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DISTRIBUTED OPTIMIZATION FOR MULTI-AGENT
SYSTEM OVER UNBALANCED GRAPHS WITH LINEAR
CONVERGENCE RATE

Songsong Cheng and Shu Liang

Distributed optimization over unbalanced graphs is an important problem in multi-agent
systems. Most of literatures, by introducing some auxiliary variables, utilize the Push-Sum
scheme to handle the widespread unbalance graph with row or column stochastic matrix only.
But the introduced auxiliary dynamics bring more calculation and communication tasks. In
this paper, based on the in-degree and out-degree information of each agent, we propose an
innovative distributed optimization algorithm to reduce the calculation and communication
complexity of the conventional Push-Sum scheme. Furthermore, with the aid of small gain
theory, we prove the linear convergence rate of the proposed algorithm.

Keywords: multi-agent systems, distributed optimization, unbalanced graph, small gain
theory, linear convergence rate

Classification: 90C33, 68W15

1. INTRODUCTION

Owing to many applications in multi-agent network systems, such as smart grids [31],
virtualized networks [9] and machine learning [16] etc., distributed optimization has
gained much research attentions and many distributed algorithms have been developed
[11, 13, 22, 33]. These distributed algorithms solve the optimization problem only using
local data and exchanging information with neighbors of agents.

Under the circumstance of undirected communication graphs, many excellent meth-
ods were proposed, such as subgradient[18], dual average [5], and ADMM [10] and
corresponding extensions to some certain constraints [3, 17, 25]. Besides, some schol-
ars considered the distributed optimization problem with more general directed graphs
[2, 7, 19], but these graphs are also limited to balanced graphs. Although, for any
strongly connected directed graph, some balanced weights can be formulated [8], it may
be impossible in some practice or the corresponding computation burden may be larger
than that of solving the optimization problem [4, 6].

Recently, for the purpose of overcoming the constraints of unbalanced communication
graphs, some advanced approaches have been achieved. By learning the Perron vector,
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[12] proposed the Push-Sum method to adjust the weight scalars to ensure the exact con-
vergence. By combining the Push-Sum scheme, [24] extended the dual average method
into the unbalanced circumstances. In order to accelerate the convergence rate with fixed
step sizes, some new techniques have come forth. Xi et. al., combining the EXTRA [23]
and the Push-Sum scheme, proposed the DEXTRA method based on the out-degree of
each agent [26]. Furthermore, Xin et. al., developed FROST by utilizing the in-degree
information [29]. With the aid of DIGing techniques, Nedić, et.al. achieved the Push-
DIGing to obtain the linear convergence [21]. But almost all of the Push-Sum based
methods need to employ one or more auxiliary dynamics, which increases the burden of
computation and communication. Another way to overcome the unbalanced constraints
is the Surplus-based method [1], which ensures the average consensus by introducing a
surplus variable to eliminate the unbalance. By utilizing the surplus based method, Xi
et.al. extended the subgradient method with convergence rate O( lnt√

t
) [27, 28] and Liang

et.al, extended the quasi-monotone subgradient method with a increasing convergence
rate as O( 1√

t
) [14]. But the convergence rate of the surplus based method is limited to

sublinear because of the necessary of diminishing step sizes.
Motivated by the above discussions, we devote to integrate the Push-DIGing and

Surplus-based method to reduce the auxiliary variables and communication burden of
Push-DIGing, achieve a linear convergence rate. The main contributions of this paper are
listed as follows. Firstly, we consider distributed optimization over unbalanced graphs,
which is not an easy problem because the graph can be directed and it is hard to construct
a doubly stochastic matrix. Secondly, we present a novel distributed algorithm to solve
the problem and the algorithm inherits all merits of the Surplus-based algorithm and
Push-DIGing algorithm. In particular, our algorithm can solve not only the average
consensus problem as the Surplus-based algorithm but also distributed optimization
problem as the Push-DIGing algorithm. Moreover, our algorithm utilizes less variables
than the Push-DIGing algorithm to reduce the computation and communication burden.

The rest of this paper is organized as follows. Section 2 presents related preliminaries
on basic notations, graph theory and formulates the distributed optimization problem.
Second 3 provides the proposed distributed algorithm and analyzes its convergence per-
formance. Section 4 gives an illustrative example and Section 5 concludes this paper.

2. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we introduce necessary preliminaries and formulate the problem.

2.1. Basic notation and notions

The positive integer number set, real number set, n-dimensional real column vector set,
and n×m real matrix set are denoted as N+, R, Rn, and Rn×m, respectively. 1n ∈ Rn is
a vector with all of the entries are one with a proper dimension. In ∈ Rn×n is an identity
matrix and Inm = 1>n ⊗ Im ∈ Rm×nm, where ⊗ is the Kronecker product operator. A> is
the transpose of matrix A, diag{a} denotes a diagonal matrix composed by the elements
of vector a in the diagonal position. a ·b is the component wise multiplication of the two
vectors a and b. A = [aij ] ∈ Rn×m denotes a n×m matrix with aij is the corresponding i
row and j column entry. Considering n vector x1, · · · ,xn ∈ Rm, the accumulated vector
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is x = [x>1 , · · · ,x>n ]>, the corresponding average is x̄ = 1
nI

n
mx = 1

n

∑n
i=1 xi and the

consensus violation among x1, · · · ,xn is x̃ = x−1n⊗ x̄ = Lx with L = Inm− 1
n1n⊗Inm.

2.2. Graph theory

An unbalanced graph of a multi-agent system is denoted by G = (E ,V) where V =
{1, 2, · · · , n} and E ⊆ V × V are the set of nodes and edges. (i, j) ∈ E with i 6= j means
that node i can sent information to j. N i

i = {j ∈ V|(j, i) ∈ E , i 6= j} is the in-neighbor
set of node i and N i

o = {j ∈ V|(i, j) ∈ E , i 6= j} is the out-neighbor set of node i at
time t. The corresponding in-degree and out-degree of node i can be formulated as
dii = |N i

i | and dio = |N i
o|, respectively. For the considered unbalanced communication

graph, following mild assumption is necessary.

Assumption 1. The considered unbalanced graph is connected.

2.3. Problem formulations

Consider an optimization problem with following global objective function

min
xo∈Rm

f (xo) :=
n∑
i=1

fi(xo), (1)

where the local objective function fi(xo) is differentiable and convex. A multi-agent
system is adopt to solve the optimization problem in distributed manner. Problem (1)
can be equivalently transformed as follows

min
x∈Rmn

f (x) :=
n∑
i=1

fi(xi),

s.t. xi = xj .
(2)

where x = [x>1 ,x
>
2 , · · · ,x>n ]>. For the problem in (2), following two basic assumptions

should be given.

Assumption 2. Each local objective function fi(x) has Li-Lipschitz continuously gra-
dient, namely, for ∀ a,b ∈ Rm,

‖∇fi(a)−∇fi(b)‖ ≤ Li‖a− b‖, (3)

where Li is the Lipschitz constant of fi(x).

Assumption 3. Each local objective function fi(x) is µi-strong convexity, namely, for
∀ a,b ∈ Rn,

fi(a) ≥ fi(b) + 〈∇fi(a),a− b〉+
µi
2 ‖a− b‖2, (4)

where µi is the strong convexity constant of fi(x).
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For the considered objective function with strong convex constants µi and Lipschitz
constants Li with i = 1, · · · , n, following lemmas can be introduced.

Lemma 2.1. (Nedić et al. [21]) Under Assumptions 2 – 3, we have

1
n

n∑
i=1

〈fi(xti),x∗ − x̄t+1〉 ≤ f(x∗)− f(x̄t+1)− βµ̄
2(1+β)‖x̄t − x∗‖2

+ 1
n

n∑
i=1

[βµi
2 +

(1+η)Li
2η

]
‖xti − x̄t‖2 + (1+η)L̄

2 ‖x̄t+1 − x̄t‖2,
(5)

where µ̄ = 1
n

∑n
i=1 µi and L̄ = 1

n

∑n
i=1 Li.

2.4. Small gain theory

Following small gain theory is the basic scheme to analyze the convergence property of
the proposed algorithm.

Lemma 2.2. (Nedić et al. [21]) For a given sequence h1,h2, · · · ,hJ , satisfies following
closed circle

‖h(j\J)+1‖Tλ ≤ εj‖hj‖Tλ + θj , (6)

where all of gains ε1, ε2, · · · , εJ are positive constants. If ε
∆
= ε1ε2 · · · εJ < 1 holds, we

have

‖h1‖λ ≤ 1
1−ε

J∑
j=1

θj
J∏

k=j+1

εk, (7)

with definition εJ+1 = 1.

3. MAIN RESULTS

In this section, we present the distributed algorithm design and give the convergence
analysis.

3.1. Distributed algorithm

Firstly, we consider the distributed optimization problem over time-unvarying unbal-
anced communication graph, we propose the distributed algorithm as shown in Algo-
rithm 1.

For the convenience of notations and subsequent convergence analysis, we define
∇f(xt) = [∇f>1 (xt), ∇f>2 (xt), · · · ,∇f>n (xt)]> and formulate a row stochastic matrix Φ
and a column stochastic matrix Ψ as

{
Φ = [φij ] ∈ Rn×n,
Ψ = [ψij ] ∈ Rn×n,

(8)
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Algorithm 1

Initialization: For each i ∈ V,

ρ ∈ (0, 1), x0
i ∈ Rm, g0

i = −∇fi(x0
i ) ∈ Rm.

Update flows: For each i ∈ V,

xt+1
i = (1− ρ)xti + ρ

dii

∑
j∈N ii

xtj + αgti , (S1)

gt+1
i = 1

dio+1

∑
j∈N io

⋃
i

gtj −∇fi(xt+1
i ) +∇fi(xti). (S2)

where

φij =





1
dii
ρ j = i,

1− ρ j ∈ N i
i ,

0 otherwise,

and ψij =

{
1

dio+1 j ∈ N i
o ∪ i,

0 otherwise.
(9)

According to above notations in (8)-(9), the proposed Algorithm 1 can be formulated
in a compact form

{
xt+1 = (Φ⊗ Im)xt + αgt, (10a)

gt+1 = (Ψ⊗ Im)gt −∇f(xt+1) +∇f(xt). (10b)

For the considered column stochastic matrix Ψ, we have following result.

Lemma 3.1. For any column stochastic matrix Ψ, we can obtain a row stochastic
matrix sequence as follows

Ψ̂t = (V t)−1(Ψ⊗ Im)V t−1 (11)

where V t is governed by V t = diag{vt} ⊗ Im and vt+1 = (Ψ⊗ Im)vt with v0 = 1nm

The proof of Lemma 3.1 can be obtained directly by extending Lemma 4 in [20] with
the Kronecker product.

Lemma 3.2. Under Assumptions 1 – 3 with Q = 1, following properties on objective
function’s gradient hold





∥∥ 1
n

n∑
i=1

∇fi(xti)
∥∥ ≤ 1

nLm‖pt‖, (12a)

gt = −
t∑

k=0

(Ψt−k ⊗ Im)yk, (12b)

‖gt‖ ≤ L. (12c)

where y0 = −g0, Lm = max{L1, · · · , Ln} and L =
2mn2ξLm

1−ζ + Lm.
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Lemma 3.3. Under Assumption 1 with Q = 1, for the introduced V t in Lemma 3.5
and Ψ, following properties hold





‖Inm[(V t)−1 − (V ∗)−1]‖ ≤ c1γt, (13a)

‖Ψt ⊗ Im −Ψ∗ ⊗ Im‖ ≤ c2γt, (13b)

Inm(V ∗)−1
(Ψ∗ ⊗ Im) = Inm, (13c)

where c1 = 2(2−γ)
√
nm

(1−γ)vm
, c2 = 2(2−γ)

√
nm

1−γ and γ = max
{ d1o
d1o+1 ,

d2o
d2o+1 , · · · ,

dno
dno +1

}
, with

vm = min
{
vtiv
∗
i , i ∈ {1, 2, · · · , nm}, t ∈ N+

}
.

3.2. Connection with other methods

For the balanced graphs, by combining a gradient tracking and inexact gradient method,
[21] proposed the DIGing method with double stochastic weight matrix W as follows,

{
xt+1 = (W ⊗ In)xt + αgt

gt+1 = (W ⊗ In)gt −∇f(xt+1) +∇f(xt).
(14)

And then, the method was extended to following Push-DIGing method for the unbal-
anced graphs with the aid of two auxiliary variables vt and ut





vt+1 = (Ψ⊗ In)vt

ut+1 = (Ψ⊗ In)(xt + αgt)

xt+1 = (diag{vt+1})−1ut+1

gt+1 = (Ψ⊗ In)gt −∇f(xt+1) +∇f(xt).

(15)

Apparently, the condition on the double stochastic weight matrix W in (14) is weak-
ened as the column stochastic matrix Ψ in (15). However, the introduced two auxiliary
variables vt and ut increase the computation and communication burdens of the multi-
agent system. In the proposed algorithm, we remove the two auxiliary variables by
introducing the cheap in-degree and out-degree information of each-agent.

Moreover, consider the following average problem

lim
t→∞

xti = x∗ = 1
n

n∑
i=1

x0
i . (16)

In order to deal with the problem in (16) under unbalanced graphs, [1] proposed the
Surplus-based method as follows

[
xt+1

st+1

]
=

([
Φ εIn

In − Φ Ψ− εIn

]
⊗Im

)[
xt

st

]
(17)

where st serves as the so-called surplus variable.
Transform the average consensus problem (16) to be an optimization problem as

follows, whose optimal solution is the average consensus value,

min
xi∈Rm

1
2

n∑
i=1

‖xi − x0
i ‖. (18)
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By applying the proposed algorithm in (12) into the problem in (18), and inserting
(10a) into (10b), it yields

[
xt+1

gt+1

]
=

([
Φ αIn

In − Φ Ψ− αIn

]
⊗Im

)[
xt

gt

]
(19)

which is identical to the Surplus-based algorithm in (17) with ε = α and st = gt.

3.3. Convergence analysis

The convergence analysis can be organized based on small gain theory. Some basic
notations should be defined as follows





pt = xt − 1⊗ x∗,

yt = ∇f(xt)−∇f(xt−1),

g̃t =
(
Inm − 1

n1n ⊗ Inm
)
gt,

x̃t =
(
Inm − 1

n1n ⊗ Inm
)
xt.

(20)

1) The first arrow p→ y.

Lemma 3.4. (Nedić et al. [21]) For p and y, if Assumption 2 holds, we have

‖y‖Tλ ≤ ε1‖p‖Tλ , (21)

where T ∈ N+, 0 < λ < 1 and ε1 =
(λ+1)Lm

λ .

2) The second arrow y→ w̃.

For the second arrow, because Ψ is column stochastic, we do not deduce the ar-
row between y and g̃ directly, but the w̃ = Lw instead, where wt = (V t)−1gt. The
relationship between y and w̃ can be achieved as follows.

Lemma 3.5. For y and w̃, if sup{‖Ψ̂‖L} < λ and 0 < sup{‖Ψ̂‖L} < λ holds, we have

∥∥w̃
∥∥T
λ
≤ ε2

∥∥y
∥∥T
λ
, (22)

where T ∈ N+, 0 < λ < 1 and ε2 =
λδ1
λ−δ2

with δ1 = sup{‖(V t+1)−1‖L} and δ2 =

sup{‖Ψ̂‖L}.

3) The third arrow w̃→ x̃.

Lemma 3.6. For x̃, w̃ and p, if sup{‖Φ⊗ Im‖L} ≤ λ and γ < λ hold, we have

‖x̃‖Tλ ≤ ατ1‖w̃‖Tλ + ατ2‖p‖Tλ + τ3, (23)

where T ∈ N+, 0 < λ < 1, τ1 =
δ4

λ−δ3
, τ2 =

(c2c4+1)(λ+1)
λ−γ

Lmτ1√
n

and τ3 =
αc1c3δ4√
n(λ−δ3)

with

δ3 = sup{‖Φ⊗ In‖L} and δ4 = sup{‖vt‖L}.
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Remark 3.7. Lemma 3.6 shows the relation between ‖x̃‖Tλ and ‖w̃‖Tλ but perturbed
by the third part ‖p‖Tλ . That is to say, it is not the pure arrow w̃→ x̃. Fortunately, we
present the relationship between the ‖x̃‖Tλ and ‖p‖Tλ in Lemma 3.9. Therefore, based
on Lemma 3.9, Lemma 3.8 will be exhibited the pure arrow w̃→ x̃.

Lemma 3.8. For x̃ and w̃, if sup{‖Φ⊗ In‖L} ≤ λ holds, we have

‖x̃‖Tλ ≤ ε3‖w̃‖Tλ + θ3, (24)

where T ∈ N+, 0 < λ < 1, ε3 =
ατ1

1−ατ2ε4
and θ3 =

ατ2θ4+τ3
1−ατ2ε4

.

4) The last arrow x̃→ p.

Lemma 3.9. For p and x̃, if 1− α(1 + η)L̄ ≥ 0, κ2λ ≤
√
n, and κ1 ≤ λ < 1 hold with

certain ξ ∈ (0, 1), η ∈ R, and β ∈ R, we have

‖p‖Tλ ≤ ε4‖x̃‖Tλ+ θ4, (25)

where T ∈ N+, 0 < λ < 1, ε4 =
1+κ3λ

1−κ2λ
√
n−1 , and θ4 =

√
n

1−κ2λ
√
n−1 ‖x̄0 − x∗‖ with

κ2
1 = 1

1−ξ
[
1− αβµ̄

(1+β)

]
, κ2

2 = 1
αµ̄ξ‖k‖2, and κ2

3 =
Lm(1+η)+βµmnη

µ̄η .

Remark 3.10. As shown in the second and third arrows of the small gain theory, we
introduce the variable wt to replace the dynamics of gt for the convenient of formulating
the circle of the small gain. However, the auxiliary variable wt just need the existence
rather than need to be computed and let alone to be communicated with other agents.

Based on these basic Lemmas 3.4, 3.5, 3.8 and 3.9, we are ready to develop the main
result, which establishes the convergence rate and the corresponding valid step size.

Theorem 3.11. Under Assumptions 1 – 3 with Q = 1, if ∀ ζ ∈ (0, 1) and ξ ∈
(
0,

max{1, (1−δ)2
σ }

)
hold, xt converges to x∗ with linear rate O(λt), and we can estimate λ

as

λ =





√
3−2αµ̄
3(1−ξ) , 0 < α ≤ 1.5(λo−δ)2

µ̄σ ,

δ +
√

2αµ̄σ
3 ,

1.5(λo−δ)2
µ̄σ < α ≤ 1.5(1−δ)2

µ̄σ ,
(26)

where δ = max{δ2, δ3, γ}, λo =
δ+

√
[1−(1−ξ)δ2]+(1−ξ)σ2

1+(1−ξ)σ and σ =
3δ4Lm(1+κ3)[

√
nδ1+(c2c4+1)]

ζµ̄ .

Proof. Combining Lemmas 3.4, 3.5, 3.6 and 3.9, we have





‖y‖Tλ ≤ ε1‖p‖Tλ
‖w̃‖Tλ ≤ ε2‖y‖Tλ
‖x̃‖Tλ ≤ ε3‖w̃‖Tλ + θ3

‖p‖Tλ ≤ ε4‖x̃‖Tλ + θ4,

(27)



Distributed optimization for multi-agent system over unbalanced graph . . . 567

where ε1 = λ+1
λ Lm, ε2 =

λδ1
λ−δ2

, ε3 =
ατ1

1−ατ2ε4
, ε4 =

1+κ3λ

1−κ2λ
√
n−1 , θ3 =

ατ2θ4+τ3
1−ατ2ε4

and

θ4 =
√
n

1−κ2λ
√
n−1 ‖x̄0 − x∗‖ with τ1 =

δ4
λ−δ3

, τ2 =
(c2c4+1)(λ+1)

λ−γ
Lmτ1√
n

and τ3 =
αc1c3δ4√
n(λ−δ3)

.

For the purpose of ensuring the convergence of the proposed algorithm, according to
the small gain in Lemma 2.2, we have

ε1ε2ε3ε4 ≤ 1. (28)

Submitting some related parameters into (28), we have

α≤
√
n(λ−δ2)(λ−δ3)(λ−γ)

ε4δ4Lm[
√
nδ1(λ−γ)+(c2c4+1)(λ−δ2)](λ+1)

. (29)

Defining δ = max{δ2, δ3, γ} and δ = min{δ2, δ3, γ}, it follows

[
√
nδ1(λ− γ) + (c2c4 + 1)(λ− δ2)](λ+ 1) ≤ 2[

√
nδ1 + (c2c4 + 1)](λ− δ). (30)

Furthermore, considering all of the conditions on step size α in Lemmas 3.4 – 3.9





δ2 = sup{‖Ψ̂‖L} < λ, (31a)

1− α(1 + η)L̄ ≥ 0, (31b)

κ2
1 = 1

1−ξ
[
1− αβµ̄

(1+β)

]
≤ λ2, (31c)

κ2λ = λ‖k‖√
αµ̄ξ
≤ √n. (31d)

For (31d), if we choose ‖k‖ = (1−ζ)√αξnµ̄
λ with ζ ∈ (0, 1), we have 1− κ2λ

√
n
−1

= ζ.
Then

ε4 =
1+κ3λ

1−κ2λ
√
n−1 ≤ 1+κ3

ζ . (32)

Therefore, combining (30) and (32) the up bound of α in (29) can be decreased as

α ≤ ζ(λ−δ)2
2δ4Lm(1+κ3)[

√
nδ1+(c2c4+1)]

∆
=

1.5(λ−δ)2
µ̄σ

∆
= Uα, (33)

where σ =
3δ4Lm(1+κ3)[

√
nδ1+(c2c4+1)]

ζµ̄ and Uα means the upper bound of α.

By choosing η = 1 and β =
2Lm

µm
≥ 2, standing on (31c), we have

α ≥ 1.5[1−(1−ξ)λ2]
µ̄

∆
= Lα (34)

Lα means the lower bound of α.

Considering λ increasing from δ to 1, Uα increasing from 0 to
1.5(1−δ)2

µ̄σ and Lα

decreasing from
1.5[1−(1−ξ)δ2]

µ̄ to 1.5ξ
µ̄ . Therefore, for the purpose of ensuring (33) and

(34) are compatible, we need

ξ ≤ (1−δ)2
σ , (35)



568 S. CHENG AND S. LIANG

and

λo =
δ+

√
[1−(1−ξ)δ2]+(1−ξ)σ2

1+(1−ξ)σ . (36)

Therefore, if the step size chosen as

0 < α ≤ 1.5(λo−δ)2
µ̄σ , (37)

we have

λ =
√

3−2αµ̄
3(1−ξ) , (38)

and if the step size chosen as

1.5(λo−δ)2
µ̄σ < α ≤ 1.5(1−δ)2

µ̄σ , (39)

we have

λ = δ +
√

2αµ̄σ
3 . (40)

Therefore, the proof is completed. �

Remark 3.12. We became aware of a recent work to apply the algorithm to solve
linear algebraic function Ax = b in [30] and gave the up bound of the step size under
the double stochastic weight matrix. However, as pointed out in the Remark 7 of [30], it
is challenge to obtain the up bound of step size in the unbalanced graphs circumstance
because of the mix row stochastic and column stochastic matrices. In this paper, for the
general strongly convex objective function, the valid step size range is achieved for the
unbalanced graphs.

4. NUMERICAL EXAMPLE

In order to illustrate the effectiveness of the proposed algorithm, we give a numerical
example on distributed solving algebraic equation Ax = b with A = [A>1 , · · · , A>n ] ∈
R5×5, and b = [b1, · · · , b5]> ∈ R5. The multi-agent system is connected by unbalanced
communication graph (See Fig.1) and the ith agent has access the information of Ai, bi,
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Fig. 1. The communication graph
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and if the step size is chosen as

1.5(�o��)2

µ̄� < ↵  1.5(1��)2

µ̄� , (39)

we have

� = � +
q

2↵µ̄�
3 . (40)

Therefore, the proof is completed. ⇤

Remark 3.12. We became aware of a recent work to apply the algorithm to solve
linear algebraic function Ax = b in [32] and present the up bound of the step size under
the double stochastic weight matrix. However, as pointed out in Remark 7 of [32], it
is challenge to obtain the up bound of step size in unbalanced graphs circumstance
because of the mixed row stochastic and column stochastic matrices. In this paper, for
the general strongly convex objective function, the valid step size range is achieved for
unbalanced graphs.

4. NUMERICAL EXAMPLE

In order to illustrate the e↵ectiveness of the proposed algorithm, we give a numerical
example on distributed solving algebraic equation Ax = b with A = [A>

1 , · · · , A>
5 ]> 2

R5⇥5, x 2 R5, and b = [b1, · · · , b5]
> 2 R5. The multi-agent system is connected by un-

balanced communication graph (See Fig.1) and the i-th agent has access the information
of Ai, bi, xj , and gj with j 2 N i

i

S
i. The entries of A and b are randomly generated

according to N(0, 5). As shown in Fig.2, the proposed algorithm can obtain the optimal
solution with a linear convergence rate.

Fig. 1. The communication graph.
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xj , and gj with j ∈ Ni ∪ i. The entries of A and b are randomly generated according
to N(0, 5). As shown in Fig.2, the proposed algorithm can obtain the optimal solution
with a linear convergence rate.

5. CONCLUSIONS

In this paper, a novel distributed optimization algorithm were proposed to handle unbal-
anced communication graphs. The conventional and universal push scheme was replaced
by utilizing the in-degree and out-degree information, which can reduce the complexity
of the algorithm and communication burden of the multi-agent system extensively. For
a given strongly convex objective function, it was proved that the proposed algorithm
converges to the optimal solution with a linear convergence rate. In the future, we will
concentrate on extending the proposed method to the online distributed optimization
[32] and remove the assumptions on strong convexity of the objective functions [15].

APPENDIX

Some related proofs of these intermediate lemmas are presented in this section.

Proof of Lemma 3.2

Considering the equilibrium of the proposed algorithm, we have

1
n

n∑
i=1

∇fi(x∗) = 0. (41)

Therefore, we obtain

∥∥ 1
n

n∑
i=1

∇fi(x∗)
∥∥ =

∥∥ 1
n

n∑
i=1

[∇fi(xti)−∇fi(x∗)]
∥∥

≤ 1
n

n∑
i=1

‖∇fi(xti)−∇fi(x∗)‖
≤ 1

nLm‖pt‖,

(42)
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where the last inequality is deduced by the Lipschitz gradient of each fi(x
t
i) and pt =

xt − 1⊗ x∗.
Besides, According to the definition of yt in (20) and the updating of gt in (10b), we

have

gt = (Ψ⊗ Im)gt−1 − yt. (43)

Applying the recursive of (43), (12b) followed.
In addition, submitting yt = ∇f(xt)−∇f(xt−1) into (12b), yields,

gt = −
t∑

k=0

(Ψt−k ⊗ Im)[∇f(xt)−∇f(xt−1)]

=
t−1∑
k=0

[
(Ψt−k−1 −Ψt−k)⊗ Im

]
∇f(xk)−∇f(xt).

(44)

Therefore, we have

‖gt‖ ≤ mLm
t−1∑
k=0

‖Ψk −Ψk+1‖+ Lm

≤ 2mn2ξLm
t−1∑
k=0

ξk + Lm

≤ 2mn2ξLm
1−ζ + Lm.

(45)

which implies (12c). �

Proof of Lemma 3.3

Based on Lemma 3 in [18], we have

|Ψt
ij −Ψ∗ij | ≤ 2(2−γ)

1−γ γt. (46)

Therefore, (13b) can be obtained with c2 = 2(2−γ)
√
nm

1−γ .

Since vt is governed by vt+1 = (Ψ ⊗ Im)vt with v0 = 1nm, we consider the corre-
sponding equilibrium

v∗ = (Ψ∗ ⊗ Im)v0 = nψ∗ ⊗ 1m. (47)

where each column vector of Ψ∗ is ψ∗. Then, we can establish (V ∗)−1 as

(V ∗)−1 = 1
n (diag{ψ∗})−1 ⊗ Im. (48)

Therefore, we have

Inm(V ∗)−1
(Ψ∗ ⊗ Im) = (1>n ⊗ Im)[ 1

n (diag{ψ∗})−1 ⊗ Im](Ψ∗ ⊗ Im)

= 1
n [1>n (diag{ψ∗})−1ψ∗1>]⊗ Im

= Inm.

(49)

Then, (13c) can be formulated.
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Since vt = (Ψt⊗ Im)v0 = (Ψt⊗ Im)1nm and v∗ = (Ψ∗⊗ Im)1nm, consider vi, which
is the ith sub-vector of vt

(vti − v∗i )1m =
n∑
j=1

(Ψt
ij −Ψ∗ij)1m. (50)

Furthermore, we have

(
1
vti
− 1

v∗i

)
1m = 1

vtiv
∗
i

n∑
j=1

(Ψt
ij −Ψ∗ij)1m. (51)

Therefore, standing on (46) and (51), we achieve

‖Inm[(V t)−1 − (V ∗)−1]‖ =
∥∥[ 1

vt1
− 1

v∗1
, · · · , 1

vtn
− 1

v∗n

]
1m ⊗ Im

∥∥ ≤ 2(2−γ)
√
nm

(1−γ)vm
γt. (52)

Then (13a) can be obtained and the proof of Lemma 3.3 is completed. �

Proof of Lemma 3.5

According to Lemma 3.1, Ψ̂ = (V t+1)−1(Ψ⊗Im)V t is a row stochastic matrix. Therefore,
by multiplying matrix (V t+1)−1 at both two sides of (10b), yields

wt+1 = Ψ̂wt − (V t+1)−1yt+1, (53)

where wt = (V t)−1gt. Then, we have

‖w̃t+1‖ = ‖wt+1‖L ≤ ‖Ψ̂wt‖L + ‖(V t+1)−1yt+1‖L ≤ ‖LΨ̂wt‖+ δ1‖yt+1‖, (54)

where δ1 = sup{‖(V t+1)−1‖L}. Since Ψ̂ is a row stochastic matrix, it is easy to derive

LΨ̂ = LΨ̂L. (55)

Submitting (55) into (54), we have

‖w̃t+1‖ ≤ δ2‖w̃t‖+ δ1‖yt+1‖, (56)

where δ2 = sup{‖Ψ̂‖L}. Considering 1
λt+1 ‖w̃t+1‖, we obtain

1
λt+1 ‖w̃t+1‖ ≤ δ2

λ
1
λt ‖w̃t‖+ δ1

1
λt+1 ‖yt+1‖. (57)

Taking maximization on the two sides of (57) from t = 0 to t = T − 1, it yields

∥∥w̃
∥∥T
λ
≤ δ2

λ

∥∥w̃
∥∥T−1

λ
+ δ1

∥∥y
∥∥T
λ
≤ δ2

λ

∥∥w̃
∥∥T
λ

+ δ1
∥∥y
∥∥T
λ
. (58)

Rearrange some related terms, the desired results can be followed. �
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Proof of Lemma 3.6

Considering the fact wt = (V t)−1gt, (10a) can be transformed as follows

xt+1 = (Φ⊗ Im)xt + αvt ·wt, (59)

where vt ·wt is the component wise multiplication of vt and wt. Note that

‖x̃t+1‖ = ‖xt+1‖L
= ‖(Φ⊗ Im)xt + αvt ·wt‖L
≤ ‖(Φ⊗ Im)xt‖L + α‖vt ·wt‖L
≤ δ3‖x̃t‖+ α‖vt ·wt‖L,

(60)

where the last inequality can be achieved similar to (56) with δ3 = sup{‖Φ⊗ Im‖L}.
By defining v̄t = 1

n1n ⊗ (Inmvt) and w̄t = 1
n1n ⊗ (Inmwt), it follows

∥∥vt ·wt
∥∥
L =

∥∥L(vt ·wt − vt · w̄t + vt · w̄t)
∥∥

≤
∥∥L(vt · w̃t)

∥∥+
∥∥L(vt · w̄t)

∥∥
≤ δ4

∥∥w̃t
∥∥+ δ4

∥∥w̄t
∥∥,

(61)

where δ4 = sup{‖vt‖L} < nm since the largest eigenvalue of L is 1 and vt is governed
by vt+1 = (Ψ⊗ Im)vt with v0 = 1.

Combining wt = (V t)−1gt and w̄t = 1
n (1n ⊗ Inm)wt, we have

‖w̄t‖ = ‖ 1
n (1n ⊗ Inm)(V t)−1gt‖

≤ 1√
n
‖Inm

[
(V t)−1 − (V ∗)−1

]
gt‖+ 1√

n
‖Inm(V ∗)−1gt‖. (62)

For the first term of (62), we have

1√
n

∥∥Inm
[
(V t)−1 − (V ∗)−1

]
gt
∥∥ ≤ c3√

n

∥∥Inm
[
(V t)−1 − (V ∗)−1

]∥∥ ≤ c1c3√
n
γt, (63)

where the first inequality follows from ‖gt‖ ≤ c3 and the last one follows from Lemma
3.3.

For the second term of (62), we have

∥∥Inm(V ∗)−1
gt
∥∥ =

∥∥Inm(V ∗)−1
t∑

k=0

(Ψt−k ⊗ Im)yk
∥∥ ≤M1 +M2, (64)

whereM1 = ‖Inm(V ∗)−1∑t
k=0(Ψt−k⊗Im−Ψ∗⊗Im)yk‖ andM2 = ‖Inm(V ∗)−1∑t

k=0(Ψ∗⊗
Im)yk‖.

For M1, we have

1
λtM1 = 1

λt ‖Inm(V ∗)−1
t∑

k=0

(Ψt−k ⊗ Im −Ψ∗ ⊗ Im)yk‖

≤ 1
λt ‖Inm(V ∗)−1‖

t∑
k=0

‖(Ψt−k −Ψ∗)⊗ Im‖‖yk‖

≤ c4
t∑

k=0

‖(Ψt−k−Ψ∗)⊗Im‖
λt−k

‖yk‖
λk

≤ c2c4‖y‖Tλ
t∑

k=0

(γλ )
t−k

≤ c2c4λ
λ−γ ‖y‖Tλ ,

(65)
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where the second inequality is obtained by considering the bound ‖Inm(V ∗)−1‖ = c4 and
decomposing 1

λt as 1
λt−k

1
λk

, the third inequality is attained by taking the maximization

for
‖yk‖
λk

from k = 0 to T and combining Lemma 3.3 to bound ‖(Ψt−k −Ψ∗)⊗ Im‖. For

M2, we have

M2 =
∥∥Inm(V ∗)−1

t∑
k=0

(Ψ∗ ⊗ Im)yk
∥∥

=
∥∥Inm

t∑
k=0

yk
∥∥

=
∥∥Inm[∇f(xt)−∇f(x∗)]

∥∥
= Lm

∥∥xt − x∗
∥∥

= Lm

∥∥pt
∥∥,

(66)

where the second equality is obtained according to (13c) in Lemma 3.3, the third equality
is achieved by expanding yk = ∇f(xt)−∇f(xt−1) and the fact Inm∇f(x∗) = 0, and the
fourth equality is deduced from the Lipschitz of ∇f(xt).

Submitting (61) – (66) into (60), and dividing λt+1 both sides, yields

1
λt+1 ‖x̃t+1‖ ≤ δ3

λ
‖x̃t‖
λt +

αδ4
λ

[
‖w̃t‖
λt +

c1c3√
n

γt

λt +
c2c4λ‖y‖Tλ√
n(λ−γ)

+
Lm‖pt‖√

nλt

]
. (67)

If γ ≤ λ hold, taking maximization from t = 0 to t = T − 1, it follows

‖x̃‖Tλ ≤
δ3
λ ‖x̃‖T−1

λ +
αδ4
λ

[
‖w̃‖T−1

λ +
c1c3√
n

+
c2c4λ√
n(λ−γ)

‖y‖Tλ +
Lm√
n
‖p‖T−1

λ

]

≤ δ3
λ ‖x̃‖Tλ +

αδ4
λ

[
‖w̃‖Tλ +

c1c3√
n

+
c2c4λ√
n(λ−γ)

‖y‖Tλ +
Lm√
n
‖p‖Tλ

]
.

(68)

Submitting the results of Lemma 3.4 into (68) and rearranging related terms, we have

‖x̃‖Tλ ≤ ατ1‖w̃‖Tλ + ατ̄2‖p‖Tλ + τ3, (69)

where τ̄2 =
[ c2c4(λ+1)

λ−γ + 1
]Lmτ1√

n
<

(c2c4+1)(λ+1)
λ−γ

Lmτ1√
n

= τ2 because λ− γ < λ+ 1.

Therefore, the desired results followed. �

Proof of Lemma 3.9

Considering ‖x̄t − x∗‖ with x̄t = 1
nI

n
mxt, we have

‖x̄t − x∗‖2 = ‖x̄t − x̄t+1 + x̄t+1 − x∗‖2
= ‖x̄t − x̄t+1‖2 + ‖x̄t+1 − x∗‖2 + 2〈x̄t − x̄t+1, x̄t+1 − x∗〉, (70)

therefore

‖x̄t+1 − x∗‖2 = ‖x̄t − x∗‖2 − ‖x̄t − x̄t+1‖2 − 2〈x̄t − x̄t+1, x̄t+1 − x∗〉. (71)

Multiplying 1
nI

n
m on the both sides of (10a) in the proposed algorithm, we have

x̄t+1 = 1
nI

n
m(Φ⊗ Im)xt + αḡt = x̄t + αḡt + 1

nkpt, (72)



574 S. CHENG AND S. LIANG

where k = Inm(Φ⊗ Im − Inm). Submitting x̄t+1 − x̄t = αḡt + 1
nkpt into the third term

of (71), we have

‖x̄t+1 − x∗‖2 = ‖x̄t − x∗‖2 − ‖x̄t − x̄t+1‖2 + 2〈knpt, x̄t+1 − x∗〉
+2α〈ḡt, x̄t+1 − x∗〉. (73)

Standing on ḡt = − 1
n

∑n
i=1∇fi(xti) and according to the results on convex function

in Lemma 2.1, ‖x̄t+1 − x∗‖2 in (73) can be bounded by

‖x̄t+1 − x∗‖2 ≤ ‖x̄t − x∗‖2 − ‖x̄t − x̄t+1‖2 + 2〈knpt, x̄t+1 − x∗〉
+2α[f(x∗)− f(x̄t+1)]− αβµ̄

(1+β)‖x̄t − x∗‖2

+ 1
n

n∑
i=1

[
αβµi +

α(1+η)Li
η

]
‖xti − x̄t‖2 + α(1 + η)L̄‖x̄t+1 − x̄t‖2.

(74)

Submitting 2〈 1
nkpt, x̄t+1 − x∗〉 ≤ 1

n2ξ‖k‖2‖pt‖2 + ξ‖x̄t+1 − x∗‖2 with 0 < ξ < 1 into

(74) and rearranging some related terms, we have

(1− ξ)‖x̄t+1 − x∗‖2

≤
(
1− αβµ̄

(1+β)

)
‖x̄t − x∗‖2 + 1

n2ξ‖k‖2‖pt‖2 +
[αLm(1+η)

η + αβµm

]
1
n

n∑
i=1

‖x̄t − xti‖2

−
[
1− α(1 + η)L̄

]
‖x̄t+1 − x̄t‖2 − 2α

[
f(x̄t+1)− f(x∗)

]

≤
(
1− αβµ̄

(1+β)

)
‖x̄t − x∗‖2−2α

[
f(x̄t+1)−f(x∗)

]
+ 1

n2ξ‖k‖2‖pt‖2

+
αLm(1+η)+αβµmnη

nη ‖x̃t‖2,

(75)

where the last inequality come from the condition on step size 1 − α(1 + η)L̄ ≥ 0 and
the fact ‖x̃t‖2 =

∑n
i=1 ‖x̄t − xti‖2.

For ∀t ∈ N+, if following inequality holds

‖x̄t+1 − x∗‖2 ≥ 1
αµ̄n2ξ‖k‖2‖pt‖2 +

Lm(1+η)+βµmnη
nµ̄η ‖x̃t‖2, (76)

we have

2α
[
f(x̄t+1)− f(x∗)

]
≥ αµ̄‖x̄t+1 − x∗‖2

≥ 1
n2ξ‖k‖2‖pt‖2 +

αLm(1+η)+αβµmnη
nη ‖x̃t‖2. (77)

Combining (75) with (77), it follows

‖x̄t+1 − x∗‖2 ≤ κ2
1‖x̄t − x∗‖2, (78)

where κ2
1 = 1

1−ξ
[
1− αβµ̄

(1+β)

]
.

Otherwise, if (76) not holds, it yields

‖x̄t+1 − x∗‖2 < 1
n2κ

2
2‖pt‖2 + 1

nκ
2
3‖x̃t‖2, (79)

where κ2
2 = 1

αµ̄ξ‖k‖2 and κ2
3 =

Lm(1+η)+βµmnη
µ̄η .
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Based on (78) and (79), if κ1 ≤ 1 holds, we have

‖x̄t+1 − x∗‖ ≤ max
{
κ1‖x̄t − x∗‖, κ2

n ‖pt‖+
κ3√
n
‖x̃t‖

}

≤ max
{
κt+1

1 ‖x̄0 − x∗‖, max
s=1···t

{κ2

n κ
t−s
1 ‖ps‖+

κ3√
n
κt−s1 ‖x̃s‖

}}

≤ κt+1
1 ‖x̄0 − x∗‖+ max

s=1···t

{κ2

n κ
t−s
1 ‖ps‖+

κ3√
n
κt−s1 ‖x̃s‖

}
,

(80)

where the second inequality can be obtained by recursing the first one.
Dividing λt+1 on the both sides of (80) with κ1 ≤ λ and taking maximization from

t = 0 to t = T − 1, we obtain

‖x̄− x∗‖Tλ ≤ ‖x̄0−x∗‖+
κ2λ
n ‖p‖Tλ +

κ3λ√
n
‖x̃‖Tλ . (81)

Considering pt = xt − 1n ⊗ x∗, yields

‖pt‖ ≤ ‖xt − 1n ⊗ x̄t‖+ ‖1n ⊗ x̄t − 1n ⊗ x∗‖
= ‖x̃t‖+

√
n‖x̄t − x∗‖. (82)

Apparently, we have

‖p‖Tλ ≤ ‖x̃‖Tλ +
√
n‖x̄− x∗‖Tλ . (83)

According to (81) and (83), the desired results can be achieved. �
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