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Abstract. By means of the fixed-point methods and the properties of the p-pseudo almost
periodic functions, we prove the existence, uniqueness, and exponential stability of the -
pseudo almost periodic solutions for some models of recurrent neural networks with mixed
delays and time-varying coefficients, where u is a positive measure. A numerical example
is given to illustrate our main results.
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1. INTRODUCTION

The qualitative theory of differential equations, involving almost periodicity, has
been an attractive topic because of its significance and applications in areas such as
physics, mathematical biology, and control theory. The concept of almost periodicity
was first introduced in the literature by Bohr in 1923. For more details about this
topic we refer the reader to the recent book of N’Guérékata [22] where the author
gave an important overview about the theory of almost periodic functions and their
applications to differential equations. The notion of p-pseudo almost periodicity,
which was introduced and developed in [4], [7], [12], [19], [20], and [21], is a gen-
eralization of the almost periodicity and pseudo almost periodicity introduced by
Zhang [27], [28]; it is also a generalization of weighted pseudo almost periodicity first
introduced by Diagana [11].

During the past few years, the problem of dynamics of different classes of recurrent
neural networks (RNNs) has been one of the most active areas of research and has
attracted the attention of many researchers; we refer to [1], [2], [5], [6], [23], [25], [26].
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Cellular neural networks were introduced by Chua and Yang [8], [9] in 1988. They
have found important applications in signal processing, especially in static image
treatment. Processing of moving images requires the introduction of delay in the
signals transmitted among the cells [24].

Many phenomena exhibit great regularity without being periodic. This is modeled
using the notion of u-pseudo almost periodic and related functions, which allow
complex repetitive phenomena to be represented as an almost periodic process plus
an ergodic component.

Recently, dynamic behaviors of neural networks with time delays have been ex-
tensively investigated and numerous important results have been reported [3], [5].
In this work, we are concerned with the p-pseudo almost periodic solution of the
following model:

1) i) = —ai®)zi(t) + Z i (8) f (b (1) + ) Big (t)g;(t, (¢ = 735))

Jj=1

=
n t
+ Z’yij(t)/ Kij(t —s)hj(s,z;(s))ds+ Ji(t), 1<i<n.
=1 —o0

Here n is the number of the neurons in the neural network, z;(¢) denotes the state
of the ¢th neuron at time ¢, f;, g;, and h; are the activation functions of jth neuron.
The functions a;;(t), Bi;(t), and v;;(t) denote respectively the connection weights,
the discretely delayed connection weights, and the distributively delayed connection
weights of the jth neuron on the ith neuron. Furthermore, J;(t) is the external
bias on the ith neuron, K;; correspond to the transmission delay kernels, a;(t) > 0
denotes the rate with which the ith neuron will reset its potential to the resting state
in isolation when disconnected from the network and external inputs, and 7;; > 0 is
the constant discrete time delay. The mixed delays include time-varying delays and
unbounded distributed delays.

This model (1) has been the subject of intensive analysis by numerous authors
in recent years. In particular, there have been extensive results on the problem of
the existence and stability of periodic and almost periodic solutions of RNNs in the
literature ([15], [29] and the references therein). Since the space of pseudo almost
periodic functions contains strictly the space of almost periodic functions and of
periodic functions, in [25], Alimi et al. studied the problem of pseudo almost periodic
solutions. Many authors worked on this category of solutions (see [13], [16], [17]).
In [18], the authors prove the existence and the global exponential stability of the
unique weighted pseudo almost periodic solution with mixed time-varying delays
comprising different discrete and distributed time delays. Notice that in [25], the
delay 7(¢) is a continuously almost periodic function on R, while in this paper we
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will consider a constant delay. Moreover, what is important and new here in our
system (1) compared to other works is that the activation functions f;, g;, and h;
of the jth neuron are of two variables. This paper is concerned with the existence
and uniqueness of p-pseudo almost periodic solutions to recurrent delayed neural
networks. Several conditions guaranteeing the existence and uniqueness of such
solutions are obtained in a suitable convex domain. Furthermore, several methods
are applied to establish sufficient criteria for the globally exponential stability of this
system (1).

The rest of this paper is organized as follows. In Section 2, we recall briefly some
basic definitions and properties of the measure pseudo almost periodic functions.
The existence, the uniqueness and the exponential stability of measure pseudo almost
periodic solutions of (1) in the suitable convex set are discussed in Section 3. Finally,
in Section 4, we give an example to illustrate our abstract results.

2. MEASURE PSEUDO ALMOST PERIODIC FUNCTIONS

Definition 1 ([10]). Let n be a nonzero natural number. A continuous function
f: R — R" is said to be almost periodic if for every € > 0, there exists a positive
number [(¢), such that every interval of length I(g) contains a number 7 such that

lft+7)—f@)]| <e VteR.

Let AP(R,R™) be the set of all almost periodic functions from R to R™. Then
(AP(R,R™), |I‘lloc) is a Banach space with supremum norm given by

l[ulloe = sup [lu®)]-
teR

Definition 2 ([14]). A continuous function f: R x R — R™ is said to be almost
periodic in t uniformly for y € R if for every € > 0, and any compact subset K of R,
there exists a positive number /(e) such that every interval of length I(¢) contains
a number 7 such that

[ft+7y)—ft.y)l <e V(ty) eRxK.

We denote the set of such functions as APU(R x R, R™).

Theorem 1 ([4]). IfF € APU(RxR,R™) and x € AP(R, R), thent — F(t,z(t)) €
AP(R,R™).
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In the next section, we give the new concept of the ergodic functions developed
in [4], and generalize the ergodicity given in [11]. Let BC(R,R™) be the space of
bounded continuous functions from R to R™. We denote by B the Lebesque o-field
of R and by M the set of all positive measures p on B satisfying u(R) = oo and
w([a,b]) < oo, for all a,b € R (a < b).

Definition 3 ([4]). Let 4 € M. A function f € BC(R,R"™) is said to be pu-
ergodic if

i L

We denote the space of all such functions by £(R, R™, u).

]HﬂﬂMM$:&

)

Definition 4 ([4]). Let u € M. A continuous function f: R — R™ is said to be
u-pseudo almost periodic if it is written in the form

f=g+h,

where ¢ € AP(R,R") and h € &(R,R™, ). The collection of such functions is
denoted by PAP(R, R™, 11). Then we have

AP(R,R") € PAP(R,R", 1) C BO(R,R™).
Theorem 2 ([4]). Let p € M. Then (£(R,R™, u), ||||cc) is @ Banach space.

We formulate the following hypothesis that we take from [4].
(M1) For any 7 € R there exists 8 > 0 and a bounded interval I such that

pr(A) :=p({a+7: a€ A}) < Bu(A) when A € B satisfies ANT = .

Theorem 3 ([4]). Let p € M satisfy (M1). Then the decomposition of a u-
pseudo almost periodic function in the form f = g + h, where g € AP(R,R"™) and
h e E(R,R™, 1), is unique.

Theorem 4 ([4]). Let u € M satisfy (M1). Then (PAP(R, R"™, ), ||-|ls) is & Ba-
nach space.

Theorem 5 ([4]). Suppose that assumptions (M1) hold. If f € PAP(R,R™, u),
then f; € PAP(R,R", u) for all T € R.
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Definition 5 ([4]). Let u € M. A continuous function f: R x Y — R™ is said
to be p-ergodic in t uniformly with respect to y € Y if the following conditions are
true:

(1) For all Y€ Ya f(vy) € E(Rv an#)
(ii) f is uniformly continuous on each compact set K in Y with respect to the second
variable y.

The collection of such functions is denoted by EU(R x R, R™, u).

Definition 6 ([4]). Let u € M. A continuous function f: R x R — R™ is said
to be p-pseudo almost periodic if is written in the form

f=g+h,

where ¢ € APU(R x R,R™) and h € EU(R x R,R™, ). The collection of such
functions is denoted by PAPU (R x R, R™, u).

3. MAIN RESULT

In this section, we present some results for the existence, uniqueness, and global
exponential stability of the p-pseudo almost periodic solution of the system (1). For
simplicity, we introduce the following notations:

@i; = suplag;(t)], By = sup By (1)),
teR teR
Yij =sup |y (1)), Ji =sup|Ji(t)].
teR teR
To study the existence and uniqueness of u-pseudo almost periodic solutions to (1),
we require the following assumption:
(H1) Forp > 1and for all1 < j < n, the functions f;, g;, and h; are p-pseudo almost
periodic and there exist positive continuous functions L? , L?, L; € LP(R, du)N
LP(R, dz) such that for all t,z,y € R,

£t ) = fi(t,y)| < LL®)]x -y,
l95(t, @) — g;(t,y)| < LI (t)|x —yl,
|h(t, @) = hi(t,y)| < L} (t)|z —yl.

In addition, we suppose as well that for all j € {1,2,...,n}, g;(t,0) =
hj(t,0) = f;(t,0) =0 for all £ € R.
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(H2) For all 1 <4, j < n, the delay kernels K;;: [0,00) — [0, 00) satisfy

e8]
/ K”(s)ds:K;;
0

(H3) For all 1 < 4,j < n, the functions ¢t — a;;(t), t — ;(t), t — 7;;(t), and
t — J;(t) are p-pseudo almost periodic.

(H4) For all 1 < i < n, the functions ¢ — a,(t) are almost periodic with tlgé a;(t) =
a;x > 0.

(H5) Assume that there exists a nonnegative constant ry such that

no— 7k 3 9; = gt 7
ro = max OéwHLjJHp“‘ﬁij”LjJHp +'Yinij||LjJ||p

1<i<n 1-1/p
SN =1 A

<

|~

(H6) There exists a constant A\g > 0 such that for all 1 <i,5 < n

(o)
/ K;j(s)e*® ds < oo.
0

Lemma 1. If o, € PAP(R,R, ), then ¢ - € PAP(R, R, ).

Proof. By definition, we can write ¢ = @1 + w2 and ¥ = 11 + 12, where
v1,U1 € AP(R,R) and 2,92 € E(R, R, 1). Then we have

@Y =11+ @12+ 2 Y1+ Q2 Yo

This shows that ¢1 - 1 € AP(R,R). If we take 1 = 91 € AP(R,R), then
0% € AP(R,R), since

le3(t+7) = 1O = llert +7) + 1D - lpr(t +7) = @1 (B
<elprt+7) + ()]

<e(ller(t+71) = o) + 2[le1 (D))
<2(M +e)e < ¢,

where M = ||¢1]/o0 < 00.
On the other hand, we have

P11 = i((% +141)° = (o1 — ¥1)?).
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Since (¢1 +91)? € AP(R,R) and (g1 — 11)? € AP(R,R), it follows that ¢y - ¥ €
AP(R,R). In addition, for the function (1 - 2 + @2 - 1 + @2 - 1), one has that:
For all t € R,

(2) l1(t) - Ya2(t) + @a(t) - Y1 (t) + pa(t) - 2(t)]
< lptllooltr2(O)] + o2 (Ol lloo + llp2lloo|t2(2)

Using the properties of the functions ys, 12, we obtain

tim s | i<||so1||oo|w2<t>| T 2l lloe + lpallool2(®]) du(t) = 0.

) (2) )131ds
=00 ( —r.r ) 2 1 %2 2 t d//[/ t - ()

This proves our lemma. O

Lemma 2. Let u € M, F € PAPU(R x R, R, p) satisfy |F(t,x) — F(t,y)| <
I(t)|x —y|, where | € LP(R,du), 1 < p < oo. If x € PAP(R,R, ), then t —
F(t,xz(t)) € PAP(R,R, u).

Proof. Let F(t,x) = Fi(t,x) + Fa(t,x), where F is the almost periodic com-
ponent and F5 is the ergodic perturbation. From the results on the composition
of almost periodic functions and Theorem 1, it is enough to show that the result
remains valid in the case of measure ergodicity. Let us consider the quantity for Fb,
which is measure ergodic in ¢ uniformly with respect to the second variable, then we
have

Fy(t,z(t)) = Fa(t,0) + (Fa(t, z(t)) — F2(t,0)).
Since [t — F»(t,0)] € E(R,R,p), it is enough to show that [t — Fy(t, z(t)) —
F»(t,0)] € (R, R, ). One has

[Fa(t, x(t) — Fa(t,0)] < (8] (t)].

If 1 < p < oo, then
[Fa(t, z(t) — Fa(t,0)] < ()| ]|oo-

Since [ € LP(R,du) C E(R, R, i), then
[t — Fa(t,z(t)) — Fa(t,0)] € E(R, R, ).

If p = o0, then
|Fa(t, 2(t) — Fa(t,0)] < [z(8)|]|1]|oo-

Finally ¢ — F(t,z(t)) € PAP(R,R, p). O

427



Lemma 3. Let assumptions (M1), (H1), (H2) hold and for all 1 < j < n, x; €
PAP(R,R, ). Then for all 1 < i,j < n the function

t
¢ij: t— /_ Kij (t — s)hj(s, T (S)) ds

belongs to PAP(R, R, )

Proof. To prove this lemma, we should generalize the proof giving in [18] to
our setting. To begin, observe that

1655 (1) / Kt — 5)l(s, 25(s)] ds.

By Lemma 2 and assumption (H1), the map ¢t — h;(t, 2:(s)) € PAP(R, R, it). There-
fore, it is bounded and there exists a constant M" > 0 such that for all t € R, we
have

[ (2 (0)] < M™.

It follows that the function ¢;; is bounded and satisfies
i (t) / Kij(t —s)M" ds = K5 M".

By the same arguments given in [18], we prove that ¢;; is continuous. Let us now
prove that ¢;; € PAP(R,R, 1t). Using respectively the composition theorem of -
pseudo almost periodic functions, one has that [s — h(s, z;(s))] € PAP(R, R, u) for
all 1 < j < n. By the decomposition theorem of p-pseudo almost periodic functions,
there exist two functions u; € AP(R,R) and v; € £(R, R, 1) such that

hj(s,zj(s)) = u;(s) +v;(s).
As a consequence, we have
(bz] / Kz] (S) + Uj(s)] ds

/ Kt — s)uy(s m+/ Kij(t - s)u;(s) ds = 0 (1) + 6% (1),
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Using the same arguments given in [18], we can prove that (;511]» € AP(R,R). To
achieve our proof, we must show that ¢2 € E(R,R, u). Indeed,

s [ =~ [ K- o as
o [ Kt as| aute)

<#/(/ K (6)us(t = 9l ds ) du()
|50 (o [t = 9lano ) as

Since u satisfies (M1), from Theorem 5, we have t — v;(t — s) € E(R, R, u) for every

du(t)

s € R. By Lebesgue’s dominated convergence theorem, we have

— " 162, ()] dua(t) =

T M([_rv 7“]) —r

This proves that d)?j € &(R,R,p). As consequence, ¢;; € PAP(R,R,p) for all
1<4,j <n O

Lemma 4. Let p > 1 and ® € C(R x R, R) such that for all t,z,y € R
(2, 2) — (t,y)| <U(t)|z —yl,
where | € LP(R, du). If p € PAP(R,R, 1) and 6 € R, then

Proof. Pose ¢ = @1 + @2, where ¢1 € AP(R,R) and ¢3 € E(R, R, 11). Let us
consider the following function:

O(t) = (t, w1 (t—0)) +[(t, p1(t = 0) + a2 (t = 0)) = D(t, 01 (t = 0))] = O1() + O (1),
where ©1(t) = ®(t, p1(t—0)) and O4(t) = P(t, p1(t—60)+p2(t —0)) — B(t, o1 (t—0)).
First, it follows from Theorem 2.11 in [18] that ©; € AP(R, R). Let us show that
09 € E(R, R, it). We have
i / 10(8)| du(t)
=t = [ ot = 0) + il 0) — 0061 )| an)

< lm ———= [ 1(t)[pa(t = 0)| dpu(t).
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Since @3 € E(R, R, 1), we have

. 1 "
lim s [ (00l dp(0)

<t~ [ 10lpatt - 0 ditt)

e wl=rrl) ),

< tim 2l / 1(t) du(t)

r—oo M([_Tv T])

< iy Jeel | / ")y dute >]w | du(tﬂl/q (where 1+ = 1)

roo (=1, 7 q
H@zlloo Y
< it t))" du(?)
< lim Hmuwnznp o
roo p([—r,]) /4

Therefore, [t — O3(t)] € E(R, R, ). Finally, we conclude that [s — ®(s, (s —6))] €
PAP(R, R, i), and the proof is finished. O

Lemma 5. Suppose that assumptions (M1) and (H1)—(H4) hold. Define the
nonlinear operator I' as follows:
For each ¢ = (¢1,...,¢n) € PAP(R,R"™, 1),

TFp=a,= (xi,xi,...,xﬁ)

such that for all i € {1,2,...,n}, for allt € R,

t
xfp(t) = / o= Jiaiw) duf(s)ds

—0o0

and for all i € {1,2,...,n} the function F; is given by

3) Zaw (s)fi(s,05(s +Zﬂw $)9; (s, (s — 7i5))

N
N
3

+Z%J / Kij(u)h;(s, (s —u))du+ Ji(s), 1

Then, I" maps PAP(R, R™, i) onto itself.
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Proof. First note that, from Lemmas 1 and 3, for all 1 < ¢ < n, the function

[SH%] / Kij(u)h;(s, (s —u))du| € PAP(R,R"™, u).

Then, the function s — F;(s) is p-pseudo almost periodic by using Lemmas 1-5.
Consequently, for all 1 < 4,5 < n, there exist two functions F}! € AP(R,R) and
F? € £(R,R, u) such that

F,=F! + F2.

It follows that

t
(i) (£) = / o I ) du g (o)

— 00

) t
= / o~ Jiai(w) depl(s)ds + / e Jo @ WF(s)ds
= G} (1) + GF(b).

By the same arguments given in [18], we can prove that G} € AP(R, R). To complete
the proof of this lemma, it remains to show that G7 € £(R, R, x). Indeed,

lim ——— / GE0)] dut)
< lim ——— / / ~(t=s)air
r—00 M -, r _r
Pose y =t — s. Then, by Fubini’s theorem one has
I = lim ———~ / / ~(t=s)air
r—00 M -, 7“ Y
— lim / / vase | F2(¢ — )| dy du(t)
r—00 M -, r .
lim ———~ / e~ Yaix
r—00 M -, 7“ _r

/O e y“’*rgrglom/_rlFQ(t— )| dyu(t) dy

Since the function t — F2(t —y) € £(R,R, ) from Lemma 5, by the Lebesgue
dominated convergence theorem, we obtain that I = 0. It follows that,

1 r t
lim 7/ / e~ (t=9)ai- 2(5) 45
S He)

This shows that G? € £(R, R, 11). So, for all 1 < i < n, I';¢ belongs to PAP(R, R, 1)
and consequently I'p belongs to PAP(R, R™, u). O

F2(s)| dsdu(t) =

F2(s)| ds du(t)

N

F2(t —y)|dydpu(t)

du(t) = 0.
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Theorem 6. Suppose that conditions (M1) and (H1)-(H5) hold. Then, the de-
layed RNNs (1) has a unique p-pseudo almost periodic solution in the region

B= {gp € PAP(R,R", 1), [l = pollos < 7 Ero}v

where

[t e fEm g, () s

1<i<n L,

= max {i} and po(t) = fioo e~ Lt du g (g) ds

fioo e~ Jian(du g (g)ds

Proof. First, it is easy to see that the function ¢y € L (R, R) and satisfies the
following estimation:

H‘POHO@ <B.

Second, let consider the set

Tof3
B= {so € PAP(R,R", 1), [l¢ — ¢olles < 1_T0}-

Clearly, B is a closed convex subset of PAP(R,R™, ). Moreover, for any ¢ € B, we
have

ITy = ®olloo
t t t t
= max sup / e~ Joaiwdup gy qs — / e~ s adu 16y qs
—00 —0o0

1<i<n ¢eR

¢
< max sup / e~ Joaiwdu (B sy — Ji(s))ds

I<isn teR

t n
= o swp [ e ai<u>du<zaij<s>fj<s,soj<s>>

1<i<n R =

43 B0 o 015 =) + 27 [ Koo (s - u))du) ds
j=1 j=1 0

N

1<i<n e (X \J

n t
max sup{ 3 ([ e OB 0 (9)
j oo

t
b [ e ) g s, - 7)) ds

—0o0

t [e'e]
s [ ey () / Kij<u>|hj<s,goj<s—u>>|du) ds}
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n t
< max supZ(/ e*(tfs)ai*aijL;fj(s)|¢j(s)| ds

1<i<n R

t
+/ _(t_S)ai*/B ng( )|<PJ( sz)|d5

t
w [ ety [T RGP Gl (s - wlau) ds.

By using the assumption (H1), we get the following:
ITy = ¢olloo

n t t
< ||¢lloo max supZ(/ e_(t—s)aixaijL‘{J(S) ds +/ e_(t_s)“"'*BijL?J(s) ds

1<i<n 4R

9j
p—1\1-1/p @ | L2 + Bi I L | + 75 KIS |1
<ol (=)™ max 3 w=Tr
B
— i a 95 = gt rhi
1-1/p " @i [|L5 lp + B 1L p + i KG1L57 Ml
<lglleo(1=1/p) " max 7
j= %
— it = , _ h;
<ol . ainLjJHp+6ij||L?J||p+7in:]_’HLjJHP_H looro < rof3
Plloc max. wETr = llellro < 72
j=1 %

From (H1), for any ¢, € B, we have

Hrw_eroo
<l = vl mﬁ?‘n)?‘é&?Z/ e 0 gy L (5) + By LA(s) + 715 L4 ()] i
— fi 9i =~ i
p—1\t-1/p O‘ij”Lj ||p+ﬂinLj ”p""yininLj ll»
< (2= _
Jj= i
n = fi n 935 = + h;j
I\ -1/p O‘ij”Lj ||p+/6inLj ||p+’YininLj ll»
(-3 ma X a oVl
j=1 Q%
f g )
CV”HL 7”;0—’_613”1/ JHP—’—P)/z]K ||L ||p
< mx{z o o~ ¥llc
=r1oll¢ — Y|l

Then, we prove that I is contraction mapping from the region B into itself. By virtue
of the Banach fixed-point theorem, I" has a unique fixed point which corresponds to
the solution of (1) in B € PAP(R, R"™, ). O
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We introduce the phase space C((—o0,0], R™) as a Banach space of continuous
mappings from (—oo, 0] to R™ equipped with the norm defined by

l¢lle = maxsup |pi(t)],
1<i<n, —0o<t<0

for all ¢ = [p1,02,...,0n] € C((—00,0],R™). The initial conditions associated
with (1) are of the form

xi(s) = pi(s), s€ (00,0, i=1,2,...,n,
where ¢ = [p1,02,...,¢n] € C((—00,0],R"™).

Definition 7. Let x*(t) = [ (¢), 23(t), ..., 2% (t)]T be a p-pseudo almost peri-

n
odic solution of system (1) with initial value

P (t) = 195 (8), 95 (1), .., on (] T € O((—00,0],R™).

We say a*(t) is globally exponentially stable if there exist constants A > 0 and
M () > 1 such that for every solution

x(t) = [x1(t), x2(t), . .. ,Jt:n(ﬁ)]T

of system (1) with any initial value

o(t) = [e1(t), p2(t), - -, n(B)]T
satisfying that:
l2(t) = 2 ()]loo < M ()]l = ¢*[loce™ V>0,

where

[2(t) =2"()loc = max |a;(t) —27(t)] and [[p—p*|loc = max  sup_|pi(t) — 7 (t)]-
<ign 1SiSn —0<t<0

Theorem 7. Suppose that conditions (M1) and (H1)—(H6) hold. Then the sys-
tem (1) has a unique u-pseudo almost periodic solution z(t) which is globally expo-
nentially stable.

434



Proof. Let
2(t) = [21 (1), 22(t), -, 2 (B)] T

be the unique u-pseudo almost periodic solution of system (1) with initial value
u(t) = [ur(t), uz(t),. .., un(t)] .

Let 2(t) = [21(t), 22(t),...,2,(t)]" be an arbitrary solution of system (1) with initial

value p*(t) = [0} (t), 03(t), .., @h (D] . Let yi(t) = wi(t)—z(t), @i(t) = ¢} () —ui(t).
Then, we obtain the following:

(4) yz<>+ai< Yyi(t)
= Zaw MFi(t oy (8) + 25(8) — £i(t, 2(t))]

+Zﬂu Maj (@t yi(t = 7i5) + 25 (¢ — 735)) — 9;(t, 2 (t — 735))]
3 mu0) [ K s a5(9) + 25 (5) s D] s

For all i € {1,2,...,n}, let G; be defined by

1 = i B..e*Tii 4
Gi(2) = aix — 2 — 2q; /pz (az‘jHLf lp + Biye ™ 115 [lp

Jj=1

% h; - zm
+’Yij||Lj Hp/o K;;(m)e dm>7

where z € [0,00). By using the fact that ro < % and the assumption (H2), then we
obtain, for all i € {1,2,...,n}

n
1 — j 3 j = h;
Gi(0) = ai — 20" S @ilILT Nl + By ILE |l + T 1LY |, 555) > 0.

j=1
In addition, for 7 € {1,2,...,n}, G; is a continuous function on [0, c0) and
lim Gi(z) = —o0.
Z—r00

Then, there exist 7} > 0 such that G;(n]) = 0 and G;(n;) > 0 for n; € ]0,n}[. Taking

n =min{ny,n3,..., 05},
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we obtain G;(n) > 0. Let us consider the positive constant A such that

0 < A <min{n, a1x, a24,...,ans, Ao} and G;(A) >0,

o0

where )\g is such that Kij(s)e)‘os ds < co. Therefore, for alli € {1,2,...,n}, we

have the following

1

/I) n o'}
= i B oATij i =~ h; g m
§:<aij||L;-‘ o+ B 1L I+ Tl [ Kot dm><1.

Multiplying (4) by efo *(#*)d% and integrating over [0, t], we get

yi(t) = vi(0)e ~Jawd
/ e~ Jiai (“)duzam fi(siyi(s) +2(s)) — fi(s,2j(s))] ds

/0 o Jow “)duZ@y $)[9; (s, y;(s — 7i5) + 2(s — 735)) — 9;(5, 25 (s — 735))] ds

e f a;(u) du i i S—T 5,Y; zi(T)) — hj(s, z;(T Tds
+/O ]217 / Kij(s — 7)1y (5,95 () + (7)) — By (s, 25(r))] drd
:SO'( Je = Jo ai(u) du

+Z ) o L 40+ 50) o 2D

+ Z/O e e dug () g (s,y;(s — 7ij) + 2 (s — 7)) — g; (s, 2i(5 — 7i;))] ds
+Z/ e t0ns) [ Kiglo = o) +25(7) — s 297 s
<l (O iy Z [ 55,35 (5) + 5(60) — (6] s

+ i /01t e (=99 B g5 (s,y5(s — 7ij) + 2 (s — 7i3)) — g5 (s, (s — 73;))| ds

+Z ey [ Rt Ao+ 50 =Ryl
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Then, for all i € {1,2,...,n} we obtain

n t
(6) s (D] < ls(0)le™ Jo @it du 1 5™ / o~ T L (s)]y; (5)] ds

j=1
n t
#3019l (s = ) s
j=1
n t s b
+30 [etmemy [ K= 0L Ol @lards
j=1 oo
Let
n o0
1—1 _ . — . _ h; m
M = e (a2 SO @D+ B T2 [ e ) ).

It is easy to see that M > 2 and

1 al/p -

L (aijnL;? I + By

LY
M Qi — Y J ||p

i=1
— hj > m
ST [ Hiy(me™ am ) <o
0
It is easy to see that for all ¢ € (—oo, 0], we have

Iyl = lle®lloo < llellse < Mllplloce™",

where ||y(t)]|oo = max lyi(t)]. In the following, we will prove that
<ign

(8) ly()]loo < Ml@lloce™" V> 0.
To prove (8), we first show for any o > 1, the following inequality holds:
ly(@)lloc < oM |[@lloce™, ¢ >0

If it is false, then there must be some ¢; > 0 and some i € {1,2,...,n}, such that

9) ly(t1)lloo = llyi(t1)lloo = oM || pl|sce™ "
and
(10) [y()lloe < oM |lglloce™" Vit € (—o0,t1).
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By using (5), (6), (7), (10) and the assumption (H1), the function y; satisfies

lyi(t1)] < |30 |e*““’*+Z / (a5, (s)] ds
#3 [eF  6asts — )las
n t1 s b
3 / o~ (ti=9aing / Kij(s — )L™ (3)|y; () dr ds
j=1 0 —00
n t1
<lpllooe™ + 3 / o900 115 (5) 15 (5) oo ds
j=1"9
n t1 _ v
+Z/ e (190 B L% (5)ly; (s — 7ij) oo ds
j=1"0

n tl s
e hy
+ E /0 et s)aq,*fyij / Kij(s — T)Lj (S)Hyj(T)Hoo dr ds.
J=1 —00

Then, we have
n t1 £
1i(t1)] < [[pllove™11% 4 etr%ie Z%/O ol "ML (s)o M]|il| oo ds

n t1
e ey "B, e /0 e(@= =N LI (5)o M ]| ds
j—l

tla”Z z]/ (a’*_/\)gds/ K;;(m (m)oM||p||sce™™ dm

e(A—ai)ts
< UJM”SDHOOQ_M1 [ oM + e(A-aih Z @ / e((li*—)\)SL‘{j (s)ds

+e(A—a”)tlzBijekﬂ,j/ e(ai*—A)sL?a'(s)ds

j=1 0
n t1 h [e’e]
+ Aty Zﬁij / Ly (s)e(‘“*_”\)s ds/ K;; (m)e)‘m dm] .
j=1 0 0
Let ¢ > 1 such that 1/p+ 1/q = 1. It follows that for all i € {1,2,...,n}:

lyi(t)] < oM ||l oce ™"
e(A—ai )ty

n t1 1/q
(A—a;x)t — fi (aix—A)s
o ey +e ! ;:1 @ij|| Ly ||p</0 e? ds)
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n ) t1 1/q
)\ @ix) Z )\‘rij L;I7|p</0 eq(ai*f)\)s ds)

t1 1/q oo
—aix = h; aie—A)s m
e\ )“Z'yinLj |p</0 e N ds) /0 Kij(m)e)‘ dm
i=1

= oM ||pllsce™™

A—ai)t
% |:€( aix )t n 1 Oé”HL || e(k aix)t1 (eq(a,*—k)tl _ 1)1/(1
oM Jalan — N8 le

n

1 7 )\quj
* e e

L?_’[ Hpe()\—a,;*)tl (eq(a,;*—)\)tl _ 1)1/(1

1 n oo
+ rta e 2 Tl e e e =t -yt / K (m)e>™ dm| .
ik =1

Then, we obtain the following;:

e(A—ai)t)

; —At (A—aixt1)\1/
o) < oMlplloe™ | + ZWHL — et

1 - ATii |79

- Tij i _ od(A—aixt1)\1/

+ e =7 2 P I (1 — et
j:

1 n -
S ~. L7 1 — gd(A—aixt1) 1/q/ K. am g
i [q(ai — N)]V/a ;%J” i lp(l—e ) . ij(m)e m

—aix)t1

()\ L )\ 1/[) n n
— At € (ai* ) — f] )\T, gj
S oMl { 5 Y B — (Jz_laij”% > + E : IS Ml

n oo
~ h; J —aix)t1
+ D TyllL; ||,,/ Kij(m)e™ dm) (2 — et )]
=1 0

(Afai*)tl 1/p

n n
- € 5, .
< oMl [ (ZaijuLj I+ 3 By
n n 50
+ Zﬁij”LjJ ||p/0 Kij(m)e)\m dm) (2 — e()‘ai*)tl):|
j=1
< oMo [etimon LB (Sh ity 4 3o
X e} M Qi —A = 1] 3 llp =~ ij

n o
= hi m
ST / Ky (m)e> dm)
i=1

L3 N1y

L7 |y
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2a’1*/p . — fi - ) Tii j - — hj * m
R ’_A<§ L5l + D By ™ LY |+ D %;-IILJ-"IIp/0 Kij(m)e? dm)]
* j=1 j=1 j=1

which implies that for all i € {1,2,...,n}, the function y; satisfies the estimate

L7 1y

e, 20} -
lyi(t1)] < oM ||]|oce™" P <Zam|L szﬂweM
" _ hi _
S AL, / Kij<m>emdm) < oM |lp]lace
j=1

which contradicts the equality (9). Then, for any o > 1, we have
ly()lloc < oM |[@lloce™, ¢ >0

If we let 0 — 1, then (8) holds. Hence, the p-pseudo almost periodic solution of
system (1) is globally exponentially stable. We complete the proof. O

4. APPLICATION

Let us consider the following recurrent neural networks (RNNs):

2 2
A1) @) = —ai®zi(t) + Y oy ()fit (1) + > Bij(t)g; (£, w;(t — 73j))

J=1 Jj=1

+Z% / Kij(t — s)hj(t,zj(s)) ds + Jit), 1<i<2

where K;;(t) = e~!, which implies that K;jr =1, 71 = T2 = To1 = To2 = 1 and
a1(t) = 2.6+ 0.1 cos(t), az(t) = 1.7+ 0.1sin(t), then a1, = 2.5 and ag. = 1.6. For all
reR,j=1,2, we pose

filt,z) =g;(t,x) = h;(t,x) = eIt sin(z).

Then, we have
|f5(t,z) = f5(ty)
l9;(t, 2) — g;(t, )
and

| (8, 2) = hy(t.y)l < e |z —yl.
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This gives that
I(t) = LI(t) = L(t) = LI (t) = 71"
Since || LY [l c2r,ae) = 1L9)lc2.de) = L2l 2R,y = 1 for all j = 1,2, then | €
L2(R, dx).
Now, we consider the measure u, where its Radon-Nikodym derivative is o(t) =
for all t € R. Then p € M. If p(t) > 0, then from [4], the hypothesis (M1 )

equivalent to
4
V7 € Rlimsup oft +7)
ltl—oe  O(t)
Then p satisfies hypothesis (M1) and [ € L*(R, dpu), since

l/jZIQQ)du@)—l/i:e“Q“dt—>—

< 0.

Let
(0 (® 0.05 cos(v/3t) + 0.01e~** 0.0l
Y 0.02sin(v/3t) 0.02 cos(v/3t) + 0.0l

ll

0.06 0.01
shsigsz = (0.02 0.03)'
0.05sin(t) 0.02cos(t) + 0.0le~t
0.05sin(t) 0.02cos(t) + 0.01e~t )
_ 0.05 0.03
B, )icijcr = <005 003>
(e sics <0 03 cos(v/3t) +0.01e™*  0.01sin(v/3t) +O.01et2>
HAIISBIS 0.01 cos(t) + 0.01e~** 0.03 cos(t)
0.04 0.02
(ighsiges = (o 02 003)

(@
(Bij(O)h<ij<e =
(

4

ll

o 0.5 cos(vV/5t) + 0.1e~*" e (T hreics = 0.6
heice 07008\/_t+01_t IS 08 )
Remark 1 ([4]). Let n € N*. A continuous function f: R — R™ satisfying
lim f(t) =
[t]—o00

is p-ergodic, for all y € M.

From Remark 1, we have [t — e’tZ] € ER,R,pu), for all 4 € M. Since
lim e~ =0, it follows that (H3) holds. Then

[t]—o0

ro = max Zi:lmj_kgij_k%j =m x( 21 9 ) )
0 1<i<2 i 50v/10° 20v/10 20410

N}Ir—\
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and

Ji
£ = max
1<i<2 Qs

Since for all Ao €]0, 1[, we have
o0 o0
/ Kij(s)e)‘oS ds = / e~ (1720)s 4s = 1 < o0,
0 0

it follows that (H6) holds. All conditions from Theorems 6 and 7 are satisfied, so
the delayed recurrent neural networks (11) have a unique p-pseudo almost periodic
solution that is globally exponentially stable (see Fig. 1) in the region

9
B, =< ¢ e PAP(R,R? 1), |l¢ — gi}.
1= {p e PAPRRA W, llo - ol < ot

0.5 T T T 1
0.4 |_ 21 (t) — xg(t)| -
0.3 -
0.2 -
0.1 -
0
—0.1
—-0.2
—0.3
~0.4

~05 | | | |

0 5 10 15 20 25
time ¢

Figure 1. Curve of the p-pseudo almost periodic solution for RNNs from the model of
system (11) in the case f;(t,z) = e~ "'sin(z) and ay, ag periodic.

If in our application, we choose the expression of a;(t) and ax(t) as follows:
a1 (t) = 2.25 + sin(t) + cos(V/3t) and as(t) = 2.16 + sin(t) + cos(V/7t),

then in this case we have

25:1 Qi +Bij +7i; 21 9 9 1
ro = max :max(—,—) =—=<z
1<i<2 Qi 50" 20 0 2
and _
J; 12
p= s ok = max(,5) = 5
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Let
9 45
By = {so € PAP(R, R, 1), [l — ol < ﬁ}-
Then the unique p-pseudo almost periodic solution for the system (11) in the re-

gion Bs, which is globally exponentially stable, admits the following two figures (see
Figs. 2, 3), which were represented by making a change of f;(¢, x).

0.5 ,
0.4
0.3
0.2
0.1
0
~0.1
~0.2
~0.3
—0.4

—-0.54

0 5 10 15 20 25
time ¢

Figure 2. Curve of the p-pseudo almost periodic solution for RNNs from the model of

system (11) in the case f;(t,z) = eIt sin(z) and a1, az almost periodic.

0.5
0.4
0.3
0.2
0.1
0
—0.1
—0.2
-0.3
-0.4
—0.5

0 5 10 15 20 25
time ¢

Figure 3. Curve of the p-pseudo almost periodic solution for RNNs from the model of
system (11) in the case f;(t,z) = eI tanh(z).
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5. CONCLUSION

In nature, there is no phenomenon that is purely periodic, which allows one to
consider the measure pseudo almost periodic oscillation. In this paper, the recurrent
neural networks with mixed delays and time-varying coefficient have been studied.
By employing the fixed-point theorem and some properties of the measure pseudo
almost periodic functions, some sufficient conditions for the existence, uniqueness
and global exponential stability of the measure pseudo almost periodic solutions
have been established. To the best of our knowledge, this is the first paper to
study the measure pseudo almost periodic solution for recurrent neural networks
with mixed delays and time-varying coefficient. Finally, an illustrative example is
given to demonstrate the effectiveness of the obtained results.
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