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Abstract. We consider the notions of equicontinuity point, sensitivity point and so on
from a topological point of view. Many of these notions can be sensibly defined either in
terms of (finite) open covers or uniformities. We show that for the notions of equicontinuity
point and sensitivity point, Hausdorff or uniform versions coincide in compact Hausdorff
spaces and are equivalent to the standard definitions stated in terms of a metric in compact
metric spaces. We prove that a uniformly chain transitive map with uniform shadowing
property on a compact Hausdorff uniform space is either uniformly equicontinuous or it has
no uniform equicontinuity points.
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1. Introduction

Throughout this paper (X,T ) denotes a topological dynamical system, where X

is a Hausdorff space and T : X → X is a continuous map. A number of proper-

ties of interest in such systems are defined in purely topological terms, for example

transitivity, minimality and proximality. Others are defined in terms of the particu-

lar metric, for example sensitivity, equicontinuity, chain transitivity and shadowing.

When the phase space X is a compact metric space, the sensitivity and equicon-

tinuity were studied, see [4], [13]. For example, the well-known Auslander-Yorke

dichotomy theorem stated that a minimal dynamical system is either sensitive or all

points are equicontinuous (see [4] and also [13]), which was further refined in [1]:

a transitive system is either sensitive or has a dense set of equicontinuity points; it
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was shown that if a chain transitive system has shadowing property then it is either

sensitive or equicontinuous, see [10], Corollary 2.4.

However, in fact it shows that many dynamical properties can be defined in a nat-

ural way on Hausdorff (but not necessarily compact or metric) spaces. It turns out

that there are two sensible ways to do this, either in terms of finite open covers or

in terms of uniformities (compatible with the topology). The uniform approach has

been studied in a number of cases: Hood in [16] defined entropy for uniform spaces;

Devaney chaos for uniform spaces was considered in [8] (for group actions); Auslan-

der, Greschonig and Nagar in [3] generalized many known results about equiconti-

nuity to the uniform spaces; P.Das and D.Das in [9] extended some results about

shadowing to the uniform spaces, see also [14]. Recently, the open cover approach has

been studied in a number of cases: Brian in [7] considered chain transitivity in terms

of finite open covers in compact Hausdorff spaces; Good and Macias in [14] consid-

ered sensitivity and shadowing in terms of finite open covers in compact Hausdorff

spaces.

The present work is inspired by the results from the papers mentioned above and

is organized as follows. In Section 2, we introduce some notions and results to be

used in the article. In Section 3, we define the notions of Hausdorff equicontinu-

ity, Hausdorff equicontinuity point and Hausdorff sensitivity point in terms of finite

open covers. We show that in the presence of compactness, Hausdorff equicontinuity

(Hausdorff equicontinuity point, Hausdorff sensitivity point) and uniform equicon-

tinuity (or uniform equicontinuity point, uniform sensitivity point) are equivalent,

and they coincide exactly with the standard definitions in compact metric spaces, see

Theorems 3.7, 3.4 and 3.12. We also point out that the notion of Hausdorff equicon-

tinuity point (or Hausdorff sensitivity point) may not be equivalent to the standard

definition in a noncompact space, see Example 3.6 and Remark 3.13. Finally, we

prove that a uniformly chain transitive map with uniform shadowing property on

a compact Hausdorff uniform space is either uniformly equicontinuous or it has no

uniform equicontinuity points, see Corollary 4.12.

2. Preliminaries

2.1. IP-set and IP∗-set. Let N = {0, 1, . . . , n, . . .} be the set of non-negative in-

tegers. Endowing the semigroup (N,+) with the discrete topology, we take the points

of the Stone-Čech compactification βN of N to be the ultrafilter on N. Since (N,+)

is a semigroup, we extend the operation + to βN so that (βN,+) is a compact Haus-

dorff right topological semigroup. If A ⊂ N, then Â = ClβNA = {p ∈ βN : A ∈ p} is

a basic clopen subset of βN, see [15].
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Recall that a subset A ⊂ N is called an IP-set if it contains all finite sums of

a subsequence of itself. That is, there exists a subsequence {si}∞i=1 ⊂ N such that

FS({si}
∞
i=1) = {si1 + si2 + . . .+ sin : i1 < i2 < . . . < in, ij ∈ N, j = 1, . . . , n} ⊂ A.

A set A ⊂ N is an IP*-set if it has nonempty intersection with any IP-set. An IP∗-set

is both syndetic and an IP-set, see [15]. A set A ⊂ N is syndetic if there exists m ∈ N

such that A∩{n, n+1, . . . , n+m} 6= ∅ for each n ∈ N. A set A ⊂ N is thick if for any

positive integer n there exists m ∈ N such that A ⊃ {m,m+ 1, . . . ,m+ n}. A thick

set has a nonempty intersection with every syndetic set. We say that p ∈ βN is an

idempotent if p = p+p. Let p ∈ βN and let {xn} be a sequence in X . By p-limxn = y

we mean that for any open set U containing y the set {n ∈ N : xn ∈ U} ∈ p, see [15].

2.2. Transitivity and minimality. LetX be a topological space, and letA ⊂ X.

The symbol A or ClA denotes the closure of A. Let (X,T ) be a dynamical system,

and let U, V ⊂ X . We denote N(U, V ) = {n ∈ N : T n(U) ∩ V 6= ∅}. The sys-

tem (X,T ) is (topologically) transitive if N(U, V ) 6= ∅ for any two nonempty open

subsets U, V ⊂ X . A point x ∈ X is called transitive if its orbit orb(x, T ) =

{T n(x) : n ∈ N} is dense in X . We say that Tran(X,T ) denotes the set of all

transitive points of (X,T ). Moreover (X,T ) is point transitive if Tran(X,T ) 6= ∅.

The system (X,T ) is minimal if Tran(X,T ) = X . In general, a subset A of X is

invariant if TA ⊂ A. If A is a closed, nonempty invariant subset, then (A, T |A)

is called the associated subsystem. A minimal subset of X is a closed, nonempty

invariant subset such that the associated subsystem is minimal. Clearly, (X,T )

is minimal if and only if it admits no proper, closed, nonempty invariant subset.

A point x ∈ X is called minimal if it lies in some minimal subset. Zorn’s Lemma

implies that every closed, nonempty invariant set contains a minimal set. A point

x ∈ X is minimal if and only if N(x, U) = {n ∈ N : T n(x) ∈ U} is syndetic for

any neighborhood U of x. A dynamical system (X,T ) is IP∗-central (see [5]) if for

any nonempty open subset U of X , N(U,U) = {n ∈ N : T n(U) ∩ U 6= ∅} is an

IP∗-set. A point x ∈ X is IP*-recurrent (see [5]) if for any neighborhood U of x,

N(x, U) = {n ∈ N : T n(x) ∈ U} is an IP*-set.

2.3. Uniform spaces. Let X be a set and let Θ be an entourage of X . Then Θ

is called symmetric if Θ−1 = Θ, where Θ−1 = {(y, x) : (x, y) ∈ Θ}. For x ∈ X ,

let Θ[x] = {y ∈ X : (x, y) ∈ Θ}. Regarding a subset A ⊂ X , let Θ[A] =
⋃

a∈A

Θ[a].

The composite Θ1 ◦ Θ2 of two entourages Θ1 and Θ2 of X is defined as Θ1 ◦ Θ2 =

{(x, z) : there is an element y ∈ X such that (x, y) ∈ Θ1 and (y, z) ∈ Θ2}. Note that

for every compact Hausdorff space X , there exists a unique uniformity U on X that

induces the original topology of X , see e.g. [12], Theorem 8.3.13.

713



We need the following lemma (see [14], Lemma 2.6).

Lemma 2.1. Let X be a compact Hausdorff space, and let U be the unique

uniformity on X that induces the original topology of X . If A is an open cover of X ,

then
⋃

A∈A

A×A ∈ U .

We also need the following lemma.

Lemma 2.2. Let X be a compact Hausdorff space and let U be the unique uni-

formity on X that induces its topology. Then for every open cover A of X , there

exists a symmetric entourage Θ ∈ U such that {Θ[x] : x ∈ X} refines A.

P r o o f. By Exercise 8.3.G. in [12], there exists an entourage Θ1 ∈ U such

that {Θ1[x] : x ∈ X} refines A. Let Θ = Θ1 ∩ Θ−1
1 . Then Θ satisfies the desired

condition. �

2.4. Chain transitivity and shadowing. Let (X,T ) be a dynamical system,

where (X, d) is a metric space. Assume that x0 = x, x1, . . . , xn = y ∈ X and δ > 0.

If d(T (xi), xi+1) < δ for any i ∈ {0, 1, . . . , n−1}, the sequence x0, x1, . . . , xn is called

a δ-chain of T from x to y with length n. A map T is called chain transitive if for any

two points x, y ∈ X and any δ > 0 there exists a δ-chain from x to y. Given δ > 0 we

say that the sequence ξ = {xi}
∞
i=0 in X is a δ-pseudo-orbit of T , if d(T (xi), xi+1) < δ

for all i ∈ N. Given ε > 0 we say that the sequence ξ = {xi}∞i=0 in X is ε-shadowed

by the point z ∈ X , if d(T i(z), xi) < ε for any i ∈ N. We say that a map T has the

shadowing property if for any ε > 0, there is δ > 0 such that any δ-pseudo-orbit ξ

of T is ε-shadowed by some point in X .

Let (X,T ) be a dynamical system, where (X,U) is a Hausdorff uniform space.

Assume that x0 = x, x1, . . . , xn = y ∈ X . Let Θ ∈ U be a symmetric entourage.

If (T (xi), xi+1) ∈ Θ for any i ∈ {0, 1, . . . , n − 1}, the sequence x0, x1, . . . , xn is

called a Θ-chain of T from x to y with length n. A map T is called uniformly chain

transitive if for any two points x, y ∈ X and any symmetric entourage Θ, there exists

a Θ-chain from x to y. Given a symmetric entourageΘ ∈ U , we say that the sequence

ξ = {xi}∞i=0 in X is a Θ-pseudo-orbit of T , if (T (xi), xi+1) ∈ Θ for all i ∈ N. Given

a symmetric entourage Θ, we say that the sequence ξ = {xi}∞i=0 in X is Θ-shadowed

by the point z ∈ X , if (T i(z), xi) ∈ Θ for any i ∈ N. We say that a map T has the

uniform shadowing property if for any symmetric entourage Θ1, there is a symmetric

entourage Θ2 such that any Θ2-pseudo-orbit ξ of T is Θ1-shadowed by some point

in X .

Let (X,T ) be a dynamical system, where X is a Hausdorff space. Given a finite

open cover A of X , we say that the sequence ξ = {xi}∞i=0 in X is an A-pseudo-orbit
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of T , if for all i ∈ N we have {T (xi), xi+1} ⊂ A for some A ∈ A. Given a finite open

cover A of X , we say that the sequence ξ = {xi}
∞
i=0 in X is A-shadowed by the point

z ∈ X , if for all i ∈ N we have {T i(z), xi} ⊂ A for some A ∈ A. We say that a map T

has the Hausdorff shadowing property if for any finite open cover A of X , there is

a finite open cover B of X such that any B-pseudo-orbit ξ of T is A-shadowed by

some point in X .

Remark 2.3. The two notions of Hausdorff shadowing and uniform shadowing

coincide in compact spaces, and they are equivalent to the standard definition in

compact metric spaces (see [14], Theorem 5.1).

3. Equicontinuity points and sensitivity points

Although the notions of equicontinuity and equicontinuity point as defined clearly

depend on the specific metric, it turns out that there are two natural definitions

of equicontinuity and equicontinuity point for arbitrary topological spaces. In this

section, we imposed a constraint on every finite open cover of X such that it does

not contain X . Otherwise this may cause an awkward situation (see Remark 3.11).

Definition 3.1. Let (X,T ) be a dynamical system.

(1) Assume that X is a Hausdorff space. The system (X,T ) is Hausdorff equicon-

tinuous, if for any finite open cover A of X , there is a finite open cover B

of X such that whenever {x, y} ⊂ B for some B ∈ B, for all n ∈ N we have

{T n(x), T n(y)} ⊂ An for some An ∈ A.

(2) Assume that (X,U) is a Hausdorff uniform space. The system (X,T ) is

uniformly equicontinuous if for any symmetric entourage Θ ∈ U , there is

a symmetric entourage Θ1 ∈ U such that whenever (x, y) ∈ Θ1, we have

(T n(x), T n(y)) ∈ Θ for all n ∈ N.

(3) Assume that (X, d) is a metric space. The system (X,T ) is equicontinuous

if for any ε > 0, there is δ > 0 such that whenever d(x, y) < δ, we have

d(T n(x), T n(y)) < ε for all n ∈ N.

Definition 3.2. Let (X,T ) be a dynamical system.

(1) Assume that X is a Hausdorff space. A point x ∈ X is Hausdorff equicontinuous

if for any finite open cover A of X , there is a neighborhood V of x such that

whenever y ∈ V for all n ∈ N we have {T n(x), T n(y)} ⊂ An for some An ∈ A.

(2) Assume that (X,U) is a Hausdorff uniform space. A point x ∈ X is uniformly

equicontinuous if for any symmetric entourageΘ ∈ U , there is a neighborhood V

of x such that whenever y ∈ V , we have (T n(x), T n(y)) ∈ Θ for all n ∈ N.
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(3) Assume that (X, d) is a metric space. A point x ∈ X is equicontinuous if for

any ε > 0, there is a neighborhood V of x such that whenever y ∈ V , we have

d(T n(x), T n(y)) < ε for all n ∈ N.

Remark 3.3. A point x ∈ X is uniformly equicontinuous if and only if for any

symmetric entourage Θ1 of X there is a symmetric entourage Θ2 of X such that

whenever (x, y) ∈ Θ2, we have (T n(x), T n(y)) ∈ Θ1 for all n ∈ N.

The two notions of Hausdorff equicontinuity point and uniform equicontinuity

point coincide in compact spaces, they are equivalent to the standard definition in

compact metric spaces.

Theorem 3.4. Let (X,T ) be a dynamical system with x ∈ X , where X is a com-

pact space. Then the following claims are equivalent:

(1) x is Hausdorff equicontinuous.

(2) x is uniformly equicontinuous.

If X is metric, then (1) and (2) are equivalent to

(3) x is equicontinuous.

P r o o f. (1) ⇒ (2). Assume that x is Hausdorff equicontinuous. Let U be

the unique uniformity on X that induces its topology. Let Θ ∈ U be a symmet-

ric entourage, and let Θ′ ∈ U be a symmetric entourage such that Θ′ ◦ Θ′ ⊂ Θ.

Then {intX(Θ′[z]) : z ∈ X} is an open cover of X . Since X is compact, there are

z1, z2, . . . , zm in X such that A = {intX(Θ′[zi]) : i = 1, 2, . . . ,m} is a finite subcover.

As x is Hausdorff equicontinuous, there is a neighborhood V of x such that whenever

y ∈ V for all n ∈ N we have {T n(x), T n(y)} ⊂ An for some An ∈ A. This implies

that for each n ∈ N, there is zi in X such that (T n(x), zi), (zi, T
n(y)) ∈ Θ′. Hence

(T n(x), T n(y)) ∈ Θ, so (2) holds.

(2) ⇒ (1). Let U be the unique uniformity onX that induces its topology. Assume

that x is uniformly equicontinuous. Let A = {A1, A2, . . . , Am} be a finite open cover

of X . Let Θ =
m⋃
i=1

Ai × Ai. By Lemma 2.1, we have Θ ∈ U . As x is uniformly

equicontinuous, for the symmetric entourage Θ there is a neighborhood V of x such

that whenever y ∈ V , we have (T n(x), T n(y)) ∈ Θ for all n ∈ N. Hence for all n ∈ N

we have that {T n(x), T n(y)} ⊂ An for some An ∈ A, so (1) holds.

For the rest of the proof, we assume that X is metric.

(3) ⇒ (1). Suppose that x is equicontinuous. Let A be a finite open cover of X

and let ε > 0 be a Lebesgue number for A. Since x is equicontinuous, there is

a neighborhood V of x such that whenever y ∈ V , we have d(T n(x), T n(y)) < ε for

all n ∈ N. Hence for all n ∈ N, we have that {T n(x), T n(y)} ⊂ An for some An ∈ A,

so (1) holds.
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(1) ⇒ (3). Suppose that x is Hausdorff equicontinuous. Let ε > 0. Then

{B(z, ε/2): z ∈ X} is an open cover of X , where B(z, ε/2) denotes the open ball

of radius ε/2 centred at z in X . Since X is compact, there are z1, z2, . . . , zm in X

such that A = {B(zi, ε/2): i = 1, 2, . . . ,m} is a finite subcover. As x is Hausdorff

equicontinuous, there is an open neighborhood V of x such that whenever y ∈ V

for all n ∈ N we have {T n(x), T n(y)} ⊂ An for some An ∈ A. Hence we have that

d(T n(x), T n(y)) < ε for all n ∈ N, so (3) holds. �

Example 3.5. Let X = (0,∞) with the relative topology of the Euclidean

space R, and let T (x) = x + 1, x ∈ X . Then (X,T ) is a dynamical system. Every

point of X is both a Hausdorff equicontinuity point and an equicontinuity point.

P r o o f. It is easy to see that every point of X is equicontinuous. We next

show that every point of X is also Hausdorff equicontinuous. Let x ∈ X . Choose

a ∈ X and a < x. Suppose that A is a finite open cover of X . Then there are

b > 1 and A ∈ A such that (b,∞) ⊂ A. As lim
n→∞

T n(a) = lim
n→∞

a + n = ∞,

there is l > 0 such that whenever n > l, we have T n(a) > b. Note that for every

n ∈ {0, 1, . . . , l − 1}, T n(x) ∈ An for some An ∈ A. Take an open neighborhood V

of x such that V ⊂ (a, x+1), and whenever y ∈ V for every n ∈ {0, 1, . . . , l− 1}, we

have {T n(y), T n(x)} ⊂ An for some An ∈ A. Note that when n > l for each y ∈ V

we have {T n(y), T n(x)} ⊂ A. Hence x is Hausdorff equicontinuous. �

Example 3.6. The notion of Hausdorff equicontinuity point may not be equiv-

alent to the standard definition in a noncompact space.

P r o o f. Let X = [0,∞) with the relative topology of the Euclidean space R.

Then X is a noncompact metric space. Let T (x) = 2x, x ∈ X . Then (X,T ) is

a dynamical system.

It is easy to see that 3 is not equicontinuous. We next show that 3 is Haus-

dorff equicontinuous. Suppose that A is a finite open cover of X . Then there

are b > 3 and A ∈ A such that (b,∞) ⊂ A. As lim
n→∞

T n(2) = lim
n→∞

2n+1 = ∞,

there is l > 0 such that whenever n > l, we have T n(2) > b. Note that for every

n ∈ {0, 1, . . . , l − 1}, T n(3) ∈ An for some An ∈ A. Take an open neighborhood V

of 3 such that V ⊂ (2, 4), and whenever y ∈ V , for every n ∈ {0, 1, . . . , l − 1} we

have {T n(y), T n(3)} ⊂ An for some An ∈ A. Note that when n > l for each y ∈ V

we have {T n(y), T n(3)} ⊂ A. Hence 3 is Hausdorff equicontinuous. �

Theorem 3.7. Let (X,T ) be a dynamical system, where X is a compact space.

Then the following claims are equivalent:

(1) (X,T ) is Hausdorff equicontinuous.

(2) (X,T ) is uniformly equicontinuous.
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If X is metric, then (1) and (2) are equivalent to

(3) (X,T ) is equicontinuous.

P r o o f. (1) ⇒ (2). Assume that (X,T ) is Hausdorff equicontinuous. Let U be

the unique uniformity on X that induces its topology. Let Θ ∈ U be a symmet-

ric entourage, and let Θ′ ∈ U be a symmetric entourage such that Θ′ ◦ Θ′ ⊂ Θ.

Then {intX(Θ′[z]) : z ∈ X} is an open cover of X . Since X is compact, there are

z1, z2, . . . , zm in X such that A = {intX(Θ′[zi]) : i = 1, 2, . . . ,m} is a finite subcover.

As (X,T ) is Hausdorff equicontinuous, there is a finite open cover B of X such that

whenever {x, y} ⊂ B for some B ∈ B, for all n ∈ N we have {T n(x), T n(y)} ⊂ An

for some An ∈ A. Let Θ1 =
⋃

B∈B

B × B. By Lemma 2.1, Θ1 ∈ U . Then whenever

{x, y} ∈ Θ1, for all n ∈ N we have {T n(x), T n(y)} ⊂ An for some An ∈ A. This

implies that (zi, T n(x)), (zi, T
n(y)) ∈ Θ′ for some zi. Hence (T n(x), T n(y)) ∈ Θ,

so (2) holds.

(2) ⇒ (1). Let U be the unique uniformity of X that induces its topology. As-

sume that (X,T ) is uniformly equicontinuous. Let A = {A1, A2, . . . , Am} be a finite

open cover of X . Let Θ =
m⋃
i=1

Ai ×Ai. By Lemma 2.1, we have Θ ∈ U . As (X,T )

is uniformly equicontinuous for the symmetric entourage Θ there is a symmetric

entourage Θ1 such that whenever (x, y) ∈ Θ1, we have (T n(x), T n(y)) ∈ Θ for

all n ∈ N. Let Θ2 ∈ U be a symmetric entourage such that Θ2 ◦ Θ2 ⊂ Θ1.

Then {intX(Θ2[z]) : z ∈ X} is an open cover of X . Since X is compact, there

are z1, z2, . . . , zm in X such that B = {intX(Θ2[zi]) : i = 1, 2, . . . ,m} is a finite

subcover. If {x, y} ⊂ intX(Θ2[zi]) for some zi, then (x, y) ∈ Θ1. Hence whenever

{x, y} ⊂ intX(Θ2[zi]) for some zi, for all n ∈ N we have that {T n(x), T n(y)} ⊂ An

for some An ∈ A, so (1) holds.

For the rest of the proof, we assume that X is metric.

(3) ⇒ (1). Suppose that (X,T ) is equicontinuous. Let A be a finite open cover

of X and let ε > 0 be a Lebesgue number for A. Since (X,T ) is equicontinuous,

there is δ > 0 such that whenever d(x, y) < δ, we have d(T n(x), T n(y)) < ε for all

n ∈ N. Then {B(z, δ/2): z ∈ X} is an open cover of X . Since X is compact, there

are z1, z2, . . . , zm in X such that {B(zi, δ/2): i = 1, 2, . . . ,m} is a finite subcover. If

{x, y} ⊂ B(zi, δ/2) for some zi, then d(x, y) < δ. Hence whenever {x, y} ⊂ B(zi, δ/2)

for some zi, for all n ∈ N we have that {T n(x), T n(y)} ⊂ An for some An ∈ A,

so (1) holds.

(1) ⇒ (3). Suppose that (X,T ) is Hausdorff equicontinuous. Let ε > 0.

Then {B(z, ε/2): z ∈ X} is an open cover of X . Since X is compact, there

are z1, z2, . . . , zm in X such that A = {B(zi, ε/2): i = 1, 2, . . . ,m} is a finite sub-

cover. As (X,T ) is Hausdorff equicontinuous, for A there is a finite open cover B
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of X such that whenever {x, y} ⊂ B for some B ∈ B, for all n ∈ N we have

{T n(x), T n(y)} ⊂ An for some An ∈ A . Let δ > 0 be a Lebesgue number for B.

Hence whenever d(x, y) < δ, we have that d(T n(x), T n(y)) < ε for all n ∈ N,

so (3) holds. �

Proposition 3.8. Let (X,T ) be a dynamical system.

(1) Assume that (X,U) is a compact Hausdorff uniform space. The system (X,T ) is

uniformly equicontinuous if and only if each point x of X is uniformly equicon-

tinuous.

(2) Assume that X is a compact Hausdorff space. The system (X,T ) is Hausdorff

equicontinuous if and only if each point x of X is Hausdorff equicontinuous.

P r o o f. (1) Suppose that each point of X is uniformly equicontinuous, where

(X,T ) is not uniformly equicontinuous. Then there is a symmetric entourage Θ0 ∈ U

such that for any symmetric entourageΘ ∈ U there are (xΘ, yΘ) ∈ Θ and nΘ > 1 such

that (T nΘ(xΘ), T
nΘ(yΘ)) /∈ Θ0. Let V be the collection of all symmetric entourages

of X . Define a relation > on V as follows: α > β ⇔ α ⊂ β. Then (V ,>) is a directed

set. Hence {xΘ : Θ ∈ V} is a net. By compactness, it has a subnet {xΘ : Θ ∈ W}

such that lim
Θ∈W

xΘ = lim
Θ∈W

yΘ = z. Let Θ1 ∈ V be such that Θ1 ◦ Θ1 ⊂ Θ0, and let

Θ2 ∈ V be such that Θ2 ◦ Θ2 ⊂ Θ1. As z is uniformly equicontinuous, for Θ1 there

is an open neighborhood U of z such that whenever x ∈ U , (T n(x), T n(z)) ∈ Θ1

for all n ∈ N. We choose xΘ, yΘ ∈ U ∩ Θ2[z] such that (T nΘ(xΘ), T
nΘ(yΘ)) /∈ Θ0

for some nΘ > 1. Then either (T nΘ(xΘ), T
nΘ(z)) /∈ Θ1 or (T nΘ(yΘ), T

nΘ(z)) /∈ Θ1.

This shows that z is not uniformly equicontinuous, a contradiction.

(2) By (1), Theorems 3.4 and 3.7, (2) holds. �

Although the notion of sensitivity (sensitivity point) as defined clearly depend on

the specific metric, it turns out that there are two natural definitions of sensitivity

(or sensitivity point) for arbitrary topological spaces.

Definition 3.9. Let (X,T ) be a dynamical system.

(1) Assume that X is a Hausdorff space. The system (X,T ) is Hausdorff sensitive

(see [14]) if there is a finite open cover A of X such that for any nonempty

open subset U of X , there are distinct points x, y ∈ U and n > 1 such that

|{T n(x), T n(y)} ∩A| 6 1 for all A ∈ A, where |C| denotes the cardinality of C.

(2) Assume that (X,U) is a Hausdorff uniform space. The system (X,T ) is uni-

formly sensitive (see [8]) if there is a symmetric entourage Θ ∈ U such that

for any nonempty open subset U of X there are x, y ∈ U and n > 1 with

(T n(x), T n(y)) /∈ Θ.
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(3) Assume that (X, d) is a metric space. The system (X,T ) is sensitive (see [4]

and [13]) if there is ε > 0 such that for any nonempty open subset U of X there

are x, y ∈ U and n > 1 with d(T n(x), T n(y)) > ε.

Definition 3.10. Let (X,T ) be a dynamical system.

(1) Assume that X is a Hausdorff space. A point x ∈ X is Hausdorff sensitive if

there is a finite open cover A of X such that for any neighborhood V of x there

are y ∈ V and n > 1 such that |{T n(x), T n(y)} ∩ A| 6 1 for all A ∈ A.

(2) Assume that (X,U) is a Hausdorff uniform space. A point x ∈ X is uniformly

sensitive if there is a symmetric entourage Θ ∈ U such that for any neighbor-

hood V of x there are y ∈ V and n > 1 with (T n(x), T n(y)) /∈ Θ.

(3) Assume that (X, d) is a metric space. A point x ∈ X is sensitive (see [4]

and [13]) if there is ε > 0 such that for any neighborhood V of x there are

y ∈ V and n > 1 with d(T n(x), T n(y)) > ε.

Remark 3.11. In this section, we imposed a constraint on every finite open

cover of X such that it does not contain X . Otherwise this may cause an awk-

ward situation. For instance, let T : X → X be a constant map. Let A = {X}.

Then for every nonempty open subset U of X and all points x, y ∈ U , we have

|{Tx, T y} ∩A| 6 1 for all A ∈ A.

The two notions of Hausdorff sensitivity and uniform sensitivity coincide in com-

pact spaces, they are equivalent to the standard definition in compact metric spaces,

see [14], Theorem 3.2. Next, we point out that for sensitivity points, there is a similar

result.

Theorem 3.12. Let (X,T ) be a dynamical system with x ∈ X , where X is

a compact space. Then the following claims are equivalent:

(1) x is Hausdorff sensitive.

(2) x is uniformly sensitive.

If X is metric, then (1) and (2) are equivalent to

(3) x is sensitive.

P r o o f. (1) ⇒ (2). Assume that x is Hausdorff sensitive. Let U be the unique

uniformity on X that induces its topology. Let A be a finite open cover of X

given by the definition of a Hausdorff sensitivity point. Since X is compact, by

Lemma 2.2 there exists a symmetric entourage Θ ∈ U such that {Θ[z] : z ∈ X}

refines A. As x is Hausdorff sensitive, there are y ∈ Θ[x] and n > 1 such that

|{T n(x), T n(y)}∩A| 6 1 for all A ∈ A. This implies (T n(x), T n(y)) /∈ Θ. Otherwise,

(T n(x), T n(y)) ∈ Θ. Hence, {T n(x), T n(y)} ⊂ Θ[T n(x)] ⊂ A for some A ∈ A,

a contradiction. So (2) holds.
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(2) ⇒ (1). Let U be the unique uniformity on X that induces its topology. As-

sume that x is uniformly sensitive. Let Θ ∈ U be a symmetric entourage given

by the definition of a uniform sensitivity point. Let Θ1 ∈ U be a symmetric en-

tourage such that Θ1 ◦ Θ1 ⊂ Θ. Since {Θ1[z] : z ∈ X} covers X , we have that

{intX(Θ1[z]) : z ∈ X} also covers X . Since X is compact, there are z1, z2, . . . , zm in

X such that {intX(Θ1[zi]) : i = 1, 2, . . . ,m} is a finite subcover. We show that B =

{intX(Θ1[zi]) : i = 1, 2, . . . ,m} satisfies the definition of a Hausdorff sensitivity point.

Let V be a neighborhood of x. As x is uniformly sensitive, there are y ∈ V and n > 1

with (T n(x), T n(y)) /∈ Θ. Hence, |{T n(x), T n(y)}∩B| 6 1 for all B ∈ B. Otherwise,

there is i ∈ {1, 2, . . . ,m} such that {T n(x), T n(y)} ⊂ Θ1[zi]. Then (T n(x), zi) ∈ Θ1

and (T n(y), zi) ∈ Θ1, thus (T n(x), T n(y)) ∈ Θ, a contradiction. So (1) holds.

For the rest of the proof, we assume that X is metric.

(3) ⇒ (1). Assume that x is sensitive. Let ε > 0 be the constant given

by the definition of a sensitivity point. Then A = {B(z, ε/2): z ∈ X} be an

open cover of X . Since X is compact, there are z1, z2, . . . , zm in X such that

{B(zi, ε/2): i = 1, 2, . . . ,m} is a finite subcover. We show that B = {B(zi, ε/2):

i = 1, 2, . . . ,m} satisfies the definition of a Hausdorff sensitivity point. Since x

is sensitive, for any neighborhood V of x, we can take y ∈ V and n > 1 with

d(T n(x), T n(y)) > ε. Hence, |{T n(x), T n(y)} ∩ B| 6 1 for all B ∈ B. Otherwise,

there is i ∈ {1, 2, . . . ,m} such that {T n(x), T n(y)} ⊂ B(zi, ε/2). This implies that

d(T n(x), T n(y)) 6 d(T n(x), zi) + d(zi, T
n(y)) < ε, a contradiction. So (1) holds.

(1) ⇒ (3). Assume that x is Hausdorff sensitive. Let A be a finite open cover of X

given by the definition of a Hausdorff sensitivity point. Let ε > 0 be a Lebesgue

number for A. Since x is Hausdorff sensitive for any neighborhood V of x there

are y ∈ V and n > 1 such that |{T n(x), T n(y)} ∩ A| 6 1 for all A ∈ A. Since ε is

a Lebesgue number forA, this implies that d(T n(x), T n(y)) > ε. Therefore, (3) holds.

�

Remark 3.13. The Hausdorff sensitivity point may not be equivalent to the

standard definition in a noncompact space.

For instance, for the system (X,T ) in Example 3.6, 3 is a sensitivity point, but

not a Hausdorff sensitivity point.

4. Distality and uniform shadowing

Let (X,T ) be a dynamical system and x, y ∈ X . The points x and y are proximal,

if there is a sequence {ni} ⊂ N such that lim
i→∞

T ni(x) = lim
i→∞

T ni(y). A point x ∈ X

is distal if it is not proximal to any point in the orbit closure other than itself.

A system (X,T ) is distal if every point of X is distal.
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We need the following result (see [11], Proposition 5.2.7 and Corollary 5.2.8).

Lemma 4.1. Let (X,T ) be a dynamical system and x ∈ X , where X is a compact

Hausdorff space. Then the following statements are equivalent:

(1) x is a distal point.

(2) For any neighborhood U of x, the set N(x, U) is an IP∗-set.

(3) p-limT nx = x for all idempotents p ∈ βN.

We also need the following lemma, see e.g. [15], Theorem 16.4.

Lemma 4.2. A subset A ⊂ N is an IP-set if and only if there is an idempotent

p ∈ βN such that A ∈ p.

Lemma 4.3. Let (X,T ) be an IP∗-central dynamical system, where X is a com-

pact Hausdorff uniform space. Then any uniform equicontinuity point of (X,T ) is

distal.

P r o o f. Let (X,T ) be an IP∗-central dynamical system. Let x ∈ X be a uniform

equicontinuity point. We will show that x is distal. This is equivalent to showing

that p-limT nx = x for all idempotents p ∈ βN by Lemma 4.1. In contrast, suppose

that there exists a point y 6= x such that p-limT nx = y for some idempotent p ∈ βN.

Let Θ1 be a symmetric entourage such that Θ1[x] ∩Θ1[y] = ∅. Let Θ2 be a sym-

metric entourage such that Θ2 ◦ Θ2 ⊂ Θ1. Let Θ3 ⊂ Θ2 be a symmetric entourage

corresponding to Θ2 in the definition of uniform equicontinuity of x, see Remark 3.3.

Since p-limT nx = y, we have N(x,Θ2[y]) ∈ p. This implies that N(x,Θ2[y]) is an

IP-set by Lemma 4.2.

Claim. Θ3[x] ∩
( ⋃
n∈N(x,Θ2[y])

Θ2[T
n(x)]

)
= ∅.

In contrast, suppose that there exists a point z ∈ Θ3[x], n ∈ N(x,Θ2[y]) such that

z ∈ Θ2[T
n(x)]. Then (T n(x), y) ∈ Θ2, (z, T

n(x)) ∈ Θ2. Hence (z, y) ∈ Θ2 ◦Θ2 ⊂ Θ1.

This implies that z ∈ Θ3[x] ∩ Θ1[y]. This contradicts Θ1[x] ∩ Θ1[y] = ∅. Hence the

claim holds.

Since x is uniformly equicontinuous, we have

⋃

n∈N(x,Θ2[y])

T n(Θ3[x]) ⊂
⋃

n∈N(x,Θ2[y])

Θ2[T
n(x)].

Hence, by claim we have

Θ3[x] ∩

( ⋃

n∈N(x,Θ2[y])

T n(Θ3[x])

)
= ∅.
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This means that for any n in the IP-set N(x,Θ2[y]), Θ3[x] ∩ T n(Θ3[x]) = ∅. Note

that (X,T ) is an IP∗-central dynamical system, which contradicts the fact that

{n ∈ N : Θ3[x] ∩ T n(Θ3[x]) 6= ∅} is an IP∗-set. �

Lemma 4.4. Let (X,T ) be a transitive system and x ∈ X , whereX is a Hausdorff

uniform space. If x is uniformly equicontinuous, then x is transitive.

P r o o f. Let x be a uniform equicontinuity point. We will show that orb(x, T )=X.

Let y ∈ X and let Θ be an entourage. We choose a symmetric entourage Θ1 such

that Θ1 ◦ Θ1 ⊂ Θ. Let Θ2 ⊂ Θ1 be a symmetric entourage corresponding to Θ1 in

the definition of a uniform equicontinuity point of x. Since (X,T ) is topologically

transitive, there is m > 1 such that Tm(Θ2[x]) ∩Θ1[y] 6= ∅. Then there is z ∈ Θ2[x]

such that (Tm(z), y) ∈ Θ1. Since x is uniformly equicontinuous and z ∈ Θ2[x], we

have (Tm(z), Tm(x)) ∈ Θ1. Hence (Tm(x), y) ∈ Θ, that is, Tm(x) ∈ Θ[y]. �

Lemma 4.5. Let (X,T ) be a dynamical system with a uniform equicontinuity

point x ∈ X , where X is a Hausdorff uniform space. If y ∈ X is a transitive point,

then y is uniformly equicontinuous.

P r o o f. Let Θ0 be a symmetric entourage. Let Θ1 be a symmetric entourage

such that Θ1 ◦ Θ1 ⊂ Θ0. Let Θ2 ⊂ Θ1 be a symmetric entourage corresponding

to Θ1 in the definition of uniform equicontinuity of x.

Since y is transitive, there is n > 1 such that T n(y) ∈ Θ2[x]. Then there is

a neighborhood U of y such that T n(U) ⊂ Θ2[x]. Hence for any z ∈ U we have

T n(z) ∈ Θ2[x]. Since x is uniformly equicontinuous, whenever z ∈ U we have

(Tm+n(z), Tm+n(y)) ∈ Θ0 for all m ∈ N. Since for every i ∈ {0, 1, . . . , n}, T i is

continuous at y, it is easy to see that there is a neighborhood V of y such that

whenever z ∈ V , we have (T k(z), T k(y)) ∈ Θ0 for all k ∈ N. �

The following lemma can be obtained from [6], Theorem 3.10.

Lemma 4.6. If (X,T ) is a point transitive distal system, where X is a compact

Hausdorff space, then (X,T ) is minimal.

Theorem 4.7. Let (X,T ) be an IP∗-central and transitive system, where X is

a compact Hausdorff uniform space. If (X,T ) has a uniform equicontinuity point,

then it is distal, minimal, and all points of X are uniformly equicontinuous.

P r o o f. Let x ∈ X be a uniform equicontinuity point. By Lemma 4.4, x is

a transitive point. Let Θ be an entourage. We choose a symmetric entourage Θ1

such that Θ1 ◦Θ1 ◦Θ1 ⊂ Θ. Let Θ2 ⊂ Θ1 be a symmetric entourage corresponding
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to Θ1 in the definition of an equicontinuity point of x. By Lemma 4.3, x is distal.

Then N(x,Θ2[x]) is an IP*-set by Lemma 4.1. We will show that for any z ∈ X

and any n ∈ N(x,Θ2[x]) we have (T n(z), z) ∈ Θ. Then z is IP*-recurrent, and it is

distal by Lemma 4.1.

Choose z ∈ X and some n ∈ N(x,Θ2[x]). Since T n is continuous, for Θ1

there is a symmetric entourage Θ3 ⊂ Θ2 such that for any v ∈ Θ3[z] we have

(T n(v), T n(z)) ∈ Θ1. Note that since n ∈ N(x,Θ2[x]) for all m ∈ N we have

(T n+m(x), Tm(x)) ∈ Θ1. As x is transitive, hence there is k > 1 such that

T k(x) ∈ Θ3[z]. This implies that (T k(x), z) ∈ Θ3. Then (T n+k(x), T n(z)) ∈ Θ1.

Hence, (T n(z), z) ∈ Θ1 ◦ Θ1 ◦ Θ3 ⊂ Θ. By Lemma 4.6, (X,T ) is minimal. By

Lemma 4.5, all points of X are uniformly equicontinuous. �

We need the following result, see e.g. [15], Lemma 16.13.

Lemma 4.8. Let k ∈ N. Then kN is an IP∗-set in (N,+).

Lemma 4.9. Let (X,T ) be a dynamical system. If (X,T ) is uniformly chain

transitive and T has uniform shadowing, then (X,T ) is transitive.

P r o o f. Let U and V be two nonempty open subsets of X . Take x ∈ U and

y ∈ V . Then there is a symmetric entourage Θ1 of X such that Θ1[x] ⊂ U and

Θ1[y] ⊂ V . Let Θ2 be a symmetric entourage corresponding to Θ1 in the definition

of uniform shadowing. As (X,T ) is uniformly chain transitive, there is a Θ2-chain

ξ = {x0 = x, x1, . . . , xn = y} from x to y. As T has uniform shadowing, there

is z ∈ X such that (z, x) ∈ Θ1 and (T n(z), y) ∈ Θ1. That is, z ∈ Θ1[x] and

T n(z) ∈ Θ1[y]. This implies that T n(U) ∩ V 6= ∅. �

Proposition 4.10. Let (X,T ) be a dynamical system, where X is a compact

Hausdorff uniform space. If T is a uniformly chain transitive map with uniform

shadowing property, then (X,T ) is IP∗-central and transitive.

P r o o f. By Lemma 4.9, (X,T ) is transitive. Let U be a nonempty open subset

ofX . Consider a point x ∈ U . Let Θ1 be a symmetric entourage such that Θ1[x] ⊂ U

and let Θ2 be a symmetric entourage corresponding to Θ1 in the definition of uniform

shadowing. Suppose that ξ = {x0, x1, . . . , xk} is a Θ2-chain from x to x with length k.

Let

ζ := ξ, ξ \ x0,

where a represents repetition. Note that ζ is a Θ2-pseudo orbit. So we can find

z ∈ X which Θ1-shadows ζ. Since k is fixed, we have

(z, x) ∈ Θ1, (T k(z), x) ∈ Θ1, (T ik(z), x) ∈ Θ1, i = 1, 2, . . .
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Therefore, N(U,U) ⊃ N(Θ1[x],Θ1[x]) = kN. By Lemma 4.8, N(U,U) is an IP∗-set.

�

Corollary 4.11. Let (X,T ) be a dynamical system, where X is a compact Haus-

dorff uniform space, and T is a uniformly chain transitive map with uniform shadow-

ing property. If (X,T ) has a uniform equicontinuity point, then it is distal, minimal

and uniformly equicontinuous.

P r o o f. By Proposition 4.10, (X,T ) is IP∗-central and transitive. By Theo-

rem 4.7, (X,T ) is distal, minimal, and all points are uniformly equicontinuous. By

Proposition 3.8, (X,T ) is uniformly equicontinuous. �

Corollary 4.12. Let (X,T ) be a dynamical system, where X is a compact Haus-

dorff uniform space. If T is uniformly chain transitive map with uniform shadowing

property, then (X,T ) is either uniformly equicontinuous or it has no uniform equicon-

tinuity points.

We know that if (X,T ) is transitive, where X is a compact metric space, and all

points of X are sensitive, then (X,T ) is sensitive (see [2], Theorem 3.1). We end this

section with the following question:

Question 1. If (X,T ) is transitive, where (X,U) is a compact Hausdorff uniform

space, and all points of X are uniformly sensitive, is (X,T ) uniformly sensitive?
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