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Abstract. Let G be a finite group and let N(G) denote the set of conjugacy class sizes
of G. Thompson’s conjecture states that if G is a centerless group and S is a non-abelian
simple group satisfying N(G) = N(S), then G ∼= S. In this paper, we investigate a variation
of this conjecture for some symmetric groups under a weaker assumption. In particular, it
is shown that G ∼= Sym(p+ 1) if and only if |G| = (p+ 1)! and G has a special conjugacy
class of size (p + 1)!/p, where p > 5 is a prime number. Consequently, if G is a centerless
group with N(G) = N(Sym(p+ 1)), then G ∼= Sym(p+ 1).
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1. Introduction and main results

All groups considered in this paper are finite. Let G be a group and let N(G)

denote the set of all conjugacy class sizes of G. A fundamental question in group

theory is how the structure of G reflects and is reflected by N(G).

It is clear that the set N(G) does not determine the structure of G up to iso-

morphism. However, the situation is different when it comes to non-abelian simple

groups. Indeed, Thompson’s conjecture, see [16], Question 12.38, proposes that non-

abelian simple groups are characterized by the set of their conjugacy class sizes.

Thompson’s conjecture. If G is a centerless group and S is a non-abelian

simple group such that N(G) = N(S), then G ∼= S.

The conjecture has been confirmed for many families of simple groups so far, see

for instance [1], [6], [7], [9], [10], [18]. Inspired by these results, there has been recent

growing interest in investigating some variations of Thompson’s conjecture under
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a weaker condition. For instance, Li in [15] characterized simple sporadic groups and

simple K3-groups by using the group order and one or two special conjugacy class

sizes of the simple groups. Also, Chen et al. in [11] verified Thompson’s conjecture

for simple K4-groups by using the group order and a few conjugacy class sizes.

Recall that a finite simple group is called a simple Kn-group if its order is divisible

by exactly n distinct primes.

Asboei and Mohammadyari used the group order and just one special conju-

gacy class size to verify Thompson’s conjecture for alternating simple groups of

degrees p, p + 1 and p + 2, where p is a prime number, see [3] and [4]. They also

extended their result to symmetric groups of prime degrees, see [5]. Furthermore,

Asboei et al. in [2] recently showed that simple symplectic groups PSp2n(2) are

determined uniquely up to isomorphism by their order and one conjugacy class of

size |PSp2n(2)|/(2n + 1).

In this paper, we characterize the structure of finite groups with the same order

and one special conjugacy class size as the symmetric group Sym(p+1), where p > 5

is a prime number. The following theorem is the main result of this paper.

Main Theorem. Let G be a group. Then G ∼= Sym(p + 1) if and only if

|G| = (p+ 1) ! and G has a special conjugacy class size of (p+ 1) !/p, where p > 5 is

a prime number.

As a consequence of the Main Theorem, we prove an extension of Thompson’s

conjecture for the almost simple groups under study.

Corollary. Let G be a centerless group satisfying N(G) = N(Sym(p+1)), where

p > 5 is a prime number. Then G ∼= Sym(p+ 1).

In the sequel, we describe some notations and concepts we use to prove our main

results. We write π(G) for the set of all prime divisors of the order of group G.

The prime graph of group G, denoted by Γ(G), is a simple undirected graph whose

vertex set is π(G), and two vertices p and p′ are adjacent if and only if G contains an

element of order pp′. Let t(G) denote the number of connected components of Γ(G)

and π1, π2, . . . , πt(G) denote the connected components of Γ(G). Also, let T (G) be

the set of connected components of Γ(G), i.e. T (G) = {πi(G) : 1 6 i 6 t(G)}. If
2 ∈ π(G), then we always suppose that 2 ∈ π1. Note that we can express |G| as
a product of integers m1,m2, . . . ,mr, where π(mi) = πi for each i. The numbers mi

are then called the order components of G. We will frequently use the list of finite

non-abelian simple groups with disconnected prime graphs which is available in [13].
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2. Preliminaries

The aim of this section is to collect some facts and results that will be applied in

the next section of the paper.

Lemma 2.1 ([8], Theorem 1). If G is a Frobenius group of even order with the

Frobenius kernel K and the Frobenius complement H , then t(G) = 2 and T (G) =

{π(H), π(N)}.

Lemma 2.2 ([12], Theorem 10.3.1). Let G be a Frobenius group with the Frobe-

nius kernel H and the Frobenius complement K. Then |K| | |H | − 1.

Recall that a 2-Frobenius group is a groupG which has proper normal subgroupsK

and L such that L is a Frobenius group with kernel K and G/K is a Frobenius group

with kernel L/K.

Lemma 2.3 ([8], Theorem 2). If G is a 2-Frobenius group of even order, then

t(G) = 2 and G has a normal series 1 E H E K E G such that π(H) ∪ π(G/K) = π1

and π(K/H) = π2. Moreover, G/K and K/H are cyclic groups satisfying that

|G/K| | |Aut(K/H)|, (|G/K|, |K/H |) = 1 and |G/K| < |K/H |. In particular, G is
solvable.

Lemma 2.4 ([10], Lemma 8). Let G be a finite group with t(G) > 2 and N

a normal subgroup of G. If N is a πi-group for some prime graph component of G

and m1,m2, . . . ,mr are some of the order components of G but not a πi-number,

then m1m2 . . .mr | |N | − 1.

The following lemma determines the structure of finite groups with disconnected

prime graphs.

Lemma 2.5 ([19], Theorem A). Suppose that G has more than one prime graph

component. Then one of the following holds:

(1) G is a Frobenius group or a 2-Frobenius group;

(2) G has a normal series 1 E H E K E G such that H and G/K are π1-groups

and K/H a non-abelian simple group and |G/K| divides the order of the outer
automorphism group of K/H and H is a nilpotent group, and K/H 6 G/H 6

Aut(K/H). Besides, πi ∈ T (K/H) for i > 2.

Lemma 2.6 ([11], Lemma 2.12). Let G be a group, N a normal subgroup of G

with order pn, n > 1. If (r, |Aut(N)|) = 1, where r ∈ π(G), then G has an element of

order pr. Furthermore, there exists an edge connecting r and p in the prime graph

of G.
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Lemma 2.7. Let p be a prime number and n be a natural number. Then the

following holds:

(1) If p > 6, then there exists a prime r such that (p− 1)/2 < r < p− 1.

(2) If p > 13, then there exist two prime numbers r1, r2 such that (p− 1)/2 < r1 <

r2 < p− 1.

(3) If p > 19, then there exist three prime numbers r1, r2, r3 such that (p− 1)/2 <

r1 < r2 < r3 < p− 1.

(4) If p > 46, then there exist four prime numbers r1, r2, r3, r4 such that (p− 1)/2 <

r1 < r2 < r3 < r4 < p− 1.

(5) If n > 46, then there exist two prime numbers r1, r2 such that 3n/4<r1<r26n.

P r o o f. The proof of (1)–(4) goes along exactly the same lines as the proof of

Lemma 1 in [14]. Part (5) also follows by the same argument as in [17], page 83. �

3. Proof of the main theorem

It is obvious that if G ∼= Sym(p + 1), then |G| = |Sym(p + 1)| and G contains

a conjugacy class of size (p+1) !/p. Therefore it suffices to prove the sufficiency side

of the Main Theorem.

Under the assumption of the Main Theorem, there exists an element x of order p

in G such that 〈x〉 = CG(x) and CG(x) is a Sylow p-subgroup of G. Then it follows

from the Sylow theorem that {p} is a prime graph component of G and t(G) > 2.

Furthermore, p is the maximal prime divisor of |G| and an odd-order component
of G. In continue, we need to prove the following lemmas.

Lemma 3.1. With the assumptions of the Main Theorem we have:

(a) G has a normal series 1 E H E K E G such that H and G/K are π1-groups

and πi ⊂ π(K) for i > 1. Furthermore, K/H is a non-abelian simple group such

that |G/K| divides |Out(K/H)|, H is a nilpotent group and K/H 6 G/H 6

Aut(K/H). Besides, {p} ∈ T (K/H).

(b) |G/K| | p− 1.

(c) If r is a prime such that (p− 1)/2 < r < p− 1, then r | |K/H |.

P r o o f. (a) First we show that G is not a Frobenius group. By the way of

contradiction assume that G is a Frobenius group with kernel H and complement K,

and {p} is a prime graph component of G. Then, by Lemma 2.1, t(G) = 2 and

T (G) = {π(H), π(K)}. If p ∈ π(H), then |H | = p and |K| = (p + 1)(p − 1)!.

However, this is impossible since |K| | |H | − 1 by Lemma 2.2. If p ∈ π(K), then

|K| = p and K is a Sylow p-subgroup of G. We then deduce from Lemma 2.7
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that there exist a prime r such that (p− 1)/2 < r < p − 1 and r ∈ π(H). Let M

be an r-subgroup of H . Then M ⋊ K is a Frobenius group with kernel M and

complement K. This in particular implies that p | r − 1, a contradiction.

Next we show that G is not a 2-Frobenius group. On the contrary, assume that G

is a 2-Frobenius group. Then, by Lemma 2.3, t(G) = 2 and G has a normal series

1 E H E K E G such that π(K/H) = {p}, |G/K| | p − 1 and G is solvable. It

follows from Lemma 2.7 that there exists a prime r such that (p− 1)/2 < r < p− 1

and r ∈ π(H). Let M be an r-subgroup of H which is normal in G. By Lemma 2.6,

(p, |Aut(M)|) = (p, r − 1) = 1,

and hence G has an element of order pr. This contradicts the fact that {p} is
a prime graph component of G. We have thus shown that G is neither a Frobenius

nor a 2-Frobenius group. Therefore, (a) follows from Lemma 2.5.

(b) Let P be a Sylow p-subgroup of K. Then CG(P ) 6 K ∩ NG(P ) and by the

Frattini argument, G = NG(P )K. Therefore

G/K = NG(P )K/K ∼= NG(P )/K ∩NG(P ),

and also

|NG(P )/CG(P )| | |Aut(P )| = p− 1.

Thus |G/K| | p− 1.

(c) By the way of contradiction assume that r ∤ |K/H |. Then r ∈ π1 or r ∈ πi for

all i > 1. If r ∈ πi for all i > 1, we have πi ∈ T (K/H) for all i > 1, and so r | |K/H |,
a contradiction. If r ∈ π1, then r ∤ |G/K| by part (a). Therefore r | |H |. Let N be
a r-subgroup of H which is a normal subgroup of G. Then Lemma 2.6 implies that

(p, |Aut(N)|) = 1. This is impossible since {p} is a prime graph component of G.
Therefore r | |K/H |. �

The list of order components of finite simple groups with disconnected prime

graphs is available in Tables 1–3 of [13]. In the sequel, we use the classification of

finite simple groups to eliminate all the possibilities of K/H except for Alt(p+ 1).

Lemma 3.2. K/H is not isomorphic to a sporadic simple group or the Tits group.

P r o o f. If K/H ∼= M12, then p = 11. By Lemma 2.7, there exists a prime r

such that (p− 1)/2 < r < p − 1, and so r = 7. Then Lemma 3.1(c) implies that

7 | |K/H | = 26·33·5·11, a contradiction.
If K/H ∼= J2, then p = 7 and 52 divides |J2|. Therefore 52 divides |G| = 27·32·5·7,

a contradiction.
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If K/H ∼= Co1, then p = 23. By Lemma 2.7, there exist two primes r1, r2 such

that (p− 1)/2 < r1 < r2 < p − 1. Therefore r1, r2 ∈ {19, 17, 13} and they must
divide |Co1| = 221·39·54·72·11·13·23 by Lemma 3.1(c), which is a contradiction.
If K/H ∼= HS, then p = 11 or p = 7. If p = 11, then 53 divides |K/H | and also

divides |G| = 210·35·52·7·11, a contradiction. If p = 7, then 11 divides |G| = 27·32·5·7,
a contradiction.

If K/H ∼= M22, then p ∈ {7, 11} and |K/H | = 27·32·5·7·11. If p = 11, then

|G| = 210·35·52·7·11. In this case,

|G/K| | |Out(K/H)| = 2.

This particularly implies that 5 ∈ π(H), which contradicts Lemma 2.4. If p = 7,

then 11 ∈ π(G), which is impossible since p is the maximum prime divisor of |G|.
The remaining simple sporadic groups can also be eliminated by similar arguments.

�

Lemma 3.3. K/H is not isomorphic to a simple group of Lie type.

P r o o f. The list of simple Lie-type groups with prime component has been given

in Table 1. Using this list, we consider different possibilities of K/H among simple

groups of Lie type and work towards a contradiction.

S Condition S Condition

Ap′−1(q) (p′, q) 6= (3, 2), (3, 4) Ap′(q) q − 1 | p′ + 1
2Ap′

−1(q)
2Ap′(q) q + 1 | p′ + 1, (p′, q) 6=(3, 3), (5, 2)

2A3(2) Bn(q) n = 2m > 4, q odd

Bp′(3) Cn(q) n = 2m > 2

Cp′(q) q = 2, 3 Dp′(q) p′ > 5, q = 2, 3, 5

Dp′+1(q) q = 2, 3 2Dn(q) n = 2m > 4
2Dn(2) n = 2m + 1, m > 2 2Dp′(3) 5 6 p′ 6= 2m + 1
2Dn(3) n = 2m + 1 6= p′, m > 2 G2(q) 2 < q ≡ ε (mod 3), ε = ±1
3D4(q) F4(q) q odd
2F4(2)

′ E6(q)
2E6(q) q > 2 A1(q) 3 6 q ≡ ε (mod 4), ε = ±
A1(q) 2 < q even 2A5(2)

2Dp′(3) p′ = 2m + 1, m > 1 G2(q) 3 | q
2G2(q) q = 32m+1 > 3 F4(q) 2 < q even
2F2(q) q = 22m+1 > 2 E7(q) q = 2, 3

A2(4)
2B2(q) q = 22m+1 > 2

2E6(2) E8(q)

Table 1. Simple groups of Lie type with prime odd order component.
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⊲ K/H is isomorphic to Ap′−1(q), where (p
′, q) 6= (3, 2), (3, 4). Then

p =
qp

′ − 1

(q − 1)(p′, q − 1)
.

First, assume that p > 19. By Lemma 2.7, there exist three primes r1, r2, r3
such that (p− 1)/2 < r1 < r2 < r3 < p − 1. Thus, for any 1 6 i 6 3, ri divides

|K/H | = qp
′(p′

−1)/2
p′
−1
∏

i=1

p(qi − 1). Therefore

ri >
p− 1

2
> qp

′
−3 − 1,

and also

r3i > (qp
′
−2 − 1)(qp

′
−1 − 1).

By Lemma 3.1 (c), we have r1 ·r2 ·r3 | |K/H |, and so r1 ·r2 ·r3 | (qp′
−2−1)(qp

′
−1−1),

a contradiction.

Next, assume that p = 17 or p = 11. Then there are no p′ and q satisfying the

equation

p =
qp

′ − 1

(q − 1)(p′, q − 1)
.

If p = 13, then p′ = 3 and q = 3. By Lemma 2.7, 11 ∈ π(A2(3)), which is

a contradiction. If p = 7, then we have that q = 2 or 4, and p′ = 3. If q = 2, then

by Lemma 2.7, 5 ∈ π(A2(2)), which is impossible. If q = 4, then K/H isomorphic

to Alt(8). Now Since Aut(Alt(8)) = Sym(8), we have Alt(8) 6 G/H 6 Sym(8)

which in turn implies that G ∼= Sym(p+ 1) for p = 7, as desired.

⊲ K/H is isomorphic to Ap′(q), where q−1 | p′+1. Then p = (qp
′ − 1)/(q − 1). Let

p > 19. By Lemma 2.7, there exist three primes r1, r2, r3 such that (p− 1)/2 <

r1 < r2 < r3 < p− 1. Then for 1 6 i 6 3 we have that ri divides

|K/H | = qp
′(p′+1)/2(qp

′+1 − 1)

p′
−1
∏

i=1

p(qi − 1).

Therefore ri > (p− 1)/2 > qp
′
−1 − 1 and also r3i > qp

′+1 − 1. By Lemma 3.1 (c),

we have r1 · r2 · r3 | |K/H |, and so r1 · r2 · r3 | qp′+1 − 1, which is a contradiction.

If p = 17 or p = 11, then there are no p′ and q satisfying the equation p =

(qp
′ − 1)/(q − 1).

If p = 13, then by Lemma 2.7, there exist a prime r such that (p− 1)/2 <

r < p − 1. Thus r = 7. By Lemma 3.1 (c), 7 | |K/H | = 28·36·5·13, which is
a contradiction. If p = 7, then p′ = 3 and q = 2. Then K/H isomorphic to Alt(8).
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Now since Aut(Alt(8)) = Sym(8), we have Alt(8) 6 G/H 6 Sym(8), which in

turn implies that G ∼= Sym(p+ 1) for p = 7, as desired.

⊲ K/H is isomorphic to Bn(q), where n = 2m > 4 and q is odd. Then p = (qn + 1)/2.

First, assume that q = 3 and m = 2. Then p = 41. By Lemma 2.7, there exist

a prime r such that (p− 1)/2 < r < p − 1, and so r = 23. Now Lemma 3.1 (c)

implies that 23 | |K/H | = 214 ·316 ·52 ·7 ·13 ·41, which is impossible. Next, assume
that q > 3 and n > 8. Therefore p > 70. By Lemma 2.7, there exist four primes

r1, r2, r3, r4 such that (p− 1)/2 < r1 < r2 < r3 < r4 < p − 1. Then for any

1 6 i 6 4 we have that ri divides

|K/H | = qn
2

(qn − 1)

n−1
∏

i=1

p(q2i − 1).

Therefore ri > p− 1/2 > qn−1−1 and also r4i > (qn−1+1)(qn−1). Lemma 3.1 (c)

yields that r1 · r2 · r3 · r4 | |K/H |, which implies r1 · r2 · r3 · r4 | (qn−1 +1)(qn − 1),

a contradiction.

⊲ K/H is isomorphic to Cn(q), where n = 2m > 2. Then p = (qn + 1)/(2, q − 1).

First, assume that q = 2, m = 2. Then p = 17. By Lemma 2.7, there exists

a prime r such that (p− 1)/2 < r < p − 1, and so r = 13. Lemma 3.1(c) then

implies that 13 | |K/H | = 216·35·52·7 · 17, a contradiction. Next, assume that
q = 2 and n > 4. Then p > 19 and p = (2n + 1)/(2, 1). By Lemma 2.7, there exist

three primes r1, r2, r3 such that (p− 1)/2 < r1 < r2 < r3 < p− 1. Then for any

1 6 i 6 3, ri divides

|K/H | = 2n
2

(2n − 1)

n−1
∏

i=1

p(22i − 1).

Therefore ri > (p− 1)/2 > 2n−1 − 1 and also r3i > (2n − 1)(2n−1 + 1). Now

Lemma 3.1 (c) yields that r1·r2·r3 | |K/H |, which implies r1·r2·r3 | (2n−1 + 1)×
(2n − 1), again a contradiction.

If q = 3, 4 and n > 4, we get a contradiction using similar arguments as before.

So we suppose that q > 4 and n > 4. Then p > 46 and p = (qn + 1)/(2, q − 1).

By Lemma 2.7, there exist four primes r1, r2, r3, r4 such that (p− 1)/2 < r1 <

r2 < r3 < r4 < p− 1. Then for any 1 6 i 6 4 we have that ri divides

|K/H | = qn
2

(qn − 1)
n−1
∏

i=1

p(q2i − 1).

Therefore ri > (p− 1)/2 > qn−1 − 1 and also r4i > (qn − 1)(qn−1 + 1). By

Lemma 3.1 (c), we have r1·r2·r3·r4 | |K/H |. This implies that r1·r2·r3·r4 | (qn−1+

1)(qn − 1), which is again a contradiction.
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⊲ K/H is isomorphic to A1(q), where 3 < q ≡ ε (mod 4). Then p = (q + ε)/2

or p = q. Let ε = 1. Then p = (q + 1)/2 or p = q. If p = q, then |K/H | =
p(p2 − 1)/2. First assume that p > 19. Then, by Lemma 2.7, there exist three

primes r1, r2, r3 such that (p− 1)/2 < r1 < r2 < r3 < p− 1. Now Lemma 3.1(c)

implies that r1·r2·r3 | |K/H |, which in turn yields that r1·r2·r3 | (p− 1)(p+ 1)/2.

This is while r1·r2·r3 > ((p− 1)/2)3 > (p − 1)(p + 1)/2, a contradiction. Next

assume that p = 17. By Lemma 2.7, there exist a prime r such that (p− 1)/2 <

r < p− 1. Thus r = 13. Now using Lemma 3.1 (c), we deduce that 13 | |K/H | =
24·32·17, which is impossible. If p = 13, then Lemma 2.7 implies that there

exists a prime r such that (p− 1)/2 < r < p − 1, and hence r = 11. Therefore

11 | |K/H | = 22·3·7·13 by Lemma 3.1 (c), a contradiction. If p = 11, then r = 7

and we have that 7 | |K/H | = 22·3·5·11, a contradiction. Finally, when p = 7, one

gets a contradiction by using a similar argument.

If p = (q + 1)/2, then |K/H | = p(2p−1)(2p−2). We proceed as before to reach

a contradiction in each case. First let p > 19. By Lemma 2.7, there exist three

primes r1, r2, r3 such that (p− 1)/2 < r1 < r2 < r3 < p−1. Since r1·r2·r3 | |K/H |,
we must have r1·r2·r3 | (p − 1)(2p − 1), which violates the inequality r1·r2·r3 >

((p− 1)/2)3 > (p − 1)(2p − 1). Next assume that p = 17. Using Lemma 2.7

again, we deduce that there exists a prime r such that (p− 1)/2 < r < p − 1,

and hence r = 13. Lemma 3.1(c) then implies that 13 | |K/H | = 25·3·11·17,
a contradiction. If p = 13, then, by Lemma 2.7, there exists a prime r = 11

such that 11 | |K/H | = 23·3·52·13, which is impossible. Finally, if p = 7, we get

a contradiction using a similar argument.

The case in which ε = −1 can be handled by using the same arguments as in

the case ε = 1.

⊲ K/H is isomorphic toA1(q), where 4 < q is even. Then p = q−1 or p = q+1. If p =

q− 1, then |K/H | = p(p+1)(p+2). Let p > 19. By Lemma 2.7, there exist three

primes r1, r2, r3 such that (p− 1)/2 < r1 < r2 < r3 < p−1. Since r1·r2·r3 | |K/H |,
we get r1·r2·r3 | (p+1)(p+2). This is while r1·r2·r3 > ((p− 1)/2)3 > (p+1)(p+2),

a contradiction. If p = 17, then Lemma 2.7 implies that there exists a prime r

such that (p− 1)/2 < r < p − 1, and so r = 13. Lemma 3.1 (c) then yields that

13 | |K/H | = 2·32·17·19, which is impossible. If p = 13, then, by Lemma 2.7,

there exists a prime r such that (p− 1)/2 < r < p − 1, and hence r = 11. By

Lemma 3.1 (c), 11 | |K/H | = 2·3·5·7·13, which is a contradiction. If p = 11, then

r = 7 and we have 7 | |K/H | = 22·3·11·13, a contradiction. If p = 7, then r = 5

and 5 | |K/H | = 23·32·7, a contradiction.
Finally, if p = q + 1, then |K/H | = p(p− 1)(p− 2). This case can be handled

similarly as before.
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⊲ K/H is isomorphic to E6(q). Then p = (q6 + q3 + 1)/(3, q − 1) and also p > 19.

By Lemma 2.7, there exist three primes r1, r2, r3, such that (p− 1)/2 < r1 <

r2 < r3 < p − 1. Then for any 1 6 i 6 3 we have that ri divides |K/H | =
q36(q3 − 1)3(q3 + 1)2(q6 + 1)(q2 − 1)2(q2 + 1)(q4 + 1)(q5 − 1). If q 6= 4, then ri >

(p− 1)/2 > q5 and also r3i > (q6 +1). By Lemma 3.1 (c), we get r1·r2·r3 | |K/H |.
Therefore r1·r2·r3 | q6 + 1, a contradiction.

If q = 4, then p = 1387 = 19 · 73 and |K/H | = 272·39·54·73·11·132·172·19·31·73·
241·257. By Lemma 2.7, we get r = 809, which is again a contradiction.

⊲ K/H is isomorphic to G2(q), where q ≡ 0 (mod 3). Then p = q2 − q + 1 or

p = q2 + q + 1.

First assume that p = q2 + q + 1. If q = 3, then p = 13. By Lemma 2.7 there

exists a prime r such that (p− 1)/2 < r < p − 1, and so r = 11. However, this

violates Lemma 3.1 (c) by which we have 11 | |K/H | = 26·36·7·13. If q > 3, then

p > 46. Using Lemma 2.7 again, we obtain that there exist four primes r1, r2,

r3, r4 such that (p− 1)/2 < r1 < r2 < r3 < r4 < p − 1. Then for any 1 6 i 6 4

we have that ri divides |K/H | = q6(q2 − 1)2(q2 − q + 1)(q2 + q + 1). Therefore

r2i > q2− q+1 and r2i > q2 − 1. By Lemma 3.1 (c), we have r1 · r2 · r3 · r4 | |K/H |.
Therefore we must have

r1 · r2 · r3 · r4 | (q2 − 1)(q2 − q + 1),

since gcd(ri, q
6) = 1 = gcd(ri, q

2 + q + 1) = gcd(ri, p) = 1. However, this violates

the former inequalities.

Next assume that p = q2 − q + 1. If q = 3, then p = 7. By Lemma 2.7, there

exists a prime r such that (p− 1)/2 < r < p−1. Then r = 5 and by Lemma 3.1 (c),

we have that 5 | |K/H | = 26 · 36 · 7 · 13, a contradiction. Let q > 3. Then p > 46.

By Lemma 2.7 there exist four primes r1, r2, r3, r4 such that (p− 1)/2 < r1 < r2 <

r3 < r4 < p− 1. Therefore ri > q + 1 and r4i > q2 + q + 1. For 1 6 i 6 4 we have

that ri divides |K/H | = q6(q2 − 1)2(q2 − q + 1)(q2 + q + 1). By Lemma 3.1(c),

we get that r1·r2·r3·r4 | |K/H |. This implies that r1·r2·r3·r4 | (q2 + q + 1) since

gcd(ri, q
6) = gcd(ri, q

2 − q + 1) = gcd(ri, p) = 1 and ri > q + 1, which is again

a contradiction.

⊲ K/H is isomorphic to 2A3(2). Then p = 5, which violates the assumption p > 5.

⊲ K/H ∼= 2F4(2), then p = 13. By Lemma 2.7, there exists a prime r such that

(p− 1)/2 < r < p − 1, which in turn yields r = 11. Now Lemma 3.1 (c) implies

that r | |K/H | = 211·33·52·13, which is a contradiction.
⊲ K/H is isomorphic to 2B2(q), where 2 < q = 22m+1. Then p = q − √

2q + 1,

p = q +
√
2q + 1 or p = q − 1.

First assume m = 1 and q = 8. Then p = 13 or p = 7. If p = 13, then

Lemma 2.7 implies the existence of a prime r such that (p− 1)/2 < r < p− 1. So
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r = 11. Using Lemma 3.1 (c), we have 11 | |K/H | = 26·5·7·13, a contradiction. If
p = 7, then 13 ∈ π(|K/H |), which is impossible since |G| = 27·32·5·7.
Next assume thatm = 2 and q = 32. Then p = 31 or p = 41, and by Lemma 2.7,

r = 23. Then 23 | |K/H | = 210·52·31·41, a contradiction.
Finally assume that m > 2 and q > 120. Then p > 46. By Lemma 2.7, there

exist four primes r1, r2, r3, r4 such that (p− 1)/2 < r1 < r2 < r3 < r4 < p − 1.

Therefore

r2i >
(p− 1

2

)2

> q +
√

2q + 1 > q − 1 > q −
√

2q + 1.

Then for any 1 6 i 6 4 we have that ri divides

|K/H | = q2(q − 1)
(

q +
√

2q + 1
)(

q −
√

2q + 1
)

.

Now by the possible values of p, we obtain that r1·r2·r3·r4 | (q +
√
2q + 1)(q −√

2q + 1), r1·r2·r3·r4 | (q − 1)(q +
√
2q + 1) or r1·r2·r3·r4 | (q − 1)(q − √

2q + 1),

which is a contradiction.

⊲ K/H is isomorphic to E8(q), where q ≡ 0, 1, 4 (mod 5). Then, by [13], Table 3,

K/H has four order components. Therefore we have p = q8− q4+1, p = q8− q6+

q4 − q2 +1, p = q8 − q7 + q5 − q4 + q3 − q+1 or p = q8 + q7 − q5 − q4 − q3 + q+1

and also p > q7 > 128. It follows from Lemma 2.7 (5) that there exist four primes

r1, r2, r3 and r4 such that (p− 1)/2 6 9(p− 1)/16 < r1 < r2 6 3(p− 1)/4 < r3 <

r4 < p− 1. Therefore ri·rj > q9. Then for any 1 6 i 6 4 we have that ri divides

|K/H | = |E8(q)|. We outline the argument for the case p = q8− q4+1. The other

cases can be handled similarly. Note that p > q7 > 128. Then it follows from

r1·r2·r3·r4 | |E8(q)| that

r1·r2 ·r3·r4 | (q8−q6+q4−q2+1)(q8−q7+q5−q4+q3−q+1)(q8+q7−q5−q4−q3+q+1),

which violates the fact that rirj > q9.

The other simple groups given in Table 1 can be eliminated by using a similar

method as before. �

Lemma 3.4. K/H is isomorphic to the alternating group Alt(p + 1) and G ∼=
Sym(p+ 1).

P r o o f. By Lemmas 3.2 and 3.3, K/H is isomorphic to a simple alternating

group. Using [13], Tables 1–3, we obtain that K/H is isomorphic to An, where

6 < n = p′, p′ + 1, p′ + 2, p′ is a prime, and one of the numbers n or n − 2 is not

a prime.
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If n = p′, then p = p′, K/H ∼= Alt(p) and Alt(p) 6 G/H 6 Sym(p). Therefore

|H | = p + 1 or |H | = 2p + 2. This contradicts Lemma 2.4. If n = p′ + 2, then

p = p′ and K/H ∼= Alt(p+ 2). Since Alt(p+ 2) 6 G/H 6 Sym(p+ 2), we again get

a contradiction according to |G|.
If K/H is isomorphic to Alt(p′), where 6 < p′ and both of p′ and p′−2 are primes,

then p = p′ or p = p′ − 2. If p = p′, then K/H ∼= Alt(p). If p = p′ − 2, then

K/H ∼= Alt(p+ 2). In both cases we get a contradiction arguing as before.

Finally, we get n = p′ + 1. Then p = p′ and K/H ∼= Alt(p + 1). Now since

Aut(Alt(p + 1)) = Sym(p + 1), (p > 5), we have Alt(p + 1) 6 G/H 6 Sym(p + 1),

which in turn implies that G ∼= Sym(p+1) since |G| = |Sym(p+1)|. This completes
the proof of the Main Theorem. �

P r o o f of the Corollary. Note that p is a connected component of Γ(G) and

Γ(Sym(p + 1)), and hence we have t(G) > 2 and t(Sym(p + 1)) > 2. Therefore,

a similar argument as in [9], Lemma 1.4 implies that |G| = |Sym(p + 1)|. Now the
assertion follows from the Main Theorem. �
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