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Abstract. The high shear rate thrombus formation was only recently recognized as an-
other way of thrombosis. Models proposed in Weller (2008), (2010) take into account this
type of thrombosis. This work uses the phase-field method to model these evolving interface
problems. A loosely coupled iterative procedure is introduced to solve the coupled system of
equations. Convergence behavior on two levels of refinement of perfusion chamber geometry
and cylinder geometry is then studied. The perfusion chamber simulations show good agree-
ment with the original results of Weller. The code is implemented in FEM-library deal.ii
Alzeta et al. (2018), which enables distribution of computations to large number of process-
ing units. A scalability and numerical performance study of the loosely coupled iterative
procedure is performed, combined with several preconditioners for the linear subproblems.
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1. Introduction of high shear rate thrombus formation

Blood coagulation is a natural process whose aim is to stop blood loss in the case

of the vessel injury. It is so potent that it saves life not only in the case of a minor

vessel injury, but also during serious injuries in the larger arteries and veins.

However, this process can be triggered by other circumstances in the human body

as well. The most well known condition of blood coagulation is the stasis of blood

in the vessel. It is one of the key elements of Virchow’s triad, which is known since

the 19th century [14], [20], [13]. This state is mostly present in the smaller vessels.
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For a long time, Virchow’s triad was accepted as the only possible way of creation

of thrombi in the blood flow.

Nevertheless, current research shows that thrombosis can be started even under

conditions where the stasis of blood is by far not present. To be precise, the throm-

bosis may appear under conditions of high shear rate in the blood flow even in larger

arteries. For details, see [11], [12], and [26].

We will not delve into the thrombosis, which originates from the fulfilment of the

stasis condition of Virchow’s triad, as that is not aim of our study. We can however

observe from experiments that thrombi in the larger arteries are platelet rich, in

contrast with the thrombi in the smaller vessels.

Recent studies have provided an explanation for this fact. The main precondition

of both types of clotting is the same—a reactive surface. This thrombogenic surface

can be subendothelial collagen exposed by injury to the vessel wall or to artificial

material of a prosthetic device, like polyester or stainless steel. On the surface,

platelets and adhesive proteins like fibrinogen and the von Willebrand factor (vWF)

are caught. It is obvious that the coverage of the surface by platelets or proteins

is determined by the concentration of platelets and proteins in the vicinity of the

thrombogenic surface.

Concentrations of platelets and proteins in the blood under static conditions are

minute. However, once the blood is under shear, red blood cells push the other blood

species outside the center of the vessel. The increased diffusivity causes margination

of platelets and proteins. Therefore, they are at the reactive surface in increased

concentration (see [1]).

Although vWF is in the blood present in a low concentration, its chemical com-

position makes it the key actor in the high shear type of blood coagulation. It

is contained in blood plasma, platelet α-granules, and the extracellular matrix of

blood vessels. It creates chemical bonds mainly with itself, fibrillar collagen, platelet

receptor glycoprotein (GP) Ib or platelet integrin αIIbβ3 (GPIIb/IIIa).

The molecule of vWF has vWF-A1 binding sites on its surface. The availability of

the sites depends on the conformation of the molecule. Namely, in the globular form,

some part of these sites is hidden from the surrounding environment. On the other

hand, in the transition of vWF into the stretched conformation the binding sites are

more exposed. The changeover from the globular to the elongated form is caused

by the increase of shear rate in the blood flow and it is reversible. The stretched

molecules of vWF form a network in which the majority of the platelets in the vicinity

of the vessel wall get caught. Even the fast moving platelets are captured by this net.

It is important to note that the platelets do not need to be activated in order to

be captured. Namely, vWF-A1 binding sites associate with GPIb receptors on the

surface of platelets, which are always prepared to bind [12].
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It can be argued that the prevalence of this process in the case of high shear rate

thrombogenesis follows from the fact that the time of passing of platelets through

stenosis is too short for platelets to activate. So, as the platelets actually bind,

one can conclude that the overwhelming factor of the capture of platelets into the

thrombus is the affinity of the A1 binding sites of vWF and the GPIb receptors of

platelets in the blood flow.

After this, captured mural platelets get activated due to exposition to high shear

rates for a longer time. The time necessary for adsorption and activation of a platelet

is called the lagtime. It depends on the shear rate—it decreases with higher shear

rate. This dependence can have two reasons. Firstly, proteins and platelets are

marginated in elevated measure due to high values of shear rate, as noted above.

Secondly, high shear rate reduces the time of mural platelet activation.

The newly activated platelets set free platelet granule stores of vWF and other

procoagulant species, which either stabilize the thrombus (such as platelet integrin

αIIbβ3) or are carried away by the flow. The newly released vWF is captured into

already existing nets and enhances further platelet capture. This positive feedback

leads to tremendous growth of the thrombus. The growing thrombus changes rheo-

logical conditions in the blood vessel, as its diameter is narrowing. This causes on

increase of the shear rate, which again stimulates the growth of the thrombus. The

initially captured platelets do not need to be stable, which can lead to occurrence of

rotating platelet aggregates at high shear rates, which do not have to be activated.

Either platelet integrin αIIbβ3 irreversibly bounded to vWF or fibrinogen converted

to fibrin can stabilize the high shear rate thrombus. If the bond between platelet

integrin αIIbβ3 and vWF is too weak, the high shear stress can tear off parts of the

thrombus and form emboli [11], [12].

The high shear rate thrombus (white clot) can be seen as a precursor of the red

clot under certain circumstances. Namely, the stasis condition created by the white

clot is necessary for the set up of red clot (one of conditions of Virchow’s triad).

The process of high shear thrombus formation is summed up in Table 1. Figure 1

shows a graphical representation of catching of platelets (red ones) into the vWF

nets (green ones). See [18] for details.

We note also that the activation of platelets could be dependent not only on the

magnitude of shear rate, the form of vWF molecule and platelet sensitivity, but also

on the size of the vWF molecule. In [35], a platelet activation risk index (PARI) is

introduced, which depends on vWFs size, shear rate and platelet sensitivity. This

shows that there is ongoing research on the dependence of platelet activation on the

mentioned factors.
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(1) In the stenosed region, high values of wall shear rate appear.

(2) To walls composed of collagen or artificial surface molecules of vWF bind;

due to the high values of wall shear rate they uncoil.

(3) Blood platelets are marginated to the walls due to the shear enhanced diffusivity

caused by pushing red blood cells in the center of the vessel.

(4) Unactivated platelets near the wall are caught by the vWF, which is already

bound to the vessel wall.

(5) Already bound platelets release vWF in large amounts, which activate αIIbβ3
on the platelets. This causes firm adhesion.

(6) Due to the capture of platelets, nets created from vWF are created on the surface

of the emerging thrombus.

(7) The networks of vWF catch many platelets, quickly which create a large thrombus.

The clot can either occlude the vessel or embolize.

Table 1. Process of high shear rate thrombus formation.

Figure 1. VWF networks transition from globular to stretched to aggregation.

2. Mathematical modelling of blood coagulation

The complexity of blood coagulation attracted scientists to formulating various

mathematical models. They differ one from another in the extent of incorporated

chemical and rheological processes, which take part in the model of blood coagulation

process.
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It is therefore questionable how to categorize different models of blood coagulation.

In [9] a two dimensional classification based on two criteria is proposed—the scale of

the processes which the model is able to capture, and the extent of the feature that

the model is able to incorporate.

Initially there were two groups of models—a group of rheological models with sim-

plified biochemistry and a group of biochemical models without any connection to

the rheology. The former focused on the modelling of blood flow, almost entirely

ignoring the chemical reactions occurring in the vessel. There it is supposed that

the blood coagulation occurs in the steady state of enclosing blood plasma. There-

fore, the development of species concentration was modelled by ordinary differential

equations. The latter approach concentrated on the formulation of equations for the

reacting species in the flowing blood. This approach resulted in partial differential

equations for the species, which contained reactive, diffusive and convective parts.

However, gradually it has become clear that biologically relevant models must en-

compass both approaches. The models, which resulted from this recognition, differ

again in the level of detail.

From the rheological point of view, the blood could have been taken as a Newtonian

or a non-Newtonian fluid. The non-Newtonian fluid can be generally defined by

several features, like shear-rate dependent viscosity or viscoelasticity.

The treatment of the biochemical part of coagulation in the more encompass-

ing models differed mainly in the number of chemical species and number of types

of bodies (e.g. platelets), for which equations were formulated. Contrary to the

model of coagulation in the stationary state, the formulated equations contained,

beside reaction terms and time derivative terms, also diffusive terms and convec-

tive terms. The distribution of chemical species influenced the rheological proper-

ties.

Such new comprehensive models, where the biochemistry is coupled with rheol-

ogy, gave rise to a full stack of new problems and challenges. However, some of

these models show better correspondence with simplified blood clotting simulations

than previous ones that neglected the interdependence of physical and biochemical

processes occurring in the blood clotting.

It is usually impossible to get an analytical solution with a closed form for these

coupled models. The solution must be found using numerical experiments. The

onset of high performance computers enabled the solution of large nonlinear systems

of equations, which are part of these models.

In [4] and [23] the activation of platelets can proceed in two ways—biochemical and

rheological. The rheological activation depends on the so-called activation number,

which is assigned to each platelet. The activation number depends on the length of

exposure of a platelet to elevated shear stress.
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Shear rate dependent adhesion of activated platelets was introduced into the mul-

tiscale model of [34]. The platelets become activated when the concentration of

relevant chemical species attains a specific threshold. The macro description of the

blood flow is done by the Navier-Stokes equations, whereas micro level is modelled

by stochastic Cellular Potts Model.

In the model [28], the adhesion of platelets to thrombus is taken as a shear rate

and concentration of erythrocytes dependent process. However, the activation of

platelets occurs only due to certain species circulating in the blood. The article [29]

presents yet another approach. The platelets are activated either due to elevated

levels of chemical agonists or due to reaching of certain threshold of shear stress.

We will now turn our attention to the model of Weller [31], [33]. The occurrence of

platelet aggregation without action of any chemical species could not be satisfactorily

explained at that time, as the unfolding of globular vWF caused by the high shear

rate was a controversial idea. Nevertheless, Weller’s model introduced the idea that

the aggregation rate of platelets is dependent on shear rate. The actual uncoiling of

vWF is hidden in an aggregation rate function, as tracing the concentration and the

conformation (globular or stretched) of vWF would be a difficult task.

In the following sections, we introduce Weller’s free boundary problem. The prob-

lem was solved numerically using the level-set method for tracking interface between

blood and clot. In contrast with Weller, we employ a phase field, which serves in

our system as an indicator. Namely, the phase field tells us in which part of the

computational domain blood flows and in which part the growing clot resides.

We use the library deal.ii [5], which allows us to distribute the computations across

many processing units on modern clusters. We use the message passing communi-

cation pattern (i.e. not the shared programming using threads). Each core inside of

a node on the cluster is taken as an independent processing unit, which communi-

cates with other cores using the message passing interface (MPI). The other cores

can be either on the same node or on some other node of the cluster. Hence, in

the following, the term ‘core’ denotes the independent processing unit exchanging

messages with other cores, i.e. other processing units, by passing of messages.

Further development of Weller’s model was already performed in [29], where

a model comprising more biochemistry was formulated. In [29], the level-set method

was used for tracing of the development of thrombus as well.

The main contribution of this article is twofold. Firstly, we formulate the free

boundary problem originating from [31] using the phase-field formalism. The original

model [31] is reviewed in Section 3, whereas the reformulation is outlined in Section 4.

On the one hand, the phase field method formulation adds to the complexity of the

equations to be solved, but on the other hand it appears to us that it has some

favourable properties. Secondly, we perform tests of our implementation and study
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some numerical properties of the proposed iterative scheme. Afterwards we study

whether our code scales from the point of view of both weak and strong scaling.

3. Review of the model of Weller

3.1. Formulation of the free boundary problem. Let us introduce the basic

setting of the free boundary problem, see Fig. 2.

Developing trombus Ωs Moving boundary Γt

inflow I outflow O

Nonreactive wall ΣTime-dependent domain Ωt

Figure 2. Computational domain.

In this picture, we have the time independent parts, namely inflow I, non-reactive

wall Σ and outflow O. The blood flowing from the inflow I carries new platelets,

some of which get incorporated on the moving boundary Γt into the developing

thrombus Ωs. As the thrombus grows, the area of flowing blood Ωt reduces. Hence,

the growing clot affects the flow.

Firstly we define the domains, with T as the end time of simulation:

⊲ inflow boundary: IT := I × (0, T ]

⊲ outflow boundary: OT := O × (0, T ]

⊲ non-reactive wall ΣT := Σ× (0, T ]

⊲ time dependent area of blod flow: ΩT :=
⋃

0<t6T

Ωt × {t}

⊲ moving boundary: ΓT :=
⋃

0<t6T

Γt × {t}

Relevant equations are then formulated in these domains. The whole computational

domain Ω∗ is defined as Ω∗ = Ωt(t)∪Γt(t)∪Ωs(t). The model contains Navier-Stokes

equations for the blood, as blood is taken as a Newtonian fluid with constant visco-

sity ν. The blood platelets are distributed through the blood and obey a transport

equation.
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The free boundary model then consists of the Navier-Stokes part:

∂u

∂t
− ν∆u+ u · ∇u+∇p = f in ΩT ,(3.1)

∇ · u = 0 in ΩT ,

u = 0 on ΓT ∪ ΣT ,

u = uD on IT ,

o · ∇u = po on OT ,

u(t = 0) = u0 in Ω0,

where u is the velocity of blood, p is the pressure, f is the external force field, like

gravity, o is the unit outer normal to the outflow boundary O. Furthermore, uD

is the Dirichlet boundary condition imposed on velocity on the inflow I, u0 is the

initial condition on the velocity, and ν is the kinematic viscosity.

The transport equation for the platelet concentration w has the following form:

∂w

∂t
−D∆w + u · ∇w = 0 in ΩT ,(3.2)

Dn · ∇w = kw on ΓT ,(3.3)

n · ∇w = 0 on ΣT ∪OT ,

w = wD on IT ,

w(t = 0) = w0 in Ω0,

where D is the constant diffusivity, u is the velocity field obtained from the solution

of the Navier-Stokes equations (3.1), n is the unit outer normal to the reactive

interface ΓT (see Fig. 2), wD is the Dirichlet boundary condition on platelets, and w0

is the initial condition on platelets.

The parameter k is the adhesion rate, which depends on shear stress s, to be

defined later on:

(3.4) k := κ1 + κ2s.

We assume that the interface clot-blood grows in the opposite direction to the influx

of platelets on the surface of the clot. Hence, the growth velocity of the interface ui

is supposed to be in the same direction as platelet gradient, i.e., the proportionality

constant α is chosen as positive:

(3.5) ui = α∇w on ΓT .
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We now use the main idea of the level set method (for details see e.g. [27] and

[24])—the moving interface ΓT can be represented implicitly as the zero level set

of a function φ, whose sign can serve to distinguish the domains of fluid blood

Ωf (t) := Ωt and emerging thrombus Ωs(t). To be more specific, the different parts

of the domain are discerned by the function φ in the following manner:

Ωt(t) = {x ∈ Ω∗ : φ(x, t) > 0}, Γt(t) = {x ∈ Ω∗ : φ(x, t) = 0},(3.6)

Ωs(t) = {x ∈ Ω∗ : φ(x, t) < 0}.

It follows from the definition of φ, that the transport equation

(3.7)
∂φ

∂t
+ ui · ∇φ = 0

has to be fulfilled along the moving interface. The natural extension to the whole

domain Ω∗ can be formulated as

(3.8)
∂φ

∂t
+ αkD−1w|∇φ| = 0.

At time t = 0, the level set function is initialized to the signed distance function,

that is

(3.9) φ(x, 0) :=

{

dist(x,Γ0), x ∈ Ωt ∪ Γ0,

− dist(x,Γ0), x ∈ Ωs(0).

Weller [31] substituted the following term, obtained by integration by parts, over the

interface Γt

(3.10)

∫

Γt

(

−ν
∂u

∂n
+ pn

)

· ψ dS

by the following expression

(3.11) β(h)

∫

Γt

u · ψ dS,

where β is a function depending on the cell size h so that β(h) → ∞ as h→ 0. The ψ

term is a vector test function. The velocity field is extended to Ωs to fulfill u = 0

in Ωs, which leads to the additional term
∫

Ωs

u ·ψ dx. The pressure is harmonically

extended into the solid. On the part of the boundary ∂Ωs(t) \ Γt, the homogeneous

Dirichlet boundary condition on u is imposed.
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4. Realization of Weller’s model using diffuse interface method

The sharp interface method, for example the level-set method as introduced in

the previous section, provides an elegant way to compute useful quantities, like the

normal vector to the interface, and the characteristic function of the interface, the

Heaviside function of the flow domain. However, for the numerical computations

one needs a smooth approximation of these quantities. The phase field method

circumvents this issue by implicitly assuming that a smooth transition region around

the interface is present.

In the following, we introduce the phase-field method as it is used for our purposes.

In Section 4.1, we describe the movement of the interface blood-clot described using

the phase-field function. In Section 4.2, we adjust the transport equation of platelets

to our purposes using the phase-field function.

4.1. Interface tracking using the phase-field method. The most important

advantages of the phase-field approach [15] in comparison with the level-set method

are:

⊲ no necessity of artificial smearing of the characteristic and Heaviside functions for

numerical computations, as the phase field is implicitly smeared by the phase field

equation (to be specified below)

⊲ the phase-field function does not require the reinitalization procedure, which is

necessary for the signed distance function of the level-set method

At the heart of our phase-field formulation is the Cahn-Hilliard equation, wherein

the velocity ũ is given as the sum of the external part ue, originating from flow of

the fluid, and internal component ui, stemming from the growth of interface due to

the influx of platelets, i.e., it holds that ũ = ue + ui. We take the growth velocity

ui as in (3.5)

(4.1) ui = α∇w,

as we will need this form in the derivation of modified phase-field equations. In order

to treat the Cahn-Hilliard equation appropriately, it is reformulated as two coupled

equations:

∂c

∂t
+ ũ · ∇c−∇ ·M∇µ = 0 in Ω∗,(4.2)

µ−
1

ε2
W ′(c) + ∆c = 0 in Ω∗,(4.3)

where c is the phase field, with values between −1 and 1, µ is the chemical potential,

W ′(c) is the derivative of the double-well potential W (c), M is the mobility, and ε
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is the interface thickness. The system of equations (4.2) and (4.3) is derived in [15],

based on thermodynamic reasoning.

We use the Cahn-Hilliard system only for the tracking of the interface blood-clot

without any consideration of thermodynamics. In other works, e.g. [15], the phase-

field is taken as a variable reflecting thermodynamic state of the system.

Therefore, we solve a system of two equations, which is by one more than in the

case of the level-set method. The Cahn-Hilliard equations are to be solved in the

whole computational domain Ω∗.

Further we assume that the blood flow does not exhibit mechanical influence on

the emerging clot. The blood affects the clot only by carrying blood platelets into the

vicinity of the clot surface. This assumption was taken in Weller’s original model [31].

Hence, we neglect the term ue, i.e. ũ = ui in (4.2). We manipulate the equation (4.2)

in the following manner:

(4.4)
∂c

∂t
+ ui · ∇c−∇ ·M∇µ =

∂c

∂t
+ ui · ∇c−∇ ·M∇µ

=
∂c

∂t
+ α∇w · ∇c−∇ ·M∇µ

=
∂c

∂t
+ α∇w ·

∇c

|∇c|
|∇c| − ∇ ·M∇µ

=
∂c

∂t
+ α∇w · n|∇c| − ∇ ·M∇µ

=
∂c

∂t
+ αD−1kw|∇c| − ∇ ·M∇µ = 0,

where we used (3.3) and the fact that the following relation holds for the phase-field

function c:

(4.5) n =
∇c

|∇c|
.

The term |∇c| is due to its delta function-like behaviour substituted by a different

expression. Namely, we approximate the delta function by

|∇ϕε| =
(ϕε)

2

ε
ec/ε,

where

ϕε(c) =
1

1 + ec/ε
,

with ε being a small constant parameter, k is the adhesion rate (3.4).
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Finally, we get the following equations:

∂c

∂t
−∇ ·M∇µ = αD−1kw|∇ϕε(c)| in Ω∗,(4.6)

µ−
1

ε2
W ′(c) + ∆c = 0 in Ω∗.(4.7)

The viscous traction vector which is exerted by the wall on the fluid is defined as

(4.8) τ = 2νD(u)n,

where D(u) is the symmetric velocity gradient, i.e. D(u) = 1

2
(∇u + (∇u

T )). The

normal component of the traction vector is obtained as

(4.9) τn = τ · n,

whereas the shear part of the viscous traction vector is obtained as

(4.10) τt = τ · t,

where t is the unit tangent, which is oriented parallel to the fluid velocity near the

wall. The viscous traction vector can be then written as

(4.11) τ = τn + τt = τnn+ τtt.

The wall shear stress s is computed as l2-norm of the shear traction vector τt:

(4.12) s = ‖τt‖l2 = ‖τ − τn‖l2 = ‖τ − (τ · n)n‖l2 .

4.2. Transport of platelets using the phase-field framework. We have two

areas in our computational domain, which have to be described by the transport

equation of platelets. It is the fluid area Ωt and the solid area Ωs of the clot.

For simplicity, we do not track the further development of the platelets, which are

incorporated into the solid, the thrombus. Therefore, we suppose, that the density

of platelets in the solid is constant. Our starting point is the transport equation

formulated by Weller, i.e. equation (3.2).

On the interface between the solid Ωs and the fluid Ωt, we impose the Neumann-

boundary condition using the specific procedure developed in [22]. The approach [22]

was developed to approximate the boundary condition imposed on the boundaries

of domains on which elliptic equations were defined. The procedure enables time

development of domains in space; hence, it suits our purposes as our clot is slowly

growing.
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Let us have the following equation

(4.13) ∆u = f in Ωt

equipped with the Robin boundary condition

(4.14) ∇u · n = k(u− g) on Γt,

where g is a scalar function defined on the interface Γt, i.e. g : Γt → R, and k is

a scalar constant, i.e. k ∈ R. Li et al. in [22] developed the following approxima-

tion for this problem using the phase field method (for details see [22] Section 2.5,

Approximation 2):

(4.15) ∇ · (φ∇u) +
1

ε
B(φ)k(u − g) = φf in Ω∗,

whereB(φ) = φ2(1−φ)2. The variable φ is interrelated with our phase-field variable c

from above using the following formula:

(4.16) φ(c) =
c+ 1

2

{

1, c = 1,

0, c = −1.

In [22] the behaviour of the approximation (4.15) is analyzed in detail. In the

work [22] the possibility of application of this treatment of boundary conditions

to other types of equations, i.e., not only to elliptic but also to parabolic equations,

is introduced.

We will reformulate the transport equation in the following manner:

(4.17)
∂(φw)

∂t
−D∇ · (φ∇w) +∇ · (φwu) +

1

ε
B(φ)kw = 0 in Ω∗.

The equation is derived in the Appendix of [22]. To sum up, the equation (4.17) is

obtained by formal multiplication of (3.2) by a test function, integrating in time and

space (over the current domain of blood Ωt) and introduction of the characteristic

function of Ωt. The characteristic function of Ωt is then approximated by φ.

4.3. The whole system of equations. Our system contains the equations of

conservation of linear momentum and mass for the fluid

∂u

∂t
+ u · ∇u = −∇p+∇ · (νD(u)) + f in Ω∗,(4.18)

∇ · u = 0 in Ω∗,
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and it contains the system of two equations originating from the Cahn-Hilliard of

equation, derived in Section 4.1, which tracks the development of the fluid-solid

interface (clot)

∂c

∂t
−∇ ·M∇µ = αD−1kw|∇ϕε| in Ω∗,(4.19)

µ−
1

ε2
W ′(c) + ∆c = 0 in Ω∗

and it contains the transport equation for the platelets

(4.20)
∂(φw)

∂t
−D∇ · (φ∇w) +∇ · (φwu) +

1

ε
B(φ)kw = 0 in Ω∗,

where φ is related to the concentration c using (4.16).

To make the equation (4.20) well defined in the whole domain, we need to assign

some values to the platelet field in the area of the solid part. Therefore, we add to

the last equation the additional term −(1− φ)∆w, i.e., we extend harmonically the

platelet field in the area of the growing thrombus. The equation (4.20) will then

have the following form:

(4.21)
∂w

∂t
−D∇ · (φ∇w) +∇ · (φwu) +

1

ε
B(φ)kw − (1− φ)∆w = 0 in Ω∗.

5. Numerical treatment of the rephrased Weller’s model

5.1. A splitting method for the linear momentum equations and con-

tinuum equations. The incompressible Navier-Stokes equations are a saddle point

problem. After discretization by finite element method, the corresponding matrix to

be solved by linear solvers is indefinite.

There are some methods which can be used to tackle this problem. We decided to

solve this issue by using a projection method.

The system is split into convection-diffusion equations for the velocity and the

Poisson problem for the pressure. There are several ways to split the Navier-Stokes

equations; here we have decided to use the incremental pressure correction scheme

(IPCS) [16]. Let us define operators L(u) and N(u) as

L(u) = 2 div(νD(u)) = div(ν(∇u+ (∇u)⊤))

and

N(u) = u · ∇u.
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The IPCS scheme can be described as follows:

Having the velocity uk and pressure pk from the previous time step, we solve first

for the so called tentative velocity u
k+1
∗
:

(5.1)
u
k+1
∗

− u
k

δt
+N(uk+1

∗ ) +∇pk − L(uk+1
∗ ) = 0,

where δt is the timestep size. Afterwards we solve for the new pressure pk+1:

(5.2) ∆(pk+1 − pk) =
1

δt
divuk+1

∗ .

Then we perform the correction of the velocity uk+1
∗ :

(5.3) u
k+1 = u

k+1
∗

− δt(∇pk+1 −∇pk).

The currently introduced splitting scheme must be adapted for the system which

we wish to solve. We want to enforce low values of velocity in the area of the

thrombus. For that purpose we enlarge viscosity in the area of the thrombus and we

add a Brinkman-like term in the area of thrombus. We set the velocity field to zero

in the velocity correction step as well.

Hence, we solve the following form of the transport equation for the velocity field:

(5.4)
u
k+1
∗

− u
k

δt
+N(uk+1

∗
) +∇pk − Lφ(u

k+1
∗

) + (1− φ)uk+1
∗

= 0,

where

(5.5) Lφ(u) = div(2ν(φ)D(u)) = div(ν(φ)(∇u + (∇u)T )),

i.e., the viscosity is dependent on the value of φ defined by (4.16).

As was said above, we set the velocity field in the thrombus area to zero value in

the following manner:

(5.6) u
k+1 = φ(uk+1

∗ − δt(∇pk+1 −∇pk)),

which could be seen as a projection of the velocity on the space of velocity with

trivial values in the area of the thrombus.

The nonlinear term, i.e., N(u) needs special treatment. There is a possibility

to use an extrapolation from the previous time step for linearization; however we

have decided to linearize the convective term using the Picard iteration. We use the

norm of the residual of the equation (5.1) as the termination criterion of the Picard

iteration.
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5.2. An heuristic adaptive time stepping method. Suppose that we are

about to solve dynamic equations, such as Navier-Stokes equations or transport

equations of some species. We will now assume, for instance, that we have a transport

equation for the quantity u.

We refer to the work [30] and [21] for further details on the shown procedure.

In the following, u denotes the unknown precise solution of the equations,

whereas u∆t denotes an approximate solution obtained using time step size ∆t.

We want to reach some prescribed tolerance TOL in the solution process:

(5.7) ‖u− u∆t‖ ≈ TOL.

For that purpose we perform an expansion to obtain the local truncation error after

one step ∆t and one step of length m∆t, where m is an appropriately chosen integer

number.

We will assume that the error of the solution e(u) is independent of the time step

size. Then the expansions of the error can be written as:

(5.8) u∆t = u+ (∆t)2e(u) +O((∆t)4)

and

(5.9) um∆t = u+m2(∆t)2e(u) +O((∆t)4).

From the previous two expressions we derive the equation for the error:

(5.10) e(u) ≈
um∆t − u∆t

(∆t)2(m2 − 1)
.

Suppose now that we want to get an estimation of the error after one properly chosen

timestep ∆t∗.

We have

(5.11) u∆t∗ = u+ (∆t∗)
2e(u) +O((∆t∗)

4).

We obtain from this equation, on rearrangement and substitution from (5.10), the

following approximate identity:

(5.12) ‖u− u∆t∗‖ ≈
(∆t∗
∆t

)2 ‖u∆t − um∆t‖

m2 − 1
= TOL.

The estimator of the adaptive time step is then

(5.13) (∆t∗)
2 = TOL

(∆t)2(m2 − 1)

‖u∆t − um∆t‖
.
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We sum up the usage of the estimator in the algorithm scheme 1.

Algorithm 1: Algorithm for one adaptive time step.

Algorithm: Adaptive time step

Data: un

Result: un+1

Given the old solution un do:

begin

1. Make m small timesteps of size ∆t to compute u∆t

2. Make one large step of size of size m∆t to compute um∆t

3. Evaluate the relative solution changes ‖u∆t − um∆t‖

4. Calculate the ‘optimal’ value ∆t∗ using (5.13) for the next time step

5. If ∆t∗ ≪ ∆t, reset the solution and go back to step 1, using ∆t∗ as new

timestep

6. Set un+1 = u∆t

end

R em a r k 5.1. We don’t set the newly obtained timestep to ∆t∗, as we want to

avoid instability problems. Instead if

⊲ ∆t∗ ≪ ∆t, then we set ∆tnew = ∆t/k,

⊲ ∆t∗ ≫ ∆t, then we set ∆tnew = ∆t ∗ k,

where k is some appropriately chosen integer number.

5.3. Resolution of different time scales and decoupling of the solved

equations. We model processes with different time scales. Hence we should expect

that the timesteps obtained using the previous adaptive timestepping algorithm will

be different for each process.

After computation of each time iteration using the previous algorithm, we take

the minimum of all proposed timesteps from (5.13), i.e.

(5.14) ∆t∗FUTURE = min{∆t∗NAVIERSTOKES,∆t∗PHASE,∆t∗TRANSPORT}.

The equations for modelled processes are solved as decoupled. However, actually

they are coupled.

We will reintroduce the coupling into our system of equations by subiteration.

The ending criterion of the subiteration is based on the size of difference of solutions

originating from last two subiterations.
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5.4. Weak formulation.

5.4.1. Weak formulation of the equations for the split momentum equa-

tions and continuity equation. Assuming that all data are sufficiently regular,

we obtain the weak formulations by formally multiplying the equations by a vector

test function v or scalar function q from appropriated spaces defined later.

We will define the following notation for the inner products of tensor, vector and

scalar functions:

(5.15) (A,B) =

∫

Ω∗

A : B dx, (u,v) =

∫

Ω∗

u · v dx, (p, q) =

∫

Ω∗

pq dx.

We multiply (5.4) by the vector function v obtaining

(5.16)
(

u
k+1
∗ − u

k

δt
+ unonlin · ∇u

k+1
∗ + (1− φ)uk+1

∗ ,v
)

+ (∇pk,v)− (div 2ν(φ)D(uk+1
∗ ),v) = 0,

where unonlin is the velocity solution from the previous Picard iteration.

In order to redistribute derivations evenly between the solution and test functions,

we formally perform integration by parts on the diffusion and pressure terms. This

leads to

(5.17)
(

u
k+1
∗ − u

k

δt
+ unonlin · ∇u

k+1
∗ + (1− φ)uk+1

∗ ,v
)

− (pk, div v) + (pkn,v)∂Γ

+ (2ν(φ)D(uk+1
∗ ),∇v) − (2ν(φ)D(uk+1

∗ )n,v)∂Γ = 0,

where (·, ·)Γ stands for integral over boundary Γ, defined simarly to (5.15). We

have v equal to zero on Γin and Γwall, therefore, the boundary integrals on these

parts of boundary vanish. We have to handle the boundary terms on Γouflow.

We set on outflow

(5.18) 2ν(φ)D(uk+1
∗ )n = 0,

hence, in the equation (5.17) only the boundary integral with pressure corresponding

to the outflow part of boundary Γouflow remains.

We will now turn our attention to the Poisson problem for pressure (5.2). We

multiply the equation by a test function q and integrate formally by parts, getting

(5.19) −(∇(pk+1 − pk),∇q) + (∇(pk+1 − pk) · n, q)∂Ω =
1

δt
(divuk+1

∗ , q).

In this case we have to deal with the implicit use of a boundary condition. The

application of the homogeneous Neumann condition ∂p/∂n = 0 leads to a singular
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matrix to be solved by linear solver. One of workarounds to tackle this issue is to

prescribe an additional boundary condition on pressure p = 0 on Γout.

We define function spaces for tentative velocity and pressure in the following man-

ner: Test space for tentative velocity:

(5.20) V
′ = H

1
0(Ω

∗) = {v ∈ [H1(Ω∗)]3, v|Γin∪Γwall
= 0}.

Trial space for tentative velocity:

(5.21) V = H
1
D(Ω∗) = {v ∈ [H1(Ω∗)]3, v|Γin

= uD, v|Γwall
= 0}.

The test and trial space for the weak formulation (5.19) of Poisson problem (5.2) are

identical:

(5.22) Q′ = Q = {q ∈ H1(Ω), q|Γout
= 0}.

In the case of the velocity correction we perform only the L2-projection and it is not

necessary to discuss the boundary conditions for this step.

5.4.2. Weak formulation of the phase-field and chemical potential equa-

tion. We multiply (4.19) by a tuple (ψc, ψµ) from the appropriate test spaces to be

specified later:

(ck+1 − ck

δt
, ψc

)

− (∇ ·M∇µk+1, ψc) = (αD−1kw|∇ϕε|, ψc),(5.23)

(

µk+1 −
1

ε2
W ′(ck+1) + ∆ck+1, ψµ

)

= 0.

We impose the following boundary conditions on the system:

(5.24) M∇µk+1 = 0 on Γ

and

(5.25) ∇ck+1 · n = 0 on Γwall ∪ Γout,

where Γ is the boundary of the whole domain. In our case it is the union of the inflow

boundary, the outflow boundary and walls. This leads to zero boundary terms after

performing of formal integration of parts of (5.23):

(ck+1 − ck

δt
, ψc

)

+ (M∇µk+1,∇ψc) = (αD−1kw|∇ϕε|, ψc),(5.26)

(

µk+1 −
1

ε2
W ′(ck+1), ψµ

)

− (∇ck+1,∇ψµ) = 0.
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Test space for the phase field c:

(5.27) Ψ′

c = {c ∈ H1(Ω∗), c|Γin
= 0}.

Trial space for the phase field c:

(5.28) Ψc = {c ∈ H1(Ω∗), c|Γin
= cD}.

Test and trial space for the chemical potential

(5.29) Ψ′

µ = Ψµ = H1(Ω∗).

5.4.3. Weak formulation of the transport equation for platelets. We mul-

tiply (4.21) by the test function Ψw from the appropriate space to be specified later:

(5.30)
(wk+1 − wk

δt
−Ddiv(φ∇wk+1) + div(φwk+1

u),Ψw

)

+
(1

ε
B(φ)kwk+1 − (1 − φ)∆wk+1,Ψw

)

= 0 in Ω∗.

After integration by parts and application of the no-flux boundary condition, we

obtain the following weak formulation:

(5.31)
(wk+1 − wk

δt
+ div(φwk+1

u) +
1

ε
B(φ)kwk+1 ,Ψw

)

+ ((1 − φ)∇wk+1,∇Ψw)

− ((1− φ)∇wk+1 · n,Ψw)Γoutflow
+D(φ∇wk+1 ,∇Ψw)

−D(φ∇wk+1 · n,Ψw)Γoutflow
= 0 in Ω∗.

Test space for the platelets field w:

(5.32) Ψ′

w = {w ∈ H1(Ω∗), w|Γin
= 0}.

Trial space for the platelets field w:

(5.33) Ψw = {w ∈ H1(Ω∗), w|Γin
= wD}.
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6. Finite element library deal.ii

6.1. Introduction of the library. The finite element library deal.ii [3], [7] is an

open source library developed in C++. It uses features of C++ to allow mathemati-

cians rapid finite element code development. It features wrapping of general parts

of finite element codes such as grid creation and refinement, processing of degrees

of freedom, output of results into different graphics formats, and output of meshes.

For that purpose, deal.ii leverages the object orientation of C++, which allows us to

write highly modular code.

Another feature of C++ used in deal.ii library design is the support of generic

programming, i.e. template (meta)programming. One great example of using tem-

plates in deal.ii is so-called dimension independent programming. It allows us to

change the spatial dimension of the solved problem from one to two or three spatial

dimensions without principally great effort.

The deal.ii library supports different kinds of refinement—h-, p-, hp-. The refine-

ment criterion is based on the local error indicator or error estimator. In deal.ii,

refinement functions are implemented which take the indicator or estimator object

as a function parameter. The function then refines, either in h-, p-, or hp- manner,

based on the current solution and the object of indicator or estimator.

The deal.ii library allows to use the computational sources of multiple cores on

one node or use multiple nodes in a network. The first case is implemented using

the library Threading Building Blocks, [25], i.e., it uses a threading technology. On

the other hand the communication among nodes in a network is implemented using

the communication framework of MPI.

In deal.ii the backend for linear algebra operations is implemented. It contains

support for sparse matrices, vectors, Krylov subspace methods, direct solvers, and

blocked matrices. Deal.ii provides a rich interface with well established numerical

packages Petsc [6] and Trilinos [17] as well, which are to be used mainly in the

cases of computations distributed across multiple nodes in the cluster. The deal.ii

library needs to solve the problem of partitioning of complicated large computational

domains into small chunks, in the case of parallel or distributed computations. For

that purpose, it uses the libraries METIS [19] and p4est [10].

6.2. Used features of the library. We ran our computations in the distributed

setting, i.e. we computed on multiple cores of several nodes of a cluster. Hence,

the communication between cores and nodes happens using MPI library interprocess

calls. We generated grids for computations using the functions provided by the

deal.ii library, i.e., we generated them at the beginning of our computations. In the

case of the perfusion chamber geometry, we refined the grid at the bottom of the
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computational area in order to be able to capture more precisely the development of

the interface between the clot and blood flow. For the solution of our problems, we

used the deal.ii interface to the well established bunch of libraries Trilinos [17]. This

enables us to switch the linear solvers easily without profound changes in our code,

as the interface is quite uniform for all linear solvers of Trilinos.

7. Results

We have chosen two computational geometries for simulations. In Section 7.1,

we outline the results achieved on the perfusion chamber geometry, whereas in Sec-

tion 7.2 we show results computed on the cylinder geometry.

7.1. Perfusion chamber geometry. In our first simulation, we have chosen one

of the configurations used in [31], [32] and [33]. This configuration originates from

the experimental setting of Affeld [2]. In this experiment, platelet-rich plasma with

pre-activated platelets flows from the inflow of the perfusion chamber onto a glass

plane. The glass plane is orthogonal to the flow direction at the inflow. The key result

of the experiment is that the deposition of platelets is minute at the point of stag-

nation on the glass plane, whereas the site with greatest concentration of deposited

platelets proves to be at the place of elevated shear rate. This location appeared to

be downstream of the axis of symmetry of the perfusion chamber, i.e. considerably

far away from the stagnation point.

We solved our model on two differently refined meshes. The coarser one has 26422,

whereas the finer mesh has 197376 cells. One can see the computational meshes of

both refinements in Fig. 3. Initial values of the phase field are rendered in the 2D

cut of the computational domain for the coarse mesh in Fig. 4(a) and for the fine

mesh in Fig. 4(b).

We have performed computations on both meshes and we achieved similar results

on both levels of refinement. In Figures 4(c) and 5(a) it could be seen that the clot

has grown in the area where the the highest shear stress occurs. The same behavior

can be observed for the fine mesh, see the Figures 4(d) and 5(b). In the pictures

of computations on the finer mesh it is apparent that the shape of emerging clot is

smoother, which corresponds to the better resolution of phase field due smaller mesh

cells.

We have mentioned that the clot grows mostly in the area of high shear stress.

This statement can be demonstrated by Fig. 5(c) for the coarse mesh and Fig. 5(d)

for the fine mesh. In the figures there are rendered values of the velocity field, both

as colour on the slice and arrows on the slice. However, the most interesting for us is

the 3D contour of phase field of zero value. We have coloured the contour by values
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(a) 2D cut of the computational mesh—
coarse mesh.

(b) 2D cut of the computational mesh—fine
mesh.

(c) 3D view—coarse mesh. (d) 3D view—fine mesh.

Figure 3. Overview of computational meshes—perfusion chamber.

of the shear stress field. It is therefore apparent that the clot grows preferably in the

area of high shear stress. This is in accordance with the assumptions of high shear

stress thrombosis mentioned in Section 1.

We have reached similar location of growth of the clot as in [33]. We must however

admit that our results are considerably not so fine as in [33]. Namely, the interface

between flow and the clot is rather blurred. This originates from the very basic

assumption of the phase-field—the interface is represented by a no-sharp function.

The other reason for the not so sharp location of the interface is the fact, that we

computed the problem in fully three dimensional setting. In [31], [32], and [33], the

cylindrical symmetry of the problem was used to allow for finer spatial resolution.

Saying this, we aspire however to be able to compute similar problems with similar

granularity of computational mesh as was presented [31], [32], and [33].
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(a) Initial phase field setting—coarse mesh. (b) Initial phase field setting—fine mesh.

(c) Final state of the phase field—coarse
mesh.

(d) Final state of the phase field—fine
mesh.

Figure 4. Initial and final state of phase field c for coarse mesh ((a) and (c)) and fine mesh
((b) and (d)).

In Sections 8.2 and 8.3 on scaling of our fully three dimensional implementation of

the model, we will discuss the possibility of scaling up of our code to a larger number

of cells.

7.2. Cylinder geometry. In the second simulation, we solved our system in the

cylinder geometry, where the reactive zone is located in the middle in a symmetric

position at the wall. We let blood flow from right to left. As the platelets gradually

arrive at the reactive zone, the process of coagulation is triggered off. The use case

for this geometry could be a stented artery, as the artificial surface of the stent is

reactive.

We solved our model on two differently refined meshes. The coarser one has 5120

cells, whereas the finer mesh has 40960 cells. You can see the computational meshes
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(a) Coarse grid. (b) Fine grid.

(c) Coarse meesh. (d) Fine mesh

Figure 5. 2D view of velocity u and phase field c ((a) and (b)), 3D view of the velocity field
u and the zero value phase field c isocontour colored by shear stress s ((c) and
(d)).

for the coarse grid and the fine grid in Fig. 6. Initial values of the phase field are

shown in Fig. 7(a) for the coarse mesh and in Fig. 7(b) for the fine mesh. We have

performed computations on both meshes and we have achieved corresponding results

on both levels of refinement.

In Fig. 7(c) and 8(b) it could be again observed that the clot has grown the most

in the area which experiences the highest shear stress. The same behaviour can be

observed for the fine mesh; see Fig. 7(d) and 8(b). In the pictures of computations

on the finer mesh it is apparent that the shape of emerging clot is smoother, which

corresponds to the better resolution of phase field due smaller mesh cells.

The Figures 8(c) for coarse mesh and 8(d) for the fine mesh demonstrate that

the clot grows mostly in the area of high shear stress. In the picture, values of the

velocity field are rendered both as colour on the slice and arrows on the slice.
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(a) 2D cut of the computational mesh—coarse
mesh.

(b) 2D cut of the computational
mesh—fine mesh.

(c) 3D view—coarse mesh. (d) 3D view—fine mesh.

Figure 6. Overview of computational meshes—cylinder.

(a) Initial phase field setting—coarse mesh. (b) Initial phase field setting-fine mesh.

(c) Final state of the phase field—coarse
mesh.

(d) Final state of the phase field—fine mesh.

Figure 7. Initial ((a) and (b)) and final state ((c) and (d)) of phase field c.

(a) 2D view of velocity field as glyphs and
phase field values—coarse grid.

(b) 2D view of velocity field as glyphs and
phase field values—fine grid.

(c) 3D view of the zero value phase field
isocontour colored by shear stress and the
velocity field-coarse mesh.

(d) 3D view of the zero value phase field iso-
contour colored by shear stress and the ve-
locity field—fine mesh.

Figure 8. 2D view of the phase field c and of the velocity field u ((a) and (b)), 3D view
of the velocity field u and the zero value phase field isocontour colored by shear
stress s ((c) and (d)).
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Here we can also observe that narrowing of the lumen of the vessel by the emerging

clot causes an increase of the velocity in the narrowed part of vessel. This leads to

an increase of shear stress at the surface of the clot, which enhances the growth of

the clot.

We would like also comment on the dependence of thrombus growth not only on

shear stress, but also on the supply of blood platelets. Blood platelets, thrombocytes,

are an integral part of the high shear rate thrombus. We take into account the

dependence of growth rate on shear rate and thrombocytes inflow by the Robin

boundary equation for the platelet field (3.3). The boundary condition depends

linearly on the concentration of platelets and the adhesion rate, which grows linearly

with shear stress. Therefore, we should expect that the growth of the thrombus

starts only after the arrival of thrombocytes on the location of thrombus interface.

We can witness this development in the series of steps 1–6 in Fig. 9.

(a) Step 1. (b) Step 2.

(c) Step 3. (d) Step 4.

(e) Step 5. (f) Step 6.

Figure 9. Development of the clot (green colour) and platelet field w from the initial state
(Step 1) to the final state (Step 6).

We would like to add a note about the results of simulations in Fig. 9. It could

seem that the development of the platelet field does not couple correctly with the

development of the phase field (green colour in Fig. 9), i.e. the simulation results in

nonzero values for platelet field in the area of the developing thrombus. We must

however remind the reader that we have used harmonical extension of the platelet

field in the area of thrombus; see the equation (4.21). Therefore, it could be said that

in the area of the thrombus, the values of the platelet field are physically irrelevant

for the model, as its values there are only supplied for the better solvability of our
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problem. Hence, we do not assign any physical interpretation to the platelet field in

the area of the developing thrombus.

8. Properties of numerical recoupling scheme,

scaling of our implementation

In the following two sections, we want to show numerical and scaling properties of

our implementation of the model. In Section 8.1 we study the numerical properties

of our scheme from the point of view of recoupling. In Section 8.2, we study the

efficiency of different combinations of linear solvers and preconditioners. Section 8.3

shows the weak and strong scaling properties of our implementation.

8.1. Recoupling of the decoupled equations. We have mentioned in Sec-

tion 5.3 that recoupling iterations are needed for achievement of proper results. The

norm of the difference of subsequent solutions played the role of the terminating

criterion of recoupling subiterations.

We could naturally expect that if we decrease the initial timestep, then the norm

of the difference of the solutions from different recoupling iterations would decrease

faster. We performed a simple numerical experiment which confirms this expectation.

We chose the cylindrical geometry with 5120 cells as our computational domain. The

number of recoupling iterations in each timestep n was now fixed. We performed

computations using our adaptive timestepping method until we arrived at a fixed

time T . We denote the solution obtained using n recoupling iterations as un for

velocity and wn for platelets. We store the solution for n = 4, i.e. the solution at

time T obtained using 4 recoupling iterations, to hard disk in order to be able to

compare it with solutions for n = 1, 2, 3. The results of the computations are given

in the Tables 2, 3, 4 and 5. From the tables it can be seen that the convergence

to the finest solution is quicker for the smaller initial timestep 0.05 and that the

convergence slows down for the larger timesteps 0.1 and 0.2 (see Table 3 and 4).

In the case of convergence in Table 5 we can see that it is by several orders slower

than in Table 2 for the platelet field. The differences in the velocity field in Table 5

decrease at the same pace as in 2, but the order of magnitude of the differences is

approximately two orders lower. It is however questionable whether the solution with

n = 4 for timestep 0.5, see Table 5, is a good candidate for comparing convergence

of the solution n = 1, 2, 3, because it appears that the convergence in the platelet

field w is very slow.
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No. of couplings n velocity ‖u4 − un‖ platelets ‖w4 − wn‖

1 0.000108446 3.59149e–08

2 3.59149e–08 2.1103e–10

3 4.84701e–13 1.0633e–10

Table 2. Convergence table of the velocity and platelet solution for timestep ∆t=0.05.

No. of couplings n velocity ‖u4 − un‖ platelets ‖w4 − wn‖

1 0.0223035 1.11685e–4

2 1.72131e–08 1.72131e–08

3 1.28085e–13 4.1479e–13

Table 3. Convergence table of the velocity and platelet solution for timestep ∆t = 0.1.

No. of couplings n velocity ‖u4 − un‖ platelets ‖w4 − wn‖

1 0.236748 0.0989294

2 2.08167e–08 2.04242e–10

3 2.3034e–13 6.72133e–14

Table 4. Convergence table of the velocity and platelet solution for timestep ∆t = 0.2.

No. of couplings n velocity ‖u4 − un‖ platelets ‖w4 − wn‖

1 0.101598 0.210646

2 1.03488e–06 0.10869

3 5.86096e–11 0.0986667

Table 5. Convergence table of the velocity and platelet solution for timestep ∆t = 0.5.

8.2. Scaling of linear solvers. We have experimented with different combina-

tions of linear solvers and preconditioners. The most demanding processing of linear

systems were performed for the solution of the tentative velocity step (5.4) and for

the solution of the projection step (5.2). The solution of the projection step results

in a linear system with symmetric positive definitive matrix. We choose a conju-

gate gradient solver with either ILU or algebraic multigrid as preconditioner. We

tried to increase the number of cores which were used for the solution of the system

originating from cylindrical geometry with 5120 cells.

We can observe in the Table 6 that the duration of solution of the projection

step increases as we add more cores for the solution of the system. This could be

attributed to the fact that the system is quite small and communication gradually

prevails with increasing of number of cores.

Discretization of the tentative velocity step does not end with a symmetric ma-

trix. Therefore we have to use a more general solver for the solution of the linear
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Preconditioner 24 Cores 48 Cores 96 Cores 192 Cores
ILU 0.229 0.411 0.904 1.49

AMG 0.581 0.994 1.53 2.98

Table 6. Solution times in seconds for CG with different preconditioners for the projection
step (5.2).

system. We chose GMRES solver equipped with ILU, SOR or algebraic multigrid as

preconditioners.

For almost all preconditioners we can observe in Table 7 a decrease of time of

solution with increasing number of cores. The linear system is much larger than the

pressure system, hence the scaling up is working. We can however see that for the

algebraic multigrid there is a plateau in solution time for 96 and 192 cores.

Preconditioner 24 Cores 48 Cores 96 Cores 192
SOR 67.4 45 24.1 12

ILU 55.7 32.2 17.7 9.7

AMG 81.7 61 43.7 43.8

Table 7. Solution times in seconds for GMRES with different preconditioners for the ten-
tative velocity step (5.4).

8.3. Strong and weak scaling of our implementation. In order to investigate

parallel efficiency of our implementation, we will perform two sets of experiments

with different settings—strong scaling tests and weak scaling tests. The former ones

are underpinned by Amdahl’s law, whereas the latter ones are related to Gustafson’s

law, see [8].

8.3.1. Strong scaling of our implementation. In the case of strong scaling,

the problem size remains fixed but the number of cores deployed for the solution

of the problem is increased. We have performed a series of computations on the

cylinder and on the chamber mesh for two different levels of refinement. In each

run we were computing until we reached a fixed time limit, i.e. until a fixed physical

time of simulation was reached. The number of cores was increased by a factor 2

from 24 cores to 768 cores. We have achieved a considerable level of scaling of our

computations; however a plateau has reached and the duration of computations of

the problem started to grow (see Table 8 and the chart in Figure 10). This could

be attributed to the fact that the communication overhead might start to dominate.

That was the case for both refinement levels of chamber grid and of the cylinder

geometry.
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Chamber geometry Cylinder geometry

Number of Cores 15040 cells 75954 cells 5120 cells 40960 cells
24 3.430 71.000 1.560

48 1.670 31.700 822

96 1.020 16.400 456 10.700

192 742 8.820 304 4.710

384 506 4.070 156 459

768 424 7.710 258 2.460

Table 8. Strong scaling—time of solution for number of cores.

0 100 200 300 400 500 600 700 800
102

103

104

105

Number of cores

T
im
e
o
f
so
lu
ti
o
n
(s
)

Chamber: 15040 cells
Chamber: 75954 cells
Cylinder: 5120 cells
Cylinder: 40960 cells

Figure 10. Strong scaling—time of solution for a number of cores.

8.3.2. Weak scaling of our implementation. In this case the workload (prob-

lem size) assigned to each core remains constant as additional cores are used to solve

a larger problem.

In the case of weak scaling performance tests, we started with a low number of

cells solved on certain number of cores. Then we increased the number of cells and

the number of cores by a factor of 2 in each step in order to keep a fixed amount

of work per core. If we had an ideal weak scaling property, we would witness that

the function reflecting the dependence of solution time on the number of cores is

constant. That expectation originates from the fact that the workload assigned to a

core is the same for every number of deployed cores.

In the Table 9 and in the chart in the Figure 11 we can see that with increasing

number of cells and cores we do not witness a constant level of solution time of

our problem as the ideal scaling would dictate. As the solution time is almost
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monotonously growing with number of cells/cores and jumps to one order higher

value for the largest number of cells/processors, we suppose that the communication

of our distributed code is becoming dominant. To improve this behaviour it would

be necessary to refactor our current codebase.

No. of cells No. of cores time (s)
640 24 73.3

1280 48 104

2560 96 165

5120 192 204

10240 384 158

20480 768 1310

Table 9. Weak scaling—time of solution for number of cores.
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Figure 11. Weak scaling—time of solution for number of cores.

9. Conclusion

We have reviewed current developments in the area of high shear rate thrombosis

research. It could be generally said that in the area of modelling of blood coagulation

it is not possible to formulate an all-encompassing model. A model that would fit

all situations easily becomes too complex to solve. Weller’s model captures high

shear rate thrombosis by the assumption that the adhesion rate of blood platelets
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on the surface of the clot is proportional to the shear rate. The related biochemical

processes, mentioned in Introduction, are incorporated in the shear stress dependent

function, the adhesion rate (3.4), at the phenomenological level.

In Section Results we have shown that the clot structure is growing in the areas of

clot with largest values of shear stress. This is in accordance both with the results

of Weller in [31], [33], and [2].

We have commented on advantages of the phase-field formulation in Section 4.

We are convinced that the tradeoff for the advantages (that is solution of a system

of two equations, i.e. the Cahn-Hilliard system, instead of one transport equation for

level-set function) is favourable. Namely, the phase-field is smeared implicitly by the

Cahn-Hilliard system without the need for smearing of the sharp interface function,

i.e. the level-set function.

We have performed a simple mesh convergence study both for the perfusion cham-

ber geometry and the cylinder geometry. We have proven that the phase field in our

simulations grows only when the blood platelets arrive, which agrees with our expec-

tations based on the performed biochemical experiments or medical measurements.

In the part about scaling of our implementation we achieved a certain level of

strong scaling. However, after further adding of computational power, i.e. cells, we

arrived at a point where the performance deteriorates. Our study measures the

times of computation of all parts of the solver. Hence, we do not know exactly

what the bottleneck is, i.e. whether it is the assemble routine, the linear solver,

on the communication overhead among components of our whole solver. Searching

for the bottleneck will require both analysis of the source code and profiling of the

application.

The proposed method could be applied not only to the initial stage of the develop-

ment of the thrombus but also to the mature state of the thrombus. The modelling

of this phenomenon is not only worth studying for academic reasons, but it could

valuably contribute to the medical treatment of cardiac diseases.
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