest of the groups. The second option
compares differences between every pair of groups similarly like a Tukey post-hoc test
in the univariate ANOVA. A positive side effect of our method is that the post-hoc test
is provided together with the main ANOVA procedure at the given significance level.

Since the proposed test works in a highly dimensional multivariate settings, no
smoothness of the functions is required. On the other hand, the same discretization
of functions is required for every function. If this is not the case, a smoothing technique
has to be applied followed by further identical discretization of functions.

Our new methods were compared to the other functional ANOVA procedures, avail-
able through the software R, with respect to their power. The new graphical tests had
comparable power with respect to other procedures in our simulation study. It was
shown that the presented correction for unequal variances, which transforms the func-
tions, can be used even with low sample sizes. Its robustness with respect to unequal
covariance structure was also shown. In addition, the proposed methods did not loose
their power when the functions were more densely discretized.

Importantly, our simulation study shows that there is no procedure which would be
uniformly more powerful than our proposed tests. Therefore, we believe that our tests
are useful in practice due to their graphical interpretation and post-hoc nature. As
shown by our simulation study, our methods can loose some power when the number of
groups to compare is large. In such a case where the test vector is very long, the number
of permutations has to be increased in order to eliminate this problem.

Our new tests were designed for the one-way functional ANOVA design. A question
of our future research is how these procedures can be extended into multi-way design.
Since the permutation of the functional residuals leads to a liberal method, the problem
has to be solved in a more complex way.

Our methods show graphically the region of rejections in the family wise error rate.
The recent method of [26] can also show the regions of rejections but in the sense of
interval wise control of the error rate. We plan to compare these two approaches in the
future.
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[15] T. Górecki and L. Smaga: A comparison of tests for the one-way ANOVA problem for
functional data. Comput. Statist. 30 (2015), 987–1010. DOI:10.1007/s00180-015-0555-0
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