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Abstract. In this paper, we consider a one-dimensional system governed by two partial
differential equations. Such a system models phenomena in engineering, such as vibrations
in beams or deformation of elastic bodies with porosity. By using the HUM method, we
prove that the system is boundary exactly controllable in the usual energy space. We will
also determine the minimum time allowed by the method for the controllability to occur.
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1. INTRODUCTION

In this work, we study the boundary exact controllability problem for the following
evolution system in one dimension:
out — K(pug +bd)z =0

(1.1) in ]0, L[ x]0, T,
Jbi — bza + K(buy, + EP) =0

(1.2) w0 1) = eal0), (Lo t) =0
$(0,t) = wa(t), ¢(L,t) =0
(1.3) u(z, 0) = w’(@), "tEx’ ;_ W) 0,1,

¢ (x)

¢(z,0) = ¢°(x), ¢

where o, i, J, 8, €, and & are positive constants and b is a constant satisfying b = ué,
the functions w; and wy are the controls and u®, u', ¢°, and ¢! are the initial data.

(E,

This type of system models various kinds of phenomena in engineering.
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When p = ¢ =1, system (1.1) models the transverse vibrations in a beam, taking
into account the effect of rotatory inertia and shearing deformations, in this case,
u represents the tranverse displacement of the beam and ¢ is the rotation angle of
a filament of the beam, cf. Timoshenko [29]. There are many works on stabilization
for Timoshenko systems subject to various types of damping and thermal effects [3],
[4], 6], [8], [24], [25]. One of the first studies concerning stabilization for the Timo-
shenko system was carried out by Soufyane in [28]. In this work the author obtained
stabilization for the following system:

(1.4) 0101t — K($z +1)e =0,
(1.5) 021t — Uiy + k(@ + ) + a(x)hy = 0,

subject to Dirichlet boundary conditions, where a = a(z) is a positive bounded
function. Physically, a(x); represents a frictional term.

Recently, Mercier and Régnier in [19] studied the issue of stabilization for the
following Timoshenko system:

(1.6) Prt — (Pz + )z =0,
(17) Vit — APy + b(@x + w) =0

in (0,1) x (0,00), where a and b are positive constants, with boundary conditions

(1.8) 00(0,8) = 1(0,) = ¥(1,¢) = 0

and the boundary dissipation law given by

(1'9) b_lawﬁc(lat) = —5%(1775)-

Regarding controllability of Timoshenko systems, there are few studies, among
which we can mention [5], [11], [12], [17], [27], [30] and more recently [1].

When k = 1, system (1.1) is a model for the study of elastic solids with voids,
which is one of simple extensions of the classical theory of elasticity. In this case, the
variable u represents the displacement of a solid elastic material and ¢ represents
the volume fraction, cf. [7]. Although there is a good amount of literature dealing
with stabilization of solutions for these systems (see for example [9], [16], [20], [22],
[23], [26]), we did not find any works considering controllability for porous elastic
systems.

Despite the similarity, there are serious difficulties when we move from the Tim-
oshenko system to the porous elastic system, this can be verified when studying the
stability exponents for the two systems (see for example [26] and its references).
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The goal of this paper is to prove, using the HUM method, the boundary ex-
act controllability for system (1.1) when controls are located only on one end of
the domain of each of component-functions of the solution, in particular, as in the
case (1.2).

The main contribution of this work is the proof of the following inequality of
observability:

T T
(1.10) E0) < Cur {nu/ u?(0,1) dt+5/ $2(0,1) dt],
0 0

where C,, 7 is a positive constant depending on o and on 7T'. This inequality results
in the exact controllability of the system (1.1)—(1.3).

The exact controllability for the system (1.1)—(1.3) is formulated as follows: given
T > 0, large enough, and initial data (u® u',¢°, ¢') in an appropriate space, find
a pair of controls (wi,ws) such that the solution (u,¢) of the system (1.1)—(1.3)
satisfies

(1'11) u('aT):ut("T):QO('?T)ZQOt('aT) =0.

The paper is structured as follows: in Section 2, we study by the semigroup method
the existence and uniqueness of the solution for the system (1.1)—(1.3), as well as for
its nonhomogeneous counterpart, we also define the solutions by transposition. In
Section 3, we establish the direct inequality and the inequality known as observability
inequality or inverse inequality. In (1.10), E(0) is the energy of system (1.1)—(1.3)
at time ¢t = 0 and Cr, is a positive constant that depends on 7. Inequalities of this
nature have great relevance in mathematics, because they allow the total energy in
a system to be estimated from the partial measure in a sub-region of the domain
or boundary, moreover, this type of inequality plays an important role in questions
of controllability (see [2], [10], [32]). Finally, in Section 4 we use the HUM method
(cf. [14], [13]) to prove the boundary exact controllability for the system (1.1)—(1.3).

Throughout the paper, we will use (-,-)r2 and ||-|| to represent the inner product
and the norm in space L?(0, L), respectively.

2. EXISTENCE AND UNIQUENESS OF SOLUTIONS

In this section, we will study, but without proof, some results of existence and
uniqueness of solutions for the system

oust — K(pug +bg), = 0
(2.1) in )0, L[ x]0, 1,
Jou — 0bpa + K(bugy + EP) =0
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where o, p, J, §, &, and k are positive constants and b?> = p&. The boundary
conditions are

u(0,t) =0, w(L,t)=0
(2.2) in ]0, 7]
¢(07 t) =0, ¢(Lv t) =0
and initial conditions
23) u(z,0) = uo(z), w(z,0)=ui(z) in 10,
¢($, 0) = ¢0(x)7 (bt(x’ 0) = (bl(x)

In this case, the energy of the solution (u, ¢) at time ¢ is given by

(24)  2B() = ollu @) + el +6llo: (017 + sl (Vius £ VED) D,

where £+ depends on the sign of b. By multiplicative techniques, it is possible to
establish

(2.5) E(t) = E(0), t>0.

2.1. Homogeneous system. The initial and boundary value problem (2.1)-
(2.3), can be written as a Cauchy problem for ¥ = (u, ut, @, @) as follows:

(2.6)

U, = AU, t>0,
T(0) = Uy,

where Wo = (ug, u1, o, 1) and A is the differential operator

0 I 0 0
K52 Kb
A gam 0 "‘gam 0
0 0 0 I
kb ) K
—59, 0 20251 0

with values on the Hilbert space
H = Hy(0,L) x L*(0,L) x H}(0,L) x L*(0,L)
and domain

D(A) = {(u, 0, ¢,9) € H;u € H*(0,L),p € Hj(0,L),¢ € H*(0,L), € H}(0,L)}.
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The space H shall be provided with the inner product
(2.7) (9% 0% 9%, (ul, ', 0" 0w
= Q(@Oa 801)L2 + J(d)ovwl)Lz + 6( 27 Q%)L?
+ r(ypug £ V€, iy £ VE¢') 12,
which induces the norm
(2.8) (s 0, 6, )13, = llell + T + 61162 l1” + sl Vs + /€61

If U = (u,p, d,0), the above settings allow us to establish
Re(AU,U)y =0,

By using the standard method of the

semigroup theory, it is possible to establish that A is the infinitesimal generator of
At

implying that A is a dissipative operator.

a Cp semigroup of contractions S(t) = e

2.2. Nonhomogeneous system. Once established that the previous homoge-
neous system has a solution, if f and g are functions in space L(0,7’; L2(0, L)), then
the nonhomogeneous system

ouy — K(pug +0d)y = f

(2.9) in 10, L[ x]0, T,
J¢tt - 5¢x9c + ’i(bux + §¢) =g
u(0,t) =0, u(L t)=0 )
(2.10) in ]0, T',
9(0,t) =0, ¢(L,t) =
(2.11) u(z,0) =uo(z), wu(x, O) = ul(m) 010,
¢(x70) = ¢0(£L‘), ¢t(xa0) é1 ( )

admits a single mild solution (see [21]) given by
t
=S(t)x —|—/ S(t—s)F(s)ds, 0<t<T,
0

where F'(t) = (0, f(¢),0,g(t))’, € H, with regularity ¥ € C([0,T]; H).
By using reversibility in time, the problem (2.9)—(2.11) is equivalent to

outr — K(pug +b9)e = f

(2.12) in )0, L] )0, 7,
(2.13) u(0,t) =0, u(L t)=0 0 0.7,
#(0,t) =0, &(L,t) =
(2.14) @ T) = uo(®), ut(x’T) - ul(m) in )0, L[.
(x,T) = ¢o(r), ¢z, T) = ¢1(x)
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2.3. Solution by transposition. Given

(0, 0", ¢ ¥ty € (L*(0,L) x H'(0,L))* and wi,ws € L*(0,T),

a solution by transposition to the system

oV — K(pvg +bY); =0

(2.15) in 10, L[ x]0, T,
Jthtt — 0 + H(bvx + Ew) =0
(216) U(Oat) = wl(t)v U(Lvt) =0 in ]0, T[,
1/1(0at) = w2(t)7 w(Lvt) =0
=00(z), wu(z,0)=vl(z
o w0 =@ w0 =)
P(z,0) =¥ (x), Yu(2,0) =¥ (x)

is a pair (v,) € (L*°(0,T; L?(0, L)))? such that

L T
@18) [ [ (fugu) drde = 70N 60) s = I 010
+ Q<U17u(0)>H—1,H§ — 0(v”, uy(0)) 2
+rp /0 w1 (B (0, ) dt + 5 /0 ws ()2 (0, 1)t

for all (f,g) € (L*(0,T;L*(0,L)))?, where (u, ) is a solution of (2.12)—(2.14). It is
possible to show, by using the Riesz representation theorem, that the system (2.15)—
(2.17) has a single solution by transposition, cf. [15].

Remark 2.1.
solution by transposition (v, 1)) above satisfies

By using a method found in [18] it is possible to show that the

(2.19) (v,0) € C°([0,T], L*(0, L)) N C*([0,T], H~(0, L)).

3. OBSERVABILITY INEQUALITY AND BOUNDARY EXACT CONTROLLABILITY

In this section, we will prove the observability inequality for the system (2.1)—(2.3),
which will result in the exact controllability for this system, since it is conservative
(see [13]).

Next, we will prove the inverse inequality, also known as observability inequality.
In this result we will use the following notation: if g(¢) is a function such that ¢,
and ty belong to the domain, then

(3.1) > g(t) = g(tr) + g(ta).
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Theorem 3.1. Let (u,¢) be a solution of (2.1)—(2.3). Then for T > 2oL, where

el )

there exists a positive constant Co, 7 = C(a, T') > 0 such that

T T
B(0) < Car {W / W2(0,4) dt + 6 / 62(0,1) dt].
0 0

In this case

___c _ O e
Ca7T—m and C—max{ uJ’\/;}

Proof. The proof is based on an argument found in [17], which has been moti-

vated by an idea of Zuazua in [31].

We consider, without loss of generality, b > 0. Let J be the function given by

1 T—ax
(32) T =5 [ e + It + 562 (w.0)

+ Rt (2, 1) + /E(0, 1)) dt

We note that

T
J(0) = % /O [562(0, ¢) + rp (0, 1)) dt
and
/ I T — 2aL)E(0).

We have to show that

L
/ J(z)dx < cJ(0)
0

for some constant ¢ > 0. To do this, it is sufficient to establish that
J'(x) < T (@).

Indeed, we write

J(z) = Ji(z) + Ta(x)

with

i -3 [ o2, 1) + r( Ve (2, ) + VES(0, £))?) dt

€T
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and

T—ax
Jo(z) = %/ [J¢2(x,t) + 662 (x, t)] dt.

T

Thus for J; we have

T—ax
(3:3) %(ﬂ?) = / lourues + K(v/Hite + /) (Vg + /€6).] dt
S 0Y (o) + w(y el t) + VEO(0.1)?)

and the fact that ousy = k\/I(\/fite + V/EP)a gives

B0 D= [ o+ Lty + Ve

da aw Vi
a T—ax
—5 D (ouf (@, t) + k(Viiua(z, 1) + \/€6(0,1))%)
t=ax
We observe that
T—ax =T o T—ax
(3.5) / ouuy At = oupug|,_ - — / Uty di,
axr (6% 1

replacing (3.5) in (3.4) we have

dj T—ax T-az Q\/E
(3.6) d—;(x) = gutux‘z o /{H i ugep dt
T—oax
—5 Y (ud(at) + n(Viua(, 1) + VEO(0,)?)
t=azx
Taking into account that
T—ox T—ax
(37) /ax Q\>//__j/zu“¢dt \/_ t¢‘zx az Q_\}/EE : Ut¢t dt

and replacing (3.7) in (3.6), we obtain

dJi

(3.8) (@) = =roos V€ [T

\/_um+\/_¢ |t ax \//_7

(gut(x t) + £V (x,1) + V/€6(0,1))

0
— sy dt
\/_

a’s
2

QMQ

t
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The first term on the right-hand side of (3.8) can be increased using Young’s inequal-
ity as follows:

(3.9) Tutfuwf«ﬁ f Qfﬁfwfqb
= ﬁ U K U 2
_2\/ﬁgt+2\/ﬁ5/€ (\/ﬁx+\/g¢)

If we choose 8 = \/o/k, we obtain
310) Loy +VE0) < 5y (o 4wl + VB0
Putting o = max{\/¢/(ux), /J/0}, we have

Lz + VED) < S (ouf + w(y/iug + /E9)?).

Vi

l\.')

Then
(3.11)

0 t:Tfaa: « —
ﬁut(\/ﬁugg—i—\/gd))t:w EZgutxt + r(y/pug(x, t) )+ VEd(x,1))?

from the inequality above and from (3.8), we obtain

djl Q\/E T—ax
(312) a(l‘) S —W/am ut¢t dt.

On the other hand,

T—ax T—ax
(3'13) %(Jﬁ) = / [J¢t¢tx + 5¢x¢xm] dt — % Z [J(b% (l‘, t) + (5¢92c (l‘, t)] dt.

t=ax

We note that

T—ax T—ax
(3.14) / Jrdro dt = J¢t¢x|t:T7ax - / J btz dt.

t=ax
T T

By multiplying the second equation in (2.1) by ¢, and integrating on |[az, T — x|,
we obtain

T—ax T—ax
(3.15) / JGur dt = / [6bw0e — kV/E(V UL + V/E),] di

xT €T
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and combining (3.13), (3.14), and (3.15), we have

d o T—ox
(316) diQ( ) J¢t¢z Z Z:x + \/_ \/_Ux + \/E¢)¢I dt
T—aox
DI L ACORR AR
t=ax

Making a calculation similar to the one made for 77, we obtain
3.17) Thue| <2 im (Jo2(x,t) + 062 (x, T)),
(3. L N 2 7 (x, x

where o = max{\/o/(ux), /J/0}. By replacing (3.17) in (3.16), we arrive at

de T—ax

From (3.12) and (3.18), we get

(3.18)

d T—ax T—ax
(3.19) dg (@) < —"—ﬁ wondt 4w/ | (Vi + VSt
By Young’s inequality, we have
1
Q\>/_z 1P < 5—3 5(9"% +J¢t)

kVE(its + VED) s < @ 5562 + (e + VED))

szax{ (Q—E\/E}
V' Vo’

d T—oax
S <5 [ Lol 4 T + 816uf? el s + VEGP] dt = o ()

By setting

we obtain

Then, we conclude that

T
(T =20)B0) < § [l 0.0) +562(0.0) .
and the result follows for T' > 2alL.
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