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Abstract. Completely regular semigroups CR are considered here with the unary opera-
tion of inversion within the maximal subgroups of the semigroup. This makes CR a variety;
its lattice of subvarieties is denoted by L(CR). We study here the relations K,T,L and C
relative to a sublattice Ψ of L(CR) constructed in a previous publication.

For R being any of these relations, we determine the R-classes of all varieties in the
lattice Ψ as well as the restrictions of R to Ψ.

Keywords: semigroup; completely regular; variety; lattice; relation; kernel; trace; local
relation; core

MSC 2010 : 20M07

1. Introduction and summary

Completely regular semigroups S with the unary operation of inversion within the

maximal subgroups of S form a variety CR. Its lattice of subvarieties is denoted by

L(CR).

There are basically two types of approaches to studying the structure of L(CR).

1. Starting from the bottom of the lattice L(CR), we always aim to encompass

the larger ones. Parallel to this, one tries to describe the structure of the semigroups

involved. For example, the lattice may be described as the direct product of “smaller

and/or simpler” lattices. This is the local approach.

2. As contrasted to this, the global approach concerns the entire lattice L(CR)

by designing and studying various relations on L(CR). These are often complete

congruences, so their classes are intervals. The ends of their classes induce lower and

upper operators on L(CR).
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The B-relation, which identifies two varieties if they contain the same bands,

provides a canonical example of the global approach.

Next we outline a concrete case, the subject of the present work.

In [16], the ∩-subsemilattice of L(CR) of upper ends of B-classes was determined.

As proved in [4], a large part of it is generated by two countably infinite ascend-

ing chains of varieties dubbed canonical. In [5], we constructed the sublattice Σ

of L(CR) generated by CS, the variety of completely simple semigroups, and four

initial canonical varieties. In [7], we described the classes of various relations of va-

rieties in Σ. The next step is provided by the lattice Ψ in [8] which has two more

canonical varieties for generators, thereby extending the lattice Σ.

The stage is thus set for describing the classes and the restrictions of the relations

alluded above to Ψ, the subject of this work. Hence we essentially oscillate between

the two approaches outlined above: the upper ends on the B-classes providing the

generators for a small sublattice of L(CR), and then considering some global relations

relative to this sublattice.

The relations in question are: kernel K, trace T, local L, and core C. The first

pair of these was studied in [11], the second pair in [12].

Now we give a brief sketch of the content of the paper. Section 2 contains prepa-

ration of the material that comes later, in particular the definition of canonical

varieties. The lattice Ψ is introduced in Section 3 by a diagram. We start the mate-

rial proper by a determination of the K-classes of the varieties in the lattice Ψ and

the restriction of K to Ψ in Section 4. This pattern persists in Sections 5–7 for T-,

L- and C-relations, respectively. In Section 8, we discuss an unsolved case.

2. Preparation

For all the terminology and notation, we follow the book [13], except that we

write OL instead of LO.

First we construct two countably infinite ascending chains of subvarieties of L(CR).

To this end, we introduce three infinite sequences of words, see [4].

LetX = {x2, x2, . . .} be a countably infinite set of variables. In the free completely

regular semigroup on X , set

G2 = x2x1, H2 = x2, I2 = x2x1x
0
2

and for n > 2, define inductively

Gn = xnGn−1, Pn = Gn(xnPn−1)
0, P ∈ {H, I},
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where W is the mirror image of W (see [7], Section 2) for the justification of this

notation. We refer to the varieties

H2 = LNO, H3 = RNO,

Hn = [Gn = Hn], Hn = [Gn = Hn], n > 2,

In = [Gn = In], In = [Gn = In], n > 2

as canonical. See [5], Diagram 1. Note that

SG = I2 ∩ I2, NBG = H3 ∩H3.

We also use the notation

R = I3 ∩ I3, F = H4 ∩H4.

Recall that the acronym RO stands for the variety of regular orthogroups. In addi-

tion, it holds

Lemma 2.1. We have RO = R∩O.

P r o o f. By [13], Theorem V.3.3, we have RO = I2 ∨ I2. In terms of ladders in

Polák’s theorem in [15], we get

T
∗

G

G

T
∗

T
∗

· · ·

∨

T
∗

T
∗

G

G

T
∗

· · ·

=

T
∗

G

G

G

T
∗

· · ·

and evaluating

I2 ∨ I2 = GK ∩ STrTl ∩ STlTr = O ∩ I3 ∩ I3 = O ∩R

we arrive at RO = R∩O. (For the notation VK , VTl , VTr , see [11].) �

Beside RO, we sometimes (when no ambiguity occurs) write the meet of a finite

number of varieties by juxtaposition.

If R is an equivalence relation on L(CR) all of whose classes are intervals for

V ∈ L(CR), we write the R-class of V as VR = [VR,VR].
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3. Lattice Ψ

In [5] we constructed the sublattice Σ of L(CR) generated by {CS, I2, I2,H3,H3}.

We extended this lattice in [9] to the lattice Ψ by adding two more generators I3
and I3. This entailed adjoining the interval [R, I3 ∨ I3]. See Diagram 1.

LRO = I2

H3

I3

LG

LNO = H2

CS

H3I3O

H3I3

I3H4O
L

I3H4I
K

3

H4I4I
K

3

G

SG

ReG

ONBG

NBG

RO

ROL

R

FOL

FRK

I3 ∨ I3

RG

H2 = RNO

H3I3O

H3I3

I3H4O
L

I3H4I
K

3

H4I4I
K

3

I2 = RRO

H3

I3

Σ

Diagram 1. The lattice Ψ.

On the other hand, in [6] we determined the classes of the kernel, trace, local and

core relations relative to Σ. The subject of the present paper is the determination of

the classes of these relations for all varieties in Ψ. In view of the results in [5], which

contains the information on Σ, it remains to determine the classes of these relations

for varieties in Ψ \ Σ.
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The essential difference between Σ and Ψ is that the former stays within OL while

the rest of Ψ is not contained in OL. This is a crucial distinction since within OL we

have enough information needed in the proofs of statements we want to establish, but

outside of OL, in the present state of the art, this is no longer the case. Nevertheless,

all the varieties in Ψ \ Σ, except for R and I3 ∨ I3, are joins of a variety in Σ and

a variety in Ψ \ Σ. If we extend the lattice Ψ for another block like we extended Σ

to Ψ, even this useful property would be lost.

4. Kernel relation

We can say loosely that the kernel relation K on L(CR) is the varietal version of

the kernel relation on lattices of congruences of (completely) regular semigroups. Yet

the kernel relation on L(CR) admits an intrinsic characterization, see [3], Theorem 1.

The results of the papers [11] and [7] for K indicate that we can expect little help in

applying the general theory to special cases.

Theorem 4.1. The intervals

[G,O], [CS,OL], [R,RK ], [I3, I
K

3 ], [I3, I
K

3 ], [I3 ∨ I3, I
K

3 ∨ IK

3 ]

constitute the complete set of K-classes of varieties in Ψ.

P r o o f. The fact that the first two intervals are K-classes can be deduced

from [14], Theorem 2. Recall that R = I3 ∩ I3. By [7], Theorem 10.2, we have

I3 = IT
3 and I3 = IT

3 , which by [11], Proposition 7.10 implies thatR = RT . Trivially

R ⊇ ReB, so that the varietal version of [1], Proposition 8.2 yields R = RK . Hence

the third interval is a K-class. Similarly I3 = (I3)K and I3 = (I3)K which implies

that the fourth and the fifth intervals are K-classes. Now [2], Theorem 11 implies

that also the sixth interval is a K-class.

From direct inspection of Diagram 1, we draw the following conclusions. Up to

R∩O, all varieties are contained in the interval [G,O], and then up to FOL, all

the varieties are contained in [CS,OL]. The interval [R,FRK ] is contained in the

interval [R,RK ], while H4I4IK
3 ∈ [I3, IK

3 ], and similarly for its dual. Therefore the

above intervals cover all of Ψ. �

We can now easily derive

Corollary 4.2. The intervals

[G,RO], [CS,FOL], [R,FRK ], [I3,H4I4I
K

3 ], [I3,H4I4I
K

3 ], {I3 ∨ I3}

constitute the complete set of restrictions of K-classes to Ψ. See Diagram 2.
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I2

H3

I3

LG

H2

CS

H3I3O

H3I3

I3H4O
K

I3H4I
K

3

H4I4I
K

3

G

SG

ReG

ONBG

NBG

RO

ROL

R

FOL

FRK

I3 ∨ I3

RG

H2

H3I3O

H3I3

I2H4O
L

I3H4I
K

3

H4I4I
K

3

I2

H3

I3

Diagram 2. The relation T restricted to the lattice Ψ (Corollary 5.2).

P r o o f. This follows easily from Theorem 4.1 by intersecting K-classes with Ψ.

�

We mention only that given a basis for V , it is known how to construct a ba-

sis for VK , but it is not known how to construct a basis for VK in general. For

information on the K-relation, consult [11] and [7].

5. Trace relation

We can say loosely that the trace relation T on L(CR) is a varietal version of the

trace relation on lattices of congruences of (completely) regular semigroups. Yet the

trace relation on L(CR) admits an intrinsic characterization, see [11], Corollary 6.3.
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The results of this paper as well as the work [7] make it possible to establish all the

results in this section.

Theorem 5.1. The intervals

{[V ,G ◦ V ] : V ∈ L(NB)},(5.1)

[RO,R], [FOL,F ], [I3 ∨ I3, I4 ∩ I4],(5.2)

and the intervals

{I2}, {H3}, {I3},(5.3)

[H3I3O,H3I3], [I3H4O
L, I3H4], [H4I4I

K

3 ,H4I4](5.4)

and their duals constitute the complete set of T-classes of varieties in Ψ.

P r o o f. We will apply [7], Theorem 10.2. Part (5.1) follows from part (i) of this

reference, while (5.3) follows from part (ii). The third part of this reference asserts

that

(5.5) [Pm ∨ Q̄n,Pm+1 ∩ Qn+1], Pm, Q̄n ∈ Γ

is a T-class. Since Ψ is a lattice, we have R∩O = I2∨I2 and R = I3∩I3, and thus

by (5.5), we deduce that the first interval in (5.2) is a T-class. Similarly FOL =

H3∨H3 and F = H4∩H4, which yields that the second interval in (5.2) is a T-class.

The fact that the third interval in (5.2) is a T-class follows directly from (5.5).

Since Ψ is a lattice, we get

H3I3O = H2 ∨ I2, I3H4O
L = H3 ∨ I2, H4I4I

K

3 = H3 ∨ I3,

which in view of (5.5) yields that the three intervals in (5.4) are T-classes.

A simple inspection of Diagram 1 will show that we have covered all varieties

in Ψ. �

We can now easily derive the restriction of the T-relation to Ψ.

Corollary 5.2. The intervals

{G}, [ReG, CS], {SG}, [ONBG,NBG], [RO,R], [FOL,FRK ], {I3 ∨ I3},

and the intervals

{LG}, {H2}, {I2}, [H3I3O,H3I3], {H3}, [I3H4O
L, I3H4I

K

3 ], {I3}, {H4I4I
K

3 }

and their duals constitute the complete set of restrictions of T-classes to Ψ. See

Diagram 2.
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P r o o f. This follows easily by intersecting the T-classes of Theorem 5.1 with Ψ.

�

For information on the T-relation, see [11] and [7].

6. Local relation

The relation L is defined directly on L(CR) by

U L V ⇔ U ∩M = V ∩M,

where M denotes the class of all completely regular monoids. It is an equivalence

relation all of whose classes are intervals. For any V ∈ L(CR), its L-class is denoted

by VL = [VL,VL].

There is enough knowledge about the L-relation so that, in the present case, we

can answer all but one relevant question. The main result here has the following

form:

Theorem 6.1. The intervals

[G, CS], [SG,NBG], [I2,H3], [RO,FOL], [I2,H3],(6.1)

[R,F ], [I3,H4] [I3,H4], [I3 ∨ I3, (I3 ∨ I3)
L]

constitute the complete set of L-classes of the varieties in Ψ.

P r o o f. By [6], Theorem 4.1, the intervals in (6.1) form the complete set of

L-classes of the varieties in Σ. Next we consider the varieties in Ψ \ Σ by showing

first that the above intervals are L-classes.

Case [R,F ]: By [12], Theorems 5.1 and 5.3 and [7], Theorem 12.3, we have

FL = (H4 ∩H4)L = (H4)L ∩ (H4)L = I3 ∩ I3 = R.

By [13], Proposition II.7.3 (ii) and the last reference, we get

RL = (I3 ∩ I3)
L = (I3)

L ∩ (I3)
L = H4 ∩H4 = F .

Notice that this interval contains the varieties I3H4, FRK , I3H4.

Case [I3,H4]: Using the same references, we obtain (H4)L = I3 and IL
3 = H4.

Note that this interval contains the variety I3H4. The case [I3,H4] is dual.

Case [I3 ∨ I3, (I3 ∨ I3)
L]: Again using the same references, we get

(I3 ∨ I3)L = (I3)L ∨ (I3)L = I3 ∨ I3.

This exhausts all the possibilities. �

232



Observe that we have not determined (I3 ∨ I3)
L. We now easily derive

Corollary 6.2. The intervals in (6.1) and

[R,FRK ], [I3,H4I4I
K

3 ], [I3,H4I4I
K

3 ], {I3 ∨ I3}

constitute the complete set of restrictions of L-classes to Ψ. See Diagram 3.

I2

H3

I3

LG

H2

CS

H3I3O

H3I3

I3H4O
L

I3H4I
K

3

H4I4I
K

3

G

SG

ReG

ONBG

NBG

RO

ROL

R

FOL

FRK

I3 ∨ I3

RG

H2

H3I3O

H3I3

I2H4O
L

I3H4I
K

3

H4I4I
K

3

I2

H3

I3

Diagram 3. The relation L restricted to the lattice Ψ (Corollary 6.2).

P r o o f. This follows easily from Theorem 6.1. �

For information on the L-relation, consult [12].
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7. Core relation

The relation C is defined directly on L(CR) by

U C V ⇔ U ∩ I = V ∩ I,

where I denotes the class of all idempotent generated completely regular semigroups.

We start with some citations from literature.

Fa c t 7.1. The following statements hold:

(i) The mappings V 7→ VC and V 7→ VC are ∨- and ∩-endomorphisms of L(CR),

respectively.

(ii) For any canonical variety V , we have VC = V .

(iii) For the upper operators, we have KC = CK and TC = CT .

P r o o f. (i) The first assertion follows from [13], Lemma I.2.2 and the second is

proved in [13], Proposition II.7.6 (ii).

(ii) This was proved in [7], Theorem 13.2.

(iii) This forms part of [10], Lemmas 5.3 and 5.5. �

Similarly like in Lemma 2.1, we have

Lemma 7.2. RBG = R∩ BG.

P r o o f. By [5], Theorem 5.1 (iv), we obtain R = [(axya)0 = (axa0ya)0], and

by [13], Proposition V.5.4, that RBG = [(axya)0 = (axaya)0]. Hence

RBG ⊆ R ∩ BG ⊆ RBG

and the equality prevails. �

Lemma 7.3. RC ⊆ RBG ⊆ R = RC .

P r o o f. By Fact 7.1 (i) and (ii), we get

RC = (I3 ∩ I3)
C = IC

3 ∩ IC

3 = I3 ∩ I3 = R.

By Lemma 7.2 and Fact 7.1 (i), we obtain

RBGC = (R∩ BG)C = RC ∩ BGC = R∩ BGC

where by Fact 7.1 (iii), we have

BGC = BTC = BCT = OT
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so that RBGC = R∩OT . Now using the notation of [4], and the varietal version

of [13], Corollary VII.4.4 (ii) and [4], Proposition 4.1, we obtain

R∩OT = I3 ∩ I3 ∩ OT = ITl

2 ∩ ITr

2 ∩ OTl ∩ OTr = ITl

2 ∩ ITr

2 = I3 ∩ I3 = R

since I2, I2 ⊆ O. Therefore RBGC = R = RC whence RBGCR, and consequently

RC ⊆ RBG. Trivially RBG ⊆ R. �

Recall [13], Notation V.4.1 and Lemma V.4.2 concerning L∗.

Lemma 7.4. RBGC = RBG.

P r o o f. By [13], Proposition V.4.4, RBG consists precisely of completely reg-

ular semigroups in which both Green’s relations L and R are congruences. In [8],

Theorem 6.1, it was shown that L∗

C
= L∗, where L∗ is the variety consisting of

all completely regular semigroups in which L is a congruence. Letting R∗ be its

dual, we get R∗

C
= R∗. The combined proof of these two statements implies that

(L∗∩R∗)C = L∗∩R∗. By the first reference, we conclude that L∗ ∩R∗ = RBG and

thus RBGC = RBG. �

Corollary 7.5. We have that [RBG,R] is a C-class.

P r o o f. By Lemma 7.3, we have RBGCR = RC, which by Lemma 7.4 yields

that RBG = RC . �

Next using the notation of [4], we have

Lemma 7.6. Let U , V , W be canonical varieties. Then (UVWK)C = UVWK ,

(FRK)C = FRK .

P r o o f. By Fact 7.1, we have (UVWK)C = UCVCWKC = UVWCK = UVWK .

Similarly (FRK)C = FCRKC = (H4 ∩H4)
CRCK = (HC

4 ∩HC
4 )R

K . �

Next we use Polák’s theorem to compute some joins, see [15].

Lemma 7.7. The join L∗ ∨H3. The ladders are

T
∗

T
∗

L∗

L∗

T

T

T
∗

· · ·

∨

T
∗

L
∗

L
∗

CS

CS

T

T
∗

· · ·

=

T
∗

L
∗

L∗

L∗

CS

T

T
∗

· · ·
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and evaluating with the help of [8], Lemma 5.1 (ii) and (iii) and [4], Proposition 4.1,

we obtain

L∗ ∨H3 = L∗K ∩ CSKTl ∩ LNBTrTl ∩ T KTlTr ∩ STlTrTl ∩ STrTlTr

= (I3 ∩ BTl)K ∩ OLTl ∩H4 ∩ BTlTr ∩ I4 ∩ I4

= Ik

3 ∩ BTlK ∩ OLTl ∩H4 ∩ BTlTr ∩ I4

= H4I4I
K

3 OLTlBTlKBTlTr .

Lemma 7.8. The join H3 ∨RBG. The ladders are

T
∗

T
∗

CS

CS

R
∗

R
∗

T
∗

· · ·

∨

T
∗

T

RBG

T

T
∗

· · ·

=

T
∗

T
∗

CS

RBG

T

R
∗

T
∗

· · ·

and evaluating with the help of Lemma 7.2, we obtain

RBGK ∩ CSKTr ∩ T KTl ∩ STrTl ∩RNBTlTr

= (R∩ BG)K ∩ OLTr ∩ BTl ∩ I3 ∩H4 = RKBGKOLTrBTlI3H4.

Lemma 7.9. The join H3∨H3∨RBG. This is the join of the two preceding ones.

Hence its ladder is

T
∗

L
∗

CS

RBG

CS

R
∗

T
∗

· · ·

and its evaluation is

RBGK ∩ CSKTr ∩ CSKTl ∩ LNBTrTl ∩RNBTlTr

= RKBGKOLTH4H4 = RKBGKOLTF .
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Lemma 7.10. For any V ∈ Ψ we have VC = V .

P r o o f. This follows from [6], Lemma 5.8 and Fact 7.1. �

We are finally ready for the main result of this section.

Theorem 7.11. The intervals

{[V ∩ B,V] : V ∈ [G,RO]}, {CS}, {NBG}, [ROL(BG),ROL], {FOL},

{FOL}, [RBG,R], [RKRGKOLTrF ,RKF ], [L∗ ∨R∗, (I3 ∨ I3)
C ],

and the intervals

[H3I3B
Tr ,H3I3], {H3}, [I3H4O

LBTl , I3H4O
L], [L∗, I3],

[H4I4I
K

3 OLTlBTlKBTlTr ,H4I4I
K

3 ], [RKBGKOLTrBTl , I3H4I3]

and their duals form the set of C-classes of all varieties in Ψ.

P r o o f. In the statement of the theorem, we have used the notation of the

general form VTl and VTr . See [11] for the treatment of Tl- and Tr-relations, and [4],

Proposition 4.1.

In view of the results in [6], Section 5, Corollary 7.5 and Lemma 7.10, we may

parametrize these C-classes by their upper ends as in Diagram 1. By duality, it

suffices to treat the following cases.

Case I3: In [8], Theorem 6.1, it is proved that L∗

C
= L∗ and L∗C = I3. Hence

[L∗, I3] is a C-class.

Case H4I4IK
3 : From Diagram 1, we know that I3∨H3 = H4I4IK

3 . By Fact 7.1 (i),

we know that

(I3 ∨H3)C = (I3)C ∨ (H3)C = L∗ ∨H3.

This join was computed in Lemma 7.7.

Case I3H4IK
3 : By Fact 7.1 (i) and Corollary 7.5, we obtain

(I3H4I
K

3 )C = (H3 ∨R)C = (H3)C ∨RC = H3 ∨RBG.

This join was computed in Lemma 7.8.

Case FRK : From Diagram 1, we know that FRK = I3H4I4 ∨ I3H4IK
4 . By

Fact 7.1 (i), we get

(FRK)C = (I3H4I
K

4 )C ∨ (I3H4I
K

4 )C .

By the preceding case and its dual, it follows that (FRK)C = H3 ∨H3 ∨RBG. This

join was computed in Lemma 7.9.
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Case I3 ∨ I3: By Fact 7.1 (i), and Case I3 above and its dual, we have

(I3 ∨ I3)C = (I3)C ∨ (I3)C = L∗ ∨R∗.

�

The values of I3 ∨ I3, (I3 ∨ I3)
C , L∗ ∨R∗ remain undetermined.

Corollary 7.12. We have C|Ψ = ε.

P r o o f. Except for the variety I3 ∨I3, this follows easily by intersecting the C-

classes in Theorem 7.11 with Ψ. See Diagram 1. Since (I3 ∨ I3)C = L∗ ∨R∗, which

is evidently different from (H4I4I
K
3 )C and its dual, I3 ∨ I3 cannot be C-related to

any other variety in Diagram 1. �

8. Lacunae

The completion of Theorems 6.1 and 7.11 depends on the computation of a basis

of identities for I3 ∨ I3 and L∗ ∨R∗ as well as determination of

(8.1) (I3 ∨ I3)
L, (I3 ∨ I3)

C .

The ladders of the first of these are

T
∗

T
∗

I3

I3

G

G

T
∗

· · ·

∨

T
∗

G

G

I3

I3

T
∗

T
∗

· · ·

=

T
∗

G

I3

I3 ∨ I3

I3

G

T
∗

· · ·

and their evaluation is

(I3 ∨ I3)
K ∩ IKTr

3 ∩ IKTl

3 ∩ GKTrTl ∩ GKTlTr ∩ STrTlTr ∩ STlTrTl .

First (I3 ∨ I3)
K = IK ∨ IK

3 in which we know nothing about I
K
3 and IK

3 .

A similar discussion is valid for the join L∗ ∨R∗. Indeed, using [8], Theorem 6.1,

the ladders are
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T
∗

T
∗

L∗

L∗

T

T

T
∗

· · ·

∨

T
∗

T

G

R∗

T

T
∗

T
∗

· · ·

=

T
∗

T

L∗

L∗ ∨R∗

R∗

T

T
∗

· · ·

and the obstacle begins already with L∗K andR∗K , the same way as for IK
3 and I

K
3 .

Note that by [8], Lemma 5.1 (iii) and (ii), we have L∗ = I3 ∩ BTl .

However, if we had a basis of identities for I3 ∨ I3, we could use [13], Proposi-

tion II.7.7 (iii) to construct a basis for (I2 ∨ I3)
L. The formula

(I3 ∨ I3)
C = {S ∈ CS : C(S) ∈ I3 ∨ I3}

is hardly helpful no matter what the basis for I3 ∨ I3 may be. We may say that

Polák’s theorem, at least within the present knowledge of the kernel relation, fails to

help.

For the cases (I3 ∨ I3)
L and (I3 ∨ I3)

C , we may examine the instances of I2 ∨ I2

and H3 ∨H3 instead of I3 and I3.

Lemma 8.1. The following statements hold.

(i) (I2 ∨ I2)
L = (I2)L ∨ (I2)

L = H3 ∨H3 = FOL.

(ii) (I2 ∨ I2)
C = (I2)C ∨ (I2)

C = I2 ∨ I2 = RO.

(iii) (H3 ∨H3)
L = (H3)

L ∨ (H3)
L = H3 ∨H3 = FOL.

(iv) (H3 ∨H3)
C = (H3)

C ∨ (H3)
C = H3 ∨H3 = FOC .

P r o o f. (i) According to [7], Theorem 12.3, we have (I2)L = H3 and

(I2)
L = H3. This proves the second equality sign. The third one forms part of [5],

Theorem 5.4 (v). By [5], Theorem 5.4 (iii), we have I2 ∨ I2 = RO. By Lemma 2.1

and [13], Proposition II.7.3 (ii), and the first reference of this proof, we get

(RO)L = (R ∩O)L = RL ∩ OL = (I3 ∩ I3)
L ∩OL

= IL

3 ∩ IL

3 ∩ OL = H4 ∩H4 ∩ OL = FOL

which yields (I2 ∨ I2)
L = FOL.

(ii) By the last references above, Fact 7.1 (i)–(ii), and Lemma 7.2, we get

(I2 ∨ I2)
C = (RO)C = (R∩O)C = RC ∩ OC = R∩ GKC

= R∩ GCK = R∩O = RO

and (I2 ∨ I2)
C = I2 ∨ I2 = RO. �
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The argument here for parts (iii) and (iv) is mutatis mutandis essentially the same

as in the proof of parts (i) and (ii) and is left to the assiduous reader. The guess

what happens in (I3 ∨ I3)
L and (I3 ∨ I3)

C is now obvious.

If we had a basis of I3 ∨I3, we could use [13], Proposition II.7.3 (iii) to get a basis

of (I3 ∨ I3)
L, thereby solving the first part of our problem.
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