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1. Introduction and notation

Throughout this paper X and Y denote real Banach spaces, and E and F denote

real Banach lattices. BX is the closed unit ball of X and sol(A) denotes the solid hull

of a subset A of a Banach lattice. We use the term operator between two Banach

spaces to mean a bounded linear mapping. Let us recall some notions and results

from [2] and [7]. E is called a KB-space (Kantorovich-Banach), if every increasing

norm bounded sequence of E+ is norm convergent. Note that every KB-space has

order continuous norm. A nonempty bounded subset A of E is said to be L-weakly

compact if lim ‖xn‖ = 0 for every disjoint sequence (xn) contained in the solid hull

of A. Note that every L-weakly compact subset A ⊂ E is relatively weakly compact

(see [7], Proposition 3.6.5).

Recall from [3] that a subset A of E is called b-order bounded if it is order bounded

in the topological bidual E′′. Note that every order bounded subset of E is b-order

bounded, however, the converse is not true in general. But a Banach lattice E is said
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to have property (b) if each subset A of E is order bounded whenever it is b-order

bounded. Note that every topological dual of a Banach lattice has property (b).

Based on this concept, the class of b-weakly compact operators is defined in [3].

In fact, an operator T from a Banach lattice E into a Banach space Y is called b-

weakly compact if it maps each b-order bounded subset of E into a relatively weakly

compact subset of Y . The space of b-weakly compact operators is bigger than the

class of weakly compact operators, but smaller than the class of order weakly compact

operators, which was introduced by Dodds in [5]. Also, an operator T : E → F is

called b-order bounded if it maps b-order bounded subsets of E into b-order bounded

subsets of F .

The classes of L-weakly and M-weakly compact operators were introduced by

Meyer-Nieberg (see [6]). An operator T from X into F is called L-weakly compact if

T (BX) is an L-weakly compact subset of F . An operator T from E into Y is called

M-weakly compact if limT (xn) = 0 holds for every norm bounded disjoint sequence

(xn) in E.

We introduce new classes of b-L-weakly and order M-weakly compact operators.

An operator T from a Banach lattice E into a Banach lattice F is called b-L-weakly

compact if it maps b-order bounded subsets of E into L-weakly compact subsets

of F , and an operator T from a Banach lattice E into a Banach lattice F is called

order M-weakly compact if for every disjoint sequence (xn) in BE and every order

bounded sequence (fn) of F
′ we have fn(T (xn)) → 0.

Note that the class of b-L-weakly compact operators contains strictly that of

L-weakly compact operators, and the class of order M-weakly compact operators

contains strictly that of M-weakly compact operators. On the other hand, it is easy

to see that every b-L-weakly compact operator is b-weakly compact but the converse

is false in general. We begin by establishing a sequential characterization of b-L-

weakly compact operators. As consequences, we give some interesting results. We

know that the classes of L-weakly and M-weakly compact operators are in duality

with each other (an operator T , between two Banach lattices, is L-weakly compact

(or M-weakly compact) if and only if its adjoint T ′ is M-weakly compact (or L-weakly

compact), see [7], Proposition 3.6.11). As we shall see, a similar result for the classes

of b-L-weakly and order M-weakly compact operators are proved. Finally, we close

this paper by presenting a necessary and sufficient condition on which every b-order

bounded operator is b-L-weakly (or order M-weakly) compact.

In what follows:

⊲ L(X,Y ) denotes the space of all operators from X into Y ,

⊲ LW (X,F ) denotes the space of all L-weakly compact operators from X into F ,

⊲ MW (E, Y ) denotes the space of all M-weakly compact operators from E into Y ,

⊲ bLW (E,F ) denotes the space of all b-L-weakly compact operators from E into F ,
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⊲ oMW (E,F ) denotes the space of all order M-weakly compact operators from E

into F .

For the theory of Banach lattices and operators, we refer the reader to the mono-

graphs [2], [7], [8].

2. Main results

We start by the following definitions.

Definition 2.1. An operator T from E into F is called b-L-weakly compact if

it maps b-order bounded subsets of E into L-weakly compact subsets of F .

Definition 2.2. An operator T from E into F is called order M-weakly compact

if for every disjoint sequence (xn) in BE and every order bounded sequence (fn) of F
′,

we have fn(T (xn)) → 0.

R em a r k 2.1. Note that as the topological dual E′ has always the property (b),

in the previous definition one can replace “every order bounded sequence (fn)” with

“every b-order bounded sequence (fn)”.

Proposition 2.1. The following assertions are equivalent:

(1) The identity operator IdE : E → E is b-L-weakly compact.

(2) Every b-order bounded subset of E is L-weakly compact.

(3) E is a KB-space.

P r o o f. (1) ⇔ (2): The proof is obvious.

(2) ⇒ (3): According to Proposition 2.8 and Proposition 2.10 of [3], it suffices to

show that each b-order bounded disjoint sequence of E is norm convergent to zero.

Given such a sequence (xn) of E, the set A = {xn : n ∈ N} is b-order bounded, and

so by (2) A is L-weakly compact. Thus ‖xn‖ → 0.

(3) ⇒ (2): Let A be a b-order bounded subset of E and (xn) a disjoint sequence

in the solid hull of A. Note that the sequence (xn) is b-order bounded. In fact, pick

some 0 6 x′′ ∈ E′′ such that |x| 6 x′′ for all x ∈ A. |xn| 6 |yn| for some yn ∈ A and

hence |xn| 6 |yn| 6 x′′. So, |xn| 6 x′′ for all n ∈ N, i.e. (xn) is b-order bounded.

Then, by Proposition 2.8 and Proposition 2.10 of [3], we have ‖xn‖ → 0 and hence A

is L-weakly compact. �

R em a r k 2.2. Clearly, every L-weakly compact operator is b-L-weakly compact

(it suffices to note that every b-order bounded subset of E is norm bounded), but the

converse is not true in general. For instance, consider the operator Idℓ1 : ℓ1 → ℓ1.

Since ℓ1 is a KB-space, Idℓ1 is b-L-weakly compact. On the other hand, Bℓ1 is not
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relatively weakly compact and therefore is not L-weakly compact. Hence Idℓ1 is not

L-weakly compact.

On the other hand, it is easy to see that every b-L-weakly compact operator is b-

weakly compact (it suffices to note that every L-weakly compact subset is relatively

weakly compact). The converse, however, need not be true. For instance, consider

the operator T : ℓ1 → ℓ∞ defined by

∀ (αn) ∈ ℓ1, T ((αn)) =

( ∞
∑

n=1

αn

)

(1, 1, 1, . . .).

Clearly, T is a compact operator (it has rank one) and hence T is b-weakly compact.

Let e = (1/n2)n∈N∗ . The sequence (en) of standard unit vectors is a disjoint

sequence in the solid hull of T [0, e], |en| 6 T (e). From ‖en‖ = 1 9 0 we see that T

fails to be b-L-weakly compact.

Clearly, every M-weakly compact operator is order M-weakly compact (for every

sequence (yn) of F , if ‖yn‖ → 0, then fn(yn) → 0 for every order bounded sequence

(fn) of F
′), but the converse is not true in general. For instance, consider the

operator Idc0 . Since ℓ1 = c0
′ is a KB-space, Idc0 is order M-weakly compact (see

Corollary 2.2). And since Idℓ1 = Id′

c0
is not L-weakly compact, Idc0 is not M-weakly

compact.

The following lemmas are used throughout this paper.

Lemma 2.1 ([2], Theorem 5.63). For any two nonempty bounded sets A ⊂ E

and B ⊂ E′, the following statements are equivalent:

(1) Every disjoint sequence in the solid hull of A converges uniformly to zero on B.

(2) Every disjoint sequence in the solid hull of B converges uniformly to zero on A.

Lemma 2.2. For every nonempty bounded subset A ⊂ E, the following assertions

are equivalent:

(1) A is L-weakly compact.

(2) fn(xn) → 0 for every sequence (xn) of A and every disjoint sequence (fn) of BE′ .

P r o o f. Let A be a nonempty bounded subset of E. A is L-weakly compact

if and only if ‖xn‖ → 0 holds for every disjoint sequence (xn) of sol(A). Thus A

is L-weakly compact if and only if every disjoint sequence (xn) of sol(A) converges

uniformly to zero on BE′ (i.e. sup{|f(xn)| : f ∈ BE′} → 0). By Lemma 2.1, this is

equivalent to saying that every disjoint sequence (fn) of BE′ converges uniformly to

zero on A (i.e. sup{|fn(x)| : x ∈ A} → 0).
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Let us now prove the equivalence

sup{|fn(x)| : x ∈ A} → 0 if and only if for each sequence (xn) of A, fn(xn) → 0.

Indeed, if sup{|fn(x)| : x ∈ A} → 0, then for each sequence (xn) of A

|fn(xn)| 6 sup{|fn(x)| : x ∈ A} → 0.

Therefore fn(xn) → 0.

Conversely, assume that fn(xn) → 0 for each sequence (xn) of A. Assume by way

of contradiction that sup{|fn(x)| : x ∈ A} 9 0. Then there exist some ε > 0 and

a subsequence (fϕ(n)) of (fn) satisfying sup{|fϕ(n)(x)| : x ∈ A} > ε for all n ∈ N.

Thus for each n ∈ N, there exists some xϕ(n) ∈ A with |fϕ(n)(xϕ(n))| > ε, from our

hypothesis it follows that fϕ(n)(xϕ(n)) → 0, which is impossible, and the proof of the

lemma is finished. �

In a similar way we may prove the following result.

Lemma 2.3. For every nonempty bounded subset A ⊂ E′ the following assertions

are equivalent:

(1) A is L-weakly compact.

(2) fn(xn) → 0 for every sequence (fn) of A and every disjoint sequence (xn) of BE .

The following results give a sequential characterization of b-L-weakly compact

operators.

Theorem 2.1. For an operator T : E → F , the following statements are equiva-

lent:

(1) T is b-L-weakly compact.

(2) For every b-order bounded sequence (xn) of E and every disjoint sequence (fn)

of BF ′ we have fn(T (xn)) → 0.

(3) For every b-order bounded sequence (xn) of E and every disjoint sequence (fn)

of BF ′+ we have fn(T (xn)) → 0.

(4) For every b-order bounded sequence (xn) of E
+ and every disjoint sequence

(fn) of BF ′ we have fn(T (xn)) → 0.

(5) For every b-order bounded sequence (xn) of E
+ and every disjoint sequence

(fn) of BF ′+ we have fn(T (xn)) → 0.
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P r o o f. (1) ⇔ (2): Consider an operator T : E → F . T is b-L-weakly compact

if and only if for every b-order bounded subset A ⊂ E, T (A) is L-weakly compact.

By Lemma 2.2, this is equivalent to saying that for every b-order bounded subset

A ⊂ X , fn(T (xn)) → 0 for every sequence (xn) of A and every disjoint sequence

(fn) of BF ′ .

To conclude, it is sufficient to note the equivalence of the following assertions:

(i) For every b-order bounded subset A ⊂ E, fn(T (xn)) → 0 for every sequence

(xn) of A and every disjoint sequence (fn) of BF ′ .

(ii) fn(T (xn)) → 0 for every b-order bounded sequence (xn) of E and every disjoint

sequence (fn) of BF ′ .

(i)⇒ (ii): Let (xn) be a b-order bounded sequence of E. It is sufficient to apply (i)

to the set A = {xn : n ∈ N}.

(ii) ⇒ (i): Let A be a b-order bounded subset of E. It is sufficient to note that

every sequence (xn) of A is b-order bounded.

The proof of the equivalence of (1) and (2) is finished.

(2) ⇔ (3) ⇔ (4) ⇔ (5): The proof is obvious. �

In the same way we prove the following result:

Theorem 2.2. For an operator ϕ : E′ → F ′ the following statements are equiv-

alent:

(1) ϕ is b-L-weakly compact.

(2) ϕ(fn)(yn) → 0 for every order bounded sequence (fn) of E
′ and every disjoint

sequence (yn) of BF .

(3) ϕ(fn)(yn) → 0 for every order bounded sequence (fn) of E
′+ and every disjoint

sequence (yn) of BF+ .

As a consequence, we obtain the following characterizations of KB-spaces.

Corollary 2.1. For a Banach lattice E the following statements are equivalent:

(1) IdE ∈ bLW (E).

(2) E is a KB-space.

(3) fn(xn) → 0 for every b-order bounded sequence (xn) of E and every disjoint

sequence (fn) of BE′ .

Corollary 2.2. For a Banach lattice E the following statements are equivalent:

(1) IdE′ ∈ bLW (E′).

(2) E′ is a KB-space.
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(3) fn(xn) → 0 for every order bounded sequence (fn) of E
′ and every disjoint

sequence (xn) of BE .

(4) IdE ∈ oMW (E).

Contrary to weakly compact operators (see [1]), we also deduce that the class of

b-L-weakly (or order M-weakly) compact operators satisfies the domination problem.

Corollary 2.3. Let S, T : E → F be two positive operators such that 0 6 S 6 T .

Then S is b-L-weakly compact (or order M-weakly compact) whenever T is one.

Proposition 2.2. Let E and F be two Banach lattices. Then:

(1) The set of all b-L-weakly compact operators from E to F is a closed vector

subspace of L(E,F ).

(2) The set of all order M-weakly compact operators from E to F is a closed vector

subspace of L(E,F ).

P r o o f. (1) Let T1, T2 ∈ bLW (E,F ), and α ∈ R. Let (xn) be a b-order bounded

sequence of E and (fn) a disjoint sequence of BF ′ . Since T1, T2 ∈ bLW (E,F ), it

follows from Theorem 2.1, that

fn((αT1 + T2)(xn)) = αfn(T1(xn)) + fn(T2(xn)) → 0.

Then αT1 + T2 ∈ bLW (E,F ). Thus bLW (E,F ) is a vector subspace of L(E,F ).

To see that it is also a closed vector subspace of L(E,F ), let T be in the closure

of bLW (E,F ). Let (xn) be a b-order bounded sequence of E and (fn) a disjoint

sequence of BF ′ . We have to show that fn(T (xn)) → 0. To this end, let ε > 0. Pick

a b-L-weakly compact operator S : E → F with ‖T −S‖ < ε and note that from the

inequalities

|fn(T (xn))| 6 |fn((T − S)(xn))|+ |fn(S(xn))|

6 ‖fn‖‖T − S‖‖(xn)‖+ |fn(S(xn))|

it follows that lim sup |fn(T (xn))| 6 ε‖(xn)‖.

Since ε is arbitrary, we see that fn(T (xn)) → 0 holds as desired.

(2) Clearly, oMW (E,F ) is a vector subspace of L(E,F ). To see that it is also a

closed vector subspace of L(E,F ), let T be in the closure of oMW (E,F ). Assume

that (xn) is a disjoint sequence of BE and (fn) an order bounded sequence of F
′. We

have to show that fn(T (xn)) → 0. To this end, let ε > 0. Pick an order M-weakly
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compact operator S : E → F with ‖T − S‖ < ε and note that from the inequalities

|fn(T (xn))| 6 |fn((T − S)(xn))|+ |fn(S(xn))|

6 ‖fn‖‖T − S‖‖xn‖+ |fn(S(xn))|

it follows that lim sup |fn(T (xn))| 6 ε‖fn‖ 6 ε‖(fn)‖.

Since ε is arbitrary, we see that fn(T (xn)) → 0 holds as desired. �

The classes of L-weakly and M-weakly compact operators are in duality with each

other. For the classes of b-L-weakly and order M-weakly compact operators, we have

the following result.

Theorem 2.3. Let E and F be two Banach lattices. Then the following state-

ments hold:

(1) An operator T : E → F is order M-weakly compact if and only if its adjoint T ′

is b-L-weakly compact.

(2) For an operator T : E → F , if its adjoint T ′ is order M-weakly compact then T

is b-L-weakly compact.

P r o o f. (1) Consider an operator T : E → F . By Theorem 2.2, T ′ is b-L-

weakly compact if and only if T ′(fn)(xn) → 0 for every order bounded sequence

(fn) of F
′ and every disjoint sequence (xn) of BE . This is equivalent to saying

that fn(T (xn)) → 0 for every order bounded sequence (fn) of F
′ and every disjoint

sequence (xn) of BE . In other words, T
′ : F ′ → E′ is b-L-weakly compact if and

only if T : E → F is order M-weakly compact.

(2) Let T : E → F be an operator such that T ′ is order M-weakly compact. Let

(xn) be a b-order bounded sequence of E and (fn) a disjoint sequence of BF ′ . Let

J : E → E′′ be the canonical embedding of E into E′′. Since T ′ : F ′ → E′ is

order M-weakly compact and the sequence (J(xn)) of E
′′ is order bounded, then

J(xn)(T
′(fn)) = fn(T (xn)) → 0. Hence T is b-L-weakly compact. �

R em a r k 2.3. However, in general:

T is b-L-weakly compact 8 T ′ is order M-weakly compact.

Indeed, the Banach lattice E = ℓ1(ℓ∞n ) is a KB-space whose bidual E′′ fails to have

an order continuous norm (see [7], page 95). Therefore the identity operator of E is

b-L-weakly compact, but Id′E = IdE′ is not order M-weakly compact.

We now present another characterization of KB-spaces.

Theorem 2.4. A Banach lattice F is a KB-space if and only if for every Banach

lattice E and b-order bounded operator T : E → F , T is b-L-weakly compact.
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P r o o f. If the hypothesis on F is true then taking E = F we see that the

identity on E is b-L-weakly compact and thus, by Proposition 2.1, F is a KB-space.

On the other hand, let T : E → F be a b-order bounded operator, and let A be

a b-order bounded subset of E. Since T is b-order bounded, T (A) ⊂ F is b-order

bounded. If F is a KB-space, then by Proposition 2.1, T (A) is L-weakly compact

and so T is b-L-weakly compact. �

Theorem 2.5. Let E and F be nonzero Banach lattices. Then the following

assertions are equivalent:

(1) Every b-order bounded operator T : E → F is order M-weakly compact.

(2) E′ is a KB-space.

P r o o f. (1) ⇒ (2): Assume by the way of contradiction that E′ is not a KB-

space. We have to construct a b-order bounded operator T : E → F which is not

order M-weakly compact. Since E′ is not a KB-space (i.e. the norm of E′ is not

order continuous), it follows from [2], Theorem 4.14, that there exists some f ∈ E′+

and there exists a disjoint sequence (fn) in [0, f ] which does not converge to zero in

norm. Pick some c ∈ F+ and g ∈ F ′+ such that g(c) = 1.

Now, we consider the positive operator T : E → F defined by T (x) = f(x)c for

every x ∈ E. T is b-order bounded, on the other hand, we claim that T is not order

M-weakly compact. By Theorem 2.3, it suffices to show that its adjoint T ′ : F ′ → E′

is not b-L-weakly compact. Note that T ′(ϕ) = ϕ(c)f for every ϕ ∈ F ′. In particular,

T ′(g) = g(c)f = f . So, f ∈ T ′([0, g]). From (fn) ⊂ [0, f ] it follows that (fn) is a

disjoint sequence in the solid hull of T ′([0, g]). Since (fn) is not norm convergent to

zero, then T ′ is not b-L-weakly compact. Hence T is not order M-weakly compact.

But this is in contradiction with our hypothesis (1). So, E′ is a KB-space.

(2) ⇒ (1): Let T : E → F be a b-order bounded operator. By [4], Proposition 1,

the adjoint operator T ′ : F ′ → E′ is order bounded, and hence it is b-order bounded.

Since E′ is a KB-space, it follows from Theorem 2.4 that T ′ is b-L-weakly compact

and so by Theorem 2.3 the operator T is order M-weakly compact. �
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