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Abstract. With the idea of normal family we study the uniqueness of meromorphic

functions f and g when fn(f (k))m − p and gn(g(k))m − p share two values, where p is
any nonzero polynomial. The result of this paper significantly improves and generalizes the
result due to A. Banerjee and S. Majumder (2018).
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1. Introduction, definitions and results

In this paper, by meromorphic functions we mean meromorphic functions in the

whole complex plane C. We adopt the standard notations of value distribution theory

(see [11]). Let T (r) = max{T (r, f), T (r, g)}. The notation S(r) denotes any quantity
satisfying S(r) = o(T (r)) as r → ∞, outside of a possible exceptional set of finite
linear measure. A meromorphic function a(z) is called a small function with respect

to f(z), provided that T (r, a) = S(r, f). We use the symbol ̺(f) to denote the order

of f .

Let f(z) and g(z) be two non-constant meromorphic functions. Let a(z) be a

small function with respect to both f(z) and g(z). We say that f(z) and g(z) share

a(z) CM (counting multiplicities) if the zeros of f(z) − a(z) and g(z) − a(z) have

the same locations and same multiplicities and we say that f(z) and g(z) share a(z)

IM (ignoring multiplicities) if the zeros of f(z)− a(z) and g(z)− a(z) have the same

locations but different multiplicities.

For the sake of simplicity, we use the notion (m)∗ defined by (m)∗ = m−1 whenm

is a positive integer and (m)∗ = [m] when m is not integer but positive rational.
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Let h be a meromorphic function in C. Then h is called a normal function if there

exists a positive real number M such that h#(z) 6M for all z ∈ C, where

h#(z) =
|h′(z)|

1 + |h(z)|2

denotes the spherical derivative of h.

Let F be a family of meromorphic functions in a domain D ⊂ C. We say that F
is normal in D if every sequence {fn}n ⊆ F contains a subsequence which converges
spherically and uniformly on compact subsets of D (see [20]).

The following theorem well known in value distribution theory was posed by Hay-

man and settled by several authors almost at the same time (see [4]–[7]).

Theorem A. Let f be a transcendental meromorphic function, n ∈ N. Then

fnf ′ = 1 has infinitely many solutions.

To investigate the uniqueness result corresponding to Theorem A, both Fang and

Hua in [9], Yang and Hua in [24] obtained the following result.

Theorem B. Let f and g be two non-constant entire (meromorphic) functions,

n ∈ N such that n > 6 (n > 11). If fnf ′ and gng′ share 1 CM, then either

f(z) = c1e
cz, g(z) = c2e

−cz, where c, c1, c2 ∈ C \ {0} satisfying 4(c1c2)n+1c2 = −1,

or f ≡ tg for t ∈ C \ {0} such that tn+1 = 1.

We say that a finite value z0 is called a fixed point of f if f(z0) = z0. Considering

the uniqueness question of entire or meromorphic functions having fixed points, Fang

and Qiu in [10] obtained the following result.

Theorem C. Let f and g be two non-constant meromorphic (entire) functions,

n ∈ N such that n > 11 (n > 6). If fn(z)f ′(z) − z and gn(z)g′(z) − z share 0

CM, then either f(z) = c1e
cz2

, g(z) = c2e
−cz2

, where c, c1, c2 ∈ C \ {0} satisfying
4(c1c2)

n+1c2 = −1, or f ≡ tg for t ∈ C \ {0} such that tn+1 = 1.

Gradually the research work in the above directions gained pace and today it has

become one of the most prominent branches of uniqueness theory. During the last

couple of years a large amount of research papers have been published by different

authors (see [5]–[10], [17]–[21], [24], [28], [30], [31]).

We recall the following result obtained by Xu, Yi and Zhang, see [21].
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Theorem D. Let f be a transcendental meromorphic function, k ∈ N, n ∈ N\{1}.
Then fnf (k) takes every finite nonzero value infinitely many times or has infinitely

many fixed points.

Recently, Cao and Zhang in [5] proved the following result.

Theorem E. Let f and g be two non-constant meromorphic functions whose

zeros are of multiplicities at least k+1, where k ∈ N such that 1 6 k 6 5 and n ∈ N

such that n > 10. If fnf (k) and gng(k) share 1 CM, f (k) and g(k) share 0 CM, f

and g share ∞ IM, then one of the following two conclusions holds:
(i) f ≡ tg, where t ∈ C \ {0} such that tn+1 = 1;

(ii) f(z) = c1e
cz, g(z) = c2e

−cz, where c, c1, c2 ∈ C\{0} such that (−1)k(c3c4)
n+1×

d2k = 1.

Regarding Theorem E the following questions are inevitable.

Q u e s t i o n 1. Can the lower bound of n in Theorem E be further reduced?

Q u e s t i o n 2. Can the condition “Let f and g be two non-constant meromor-

phic functions whose zeros are of multiplicities at least k + 1, k ∈ N” in Theorem E

be further weakened?

Q u e s t i o n 3. Does Theorem E hold for k > 6?

We now explain the notation of weighted sharing as introduced in [13], [14].

Definition 1 ([13], [14]). Let k ∈ N ∪ {0} ∪ {∞}. For a ∈ C ∪ {∞} we denote
by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity m is counted

m times if m 6 k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f , g

share the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k. If

a(z) is a small function with respect to f(z) and g(z), we define that f(z) and g(z)

share a(z) IM or a(z) CM or with weight l when f(z)− a(z) and g(z)− a(z) share

(0, 0) or (0,∞) or (0, l), respectively.

Keeping in mind the above questions, in 2018 Banerjee and Majumder obtained

the following result (see [3]).

Theorem F. Let f , g be two transcendental meromorphic functions whose zeros

are of multiplicities at least k, where k ∈ N and n ∈ N such that

n >
(k2 + 4k + 4

k

)
∗

.
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Let p be a nonzero polynomial such that either deg(p) 6 n − 1 or zeros of p are

of multiplicities at most n − 1. If fnf (k) − p and gng(k) − p share (0, k1), where

k1 = ((k + 2)/(n− k)) + 3, and f , g share ∞ IM and f (k), g(k) share 0 CM, then

f ≡ tg for t ∈ C \ {0} such that tn+1 = 1.

Regarding Theorem F, it is natural to ask the following questions which are the

motive of the present paper.

Q u e s t i o n 4. Can one remove the condition “deg(p) 6 n − 1 or zeros of p be

of multiplicities at most n− 1” in Theorem F?

Q u e s t i o n 5. What happens when “fn(f (k))m − p and gn(g(k))m − p” share

the value 0 CM, where p is a nonzero polynomial in Theorem F?

Q u e s t i o n 6. Can the lower bound of n be further reduced in Theorem F?

2. Main result

In this paper, taking the possible answers of the above questions into background

we obtain the following result which significantly improves and generalizes Theo-

rem F.

Theorem 1. Let f , g be two transcendental meromorphic functions having zeros

of multiplicities at least k, where k ∈ N and let m,n, k1 ∈ N such that

n >
k2 + 2mk + 6

k
.

Let p be a nonzero polynomial. If fn(f (k))m − p and gn(g(k))m − p share (0, k1),

where k1 = ((3 + (k − 1)m)/(n+m+ (m− 2)k − 1)) + 3, and f , g share ∞ IM and
f (k), g(k) share 0 CM, then f ≡ tg, where t ∈ C \ {0} such that tn+m = 1.

We now explain some definitions and notations which are used in the paper.

Definition 2 ([17]). Let p ∈ N and a ∈ C ∪ {∞}.
(i) N(r, a; f |> p) (N(r, a; f |> p)) denotes the counting function (reduced counting

function) of those a-points of f whose multiplicities are not less than p.

(ii) N(r, a; f |6 p) (N(r, a; f |6 p)) denotes the counting function (reduced counting

function) of those a-points of f whose multiplicities are not greater than p.

Definition 3. We denote by N(r, a; f |= k) the reduced counting function of

those a-points of f whose multiplicities are exactly k, where k ∈ N \ {1}.
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Definition 4 ([26]). For a ∈ C∪{∞} and p ∈ N we denote by Np(r, a; f) the sum

N(r, a; f) +N(r, a; f |> 2) + . . .+N(r, a; f |> p). Clearly N1(r, a; f) = N(r, a; f).

Definition 5 ([1]). Let f and g be two non-constant meromorphic functions such

that f and g share 1 IM. Let z0 be a 1-point of f with multiplicity p and a 1-point of g

with multiplicity q. We denote by NL(r, 1; f) the counting function of those 1-points

of f and g where p > q, by N
1)
E (r, 1; f) the counting function of those 1-points of f

and g where p = q = 1 and by N
(2

E (r, 1; f) the counting function of those 1-points

of f and g where p = q > 2; each point in these counting functions is counted only

once. In the same way we can define NL(r, 1; g), N
1)
E (r, 1; g), N

(2

E (r, 1; g).

Definition 6 ([14]). Let f , g share a value a IM. We denote by N∗(r, a; f, g) the

reduced counting function of those a-points of f whose multiplicities differ from the

multiplicities of the corresponding a-points of g. ClearlyN∗(r, a; f, g) ≡ N∗(r, a; g, f)

and N∗(r, a; f, g) = NL(r, a; f) +NL(r, a; g).

3. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Let F , G be two non-constant meromorphic functions. Henceforth, we shall denote

by H and V the following two functions:

(3.1) H =
(F ′′

F ′
− 2F ′

F − 1

)
−
(G′′

G′
− 2G′

G− 1

)

and

(3.2) V =
( F ′

F − 1
− F ′

F

)
−
( G′

G− 1
− G′

G

)
=

F ′

F (F − 1)
− G′

G(G− 1)
.

Lemma 1 ([29]). Let f be a non-constant meromorphic function and k, p ∈ N.

Then

Np(r, 0; f
(k)) 6 Np+k(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 2 ([16]). If N(r, 0; f (k) |f 6= 0) denotes the counting function of those

zeros of f (k) which are not the zeros of f , where a zero of f (k) is counted according

to its multiplicity, then

N(r, 0; f (k) |f 6= 0) 6 kN(r,∞; f) +N(r, 0; f |< k) + kN(r, 0; f |> k) + S(r, f).
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Lemma 3 ([11]). Suppose that f is a non-constant meromorphic function, k ∈
N \ {1}. If

N(r,∞, f) +N(r, 0; f) +N(r, 0; f (k)) = S
(
r,
f ′

f

)
,

then f(z) = eaz+b, where a, b ∈ C, a 6= 0.

Lemma 4 ([23]). Let f be a non-constant meromorphic function and P (f) =

a0+a1f+a2f
2+. . .+anf

n, where a0, a1, a2 . . . , an ∈ C (an 6= 0). Then T (r, P (f)) =

nT (r, f) +O(1).

Lemma 5 ([15]). Let f be a transcendental meromorphic function and α (α 6≡ 0,

α 6≡ ∞) be a small function of f . Then ψ = α(f)n(f (k))p is non-constant, where

k ∈ N, n ∈ N ∪ {0} and p ∈ N.

Lemma 6 ([25]). Let fj , j = 1, 2, 3 be meromorphic and f1 be non-constant.

Suppose that
3∑

j=1

fj ≡ 1

and
3∑

j=1

N(r, 0; fj) + 2

3∑

j=1

N(r,∞; fj) < (λ+ o(1))T1(r),

as r → ∞, r ∈ I, where I is a set of r ∈ (0,∞) with infinite linear measure, λ < 1

and T1(r) = max
16j63

T (r, fj). Then f2 ≡ 1 or f3 ≡ 1.

Lemma 7 ([25], Theorem 1.24). Let f be a non-constant meromorphic function

and let k ∈ N. Suppose that f (k) 6≡ 0. Then N(r, 0; f (k)) 6 N(r, 0; f)+kN(r,∞; f)+

S(r, f).

Lemma 8. Let f , g be two transcendental meromorphic functions, whose zeros

are of multiplicities at least k, where k ∈ N and F = fn(f (k))m/p, G = gn(g(k))m/p,

where p is a nonzero polynomial and m,n ∈ N such that n + m + (m − 2)k > 1.

Suppose H 6≡ 0. If F , G share (1, k1) and f , g share ∞ IM, where 0 6 k1 6 ∞, then

N(r,∞; f) 6
k + 1

k(n+m+ (m− 2)k − 1)
(T (r, f) + T (r, g))

+
1

n+m+ (m− 2)k − 1
N∗(r, 1;F,G) + S(r, f) + S(r, g).
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P r o o f. First we suppose∞ is a Picard exceptional value of both f and g. Then
the lemma follows immediately. Next we suppose ∞ is not a Picard exceptional

value of both f and g. We claim that V 6≡ 0. If possible, suppose V ≡ 0. Then by

integration we obtain

1− 1

F
≡ A

(
1− 1

G

)
, A ∈ C \ {0}.

Let z0 be a pole of f with multiplicity q and a pole of g with multiplicity r such

that p(z0) 6= 0. Then from the definition of F and G we have 1/F (z0) = 0 and

1/G(z0) = 0. So A = 1 and hence F ≡ G. Since H 6≡ 0, it follows that F 6≡ G.

Therefore we arrive at a contradiction. Hence V 6≡ 0. Alsom(r, V ) = S(r, f)+S(r, g).

Clearly z0 is a pole of F with multiplicity (n +m)q +mk and a pole of G with

multiplicity (n+m)r +mk. Clearly

F ′(z)

F (z)
(
F (z)− 1

) = O((z − z0)
(n+m)q+mk−1)

and
G′(z)

G(z)(G(z)− 1)
= O((z − z0)

(n+m)r+mk−1).

Consequently,

V (z) = O((z − z0)
(n+m)t+mk−1),

where t = min{q, r}. Since f and g share ∞ IM, from the definition of V it is clear
that z0 is a zero of V with multiplicity at least n+m+mk−1. So from the definition

of V and using Lemma 2 we have

(n+m+mk − 1)N(r,∞; f)

6 N(r, 0;V ) +O(log r) 6 T (r, V ) + S(r, f) + S(r, g)

6 N(r,∞;V ) + S(r, f) + S(r, g)

6 N(r, 0;F ) +N(r, 0;G) +N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 N(r, 0; f) +N(r, 0; f (k) | f 6= 0) +N(r, 0; g) +N(r, 0; g(k) | g 6= 0)

+N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 N(r, 0; f) + kN(r,∞; f) +Nk(r, 0; f) +N(r, 0; g) + kN(r,∞; g)

+Nk(r, 0; g) +N∗(r, 1;F,G) + S(r, f) + S(r, g)

6
k + 1

k
N(r, 0; f) +

k + 1

k
N(r, 0; g) + 2kN(r,∞; f)

+N∗(r, 1;F,G) + S(r, f) + S(r, g)

6
k + 1

k
(T (r, f) + T (r, g)) + 2kN(r,∞; f) +N∗(r, 1;F,G) + S(r, f) + S(r, g).

Hence the lemma follows. �
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Lemma 9. Let f be a non-constant meromorphic function and let F = fn(f (k))m,

where m,n, k ∈ N such that n > m. Then

(n−m)T (r, f) 6 T (r, F )−mN(r,∞; f)−N(r, 0; (f (k))m) + S(r, f).

P r o o f. Note that

N(r,∞;F ) = N(r,∞; fn) +N(r,∞; (f (k))m)

= N(r,∞; fn) +mN(r,∞; f) +mkN(r,∞; f) + S(r, f),

i.e.

N
(
r,∞; fn

)
= N(r,∞, F )−mN(r,∞; f)−mkN(r,∞, f) + S(r, f).

Also

m(r, fn) = m
(
r,

F

(f (k))m

)
6 m(r, F ) +m

(
r,

1

(f (k))m

)
+ S(r, f)

= m(r, F ) + T (r, (f (k))m)−N(r, 0; (f (k))m) + S(r, f)

= m(r, F ) +N(r,∞; (f (k))m) +m(r, (f (k))m)−N(r, 0; (f (k))m) + S(r, f)

6 m(r, F ) +mN(r,∞; f) +mkN(r,∞; f) +m
(
r,
(f (k))m

fm

)
+m(r, fm)

−N(r, 0; (f (k))m) + S(r, f)

= m(r, F ) +mT (r, f) +mkN(r,∞; f)−N(r, 0; (f (k))m) + S(r, f).

Now

nT (r, f) = N(r,∞; fn) +m(r, fn)

6 T (r, F ) +mT (r, f)−mN(r,∞; f)−N(r, 0; (f (k))m) + S(r, f),

i.e.

(n−m)T (r, f) 6 T (r, F )−mN(r,∞; f)−N(r, 0; (f (k))m) + S(r, f).

This completes the lemma. �

Lemma 10. Let f be a transcendental meromorphic function and let a(z)

(a(z) 6≡ 0, a(z) 6≡ ∞) be a small function of f . If n > m+1, then fn(f (k))m − a has

infinitely many zeros, where k,m, n ∈ N.
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P r o o f. Let F = fn(f (k))m. Now in view of Lemma 9 and the second funda-

mental theorem for small functions (see [22]) we get

(n−m)T (r, f) 6 T (r, F )−mN(r,∞; f)−N(r, 0; (f (k))m) + S(r, f)

6 N(r, 0;F ) +N(r,∞;F ) +N(r, a;F )−mN(r,∞; f)

−N(r, 0; (f (k))m) + (ε+ o(1))T (r, f)

6 N(r, 0; f) +N(r, 0; (f (k))m) +N(r,∞; f) +N(r, a;F )

−mN(r,∞; f)−N(r, 0; (f (k))m) + (ε+ o(1))T (r, f)

6 N(r, 0; f) +N(r, a;F ) + (ε+ o(1))T (r, f)

6 T (r, f) +N(r, a;F ) + (ε+ o(1))T (r, f)

for all ε > 0. Take ε < 1. Since n > m + 1, from the above one can easily say that

F − a has infinitely many zeros. This completes the lemma. �

R em a r k 7. By Lemma 10, one can easily say that fn(f (k))ma−1 − 1 has in-

finitely many zeros.

Lemma 11 ([12]). Let f and g be two non-constant meromorphic functions. Sup-

pose that f and g share 0 and ∞ CM, f (k) and g(k) share 0 CM for k = 1, 2, . . . , 6.

Then f and g satisfy one of the following cases:

(i) f ≡ tg, where t ∈ C \ {0},
(ii) f(z) = eaz+b, g(z) = ecz+d, where a, b, c and d ∈ C, (a, c 6= 0),

(iii) f(z) = a/(1− beα(z)), g(z) = a/(e−α(z) − b), where a, b ∈ C \ {0} and α is a
non-constant entire function,

(iv) f(z) = a(1− becz), g(z) = d(e−cz − b), where a, b, c and d ∈ C \ {0}.

Lemma 12. Let f and g be two transcendental meromorphic functions having

zeros of multiplicities at least k, where k ∈ N and let m,n ∈ N. Let f (k), g(k) share 0

CM and f , g share ∞ IM. If fn(f (k))m ≡ gn(g(k))m, then f ≡ tg, where t ∈ C \ {0}
such that tn+m = 1.

P r o o f. Suppose

(3.3) fn(f (k))m ≡ gn(g(k))m,

i.e.

(3.4)
fn

gn
≡

(
g(k)

)m
(
f (k)

)m .
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Since f and g share ∞ IM, it follows from (3.3) that f and g share ∞ CM and so
f (k) and g(k) share ∞ CM. Again since f (k) and g(k) share 0 CM, it follows that f

and g share 0 CM also. Let h1 = f/g and h2 = f (k)/g(k). Then h1 6= 0,∞ and

h2 6= 0,∞. From (3.4) we see that

(3.5) hn1h
m
2 ≡ 1.

First we suppose h1 is a non-constant entire function. Clearly h2 is also a non-

constant entire function. Let F1 = hn1 and G1 = hm2 . Also from (3.5) we get

(3.6) F1G1 ≡ 1.

Clearly F1 6≡ d1G1, where d1 ∈ C \ {0}, otherwise F1 will be a constant and so h1
will be a constant.

Since F1 6= 0,∞ and G1 6= 0,∞, then there exist two non-constant entire func-
tions α and β such that F1 = eα and G1 = eβ . Now from (3.6) we see that α+β = C,

where C ∈ C. Therefore α′ = −β′. Note that F ′

1 = α′eα and G′

1 = β′eβ . This shows

that F ′

1 and G
′

1 share 0 CM. Note that F1 6= 0, F1 6= ∞, G1 6= 0, G1 6= ∞ and

F1 6≡ d1G1, where d1 ∈ C \ {0}. Now in view of Lemma 11 we have

F1(z) = c1e
az and G1(z) = c2e

−az,

where a, c1, c2 ∈ C \ {0} such that c1c2 = 1. Since

(f(z)
g(z)

)n
= c1e

az and
(f (k)(z)

g(k)(z)

)m
= c2e

−az,

it follows that

(3.7)
f(z)

g(z)
= t1e

az/n = t1e
cz

and

(3.8)
f (k)(z)

g(k)(z)
= t2e

−az/m = t2e
dz,

where c, d, t1, t2 ∈ C \ {0} such that tn1 = c1, t
m
2 = c2, c = a/n and d = −a/m. Let

(3.9) Φ1 =
f (k+1)

f (k)
− g(k+1)

g(k)
.
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From (3.8) we see that

(3.10) Φ1(z) = d.

Again from (3.7) we see that

f (j)(z) = t1

j∑

i=0

jCi(e
cz)(j−i)g(i)(z),

where we define g(0)(z) = g(z). Consequently, we have

(3.11) f (k+1)(z) = t1

(
ck+1eczg(z) + (k + 1)ckeczg′(z) + . . .+

k(k + 1)

2
c2eczg(k−1)

+ (k + 1)ceczg(k)(z) + eczg(k+1)(z)
)

and

(3.12) f (k)(z) = t1

(
ckeczg(z) + kck−1eczg′(z) + . . .+

(k − 1)k

2
c2eczg(k−2)

+ kceczg(k−1)(z) + eczg(k)(z)
)
.

Now from (3.9), (3.11) and (3.12) we have

(3.13) Φ1 =
F2 −G2 + (k + 1)cg(k)g(k) − kcg(k−1)g(k+1)

F3 + g(k)g(k)
,

where

F2 = ck+1gg(k) + (k + 1)ckg′g(k) + . . .+
k(k + 1)

2
c2g(k−1)g(k),

G2 = ckgg(k+1) + kck−1g′g(k+1) + . . .+
(k − 1)k

2
c2g(k−2)g(k+1)

and

F3 = ckgg(k) + . . .+ kcg(k−1)g(k).

Let zp be a zero of g(z) with multiplicity p (p > k). Then the Taylor expansion of g

about zp is

(3.14) g(z) = bp(z − zp)
p + bp+1(z − zp)

p+1 + bp+2(z − zp)
p+2 + . . . , bp 6= 0.

We now consider the following two cases.
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Case 1. Suppose p = k. Then

(3.15) g(k)(z) = k! bk + (k + 1)! bk+1(z − zk) + . . .

and

(3.16) g(k+1)(z) = (k + 1)! bk+1 + (k + 2)! bk+2(z − zk) + . . .

Now from (3.13), (3.15) and (3.16) we have

(3.17) Φ1(zk) = c
(k + 1)(k!)2b2k

(k!)2b2k
= c(k + 1).

Therefore we arrive at a contradiction from (3.10) and (3.17).

Case 2. Suppose p > k + 1. Then

g(k−2)(z) = p(p− 1) . . . (p− k + 3)bp(z − zp)
(p−k+2) + . . .

g(k−1)(z) = p(p− 1) . . . (p− k + 2)bp(z − zp)
(p−k+1) + . . .

g(k)(z) = p(p− 1) . . . (p− k + 1)bp(z − zp)
(p−k) + . . .

and

g(k+1)(z) = p(p− 1) . . . (p− k)bp(z − zp)
(p−k−1) + . . .

Therefore

g(k)(z)g(k)(z) = Kb2p(z − zp)
2p−2k + . . . ,(3.18)

g(k−1)(z)g(k+1)(z) =
p− k

p− k + 1
Kb2p(z − zp)

2p−2k + . . . ,(3.19)

where K = (p(p− 1) . . . (p− k + 1))2. Also

F2(z) = O((z − zp)
2p−2k+1), G2(z) = O((z − zp)

2p−2k+1)

and

F3(z) = O((z − zp)
2p−2k+1).

Now from (3.13), (3.18) and (3.19) we have

(3.20) Φ1(zp) =
(k + 1)cKb2p − kc(p− k)(p− k + 1)−1Kb2p

Kb2p
= c

p+ 1

p− k + 1
.

Therefore we arrive at a contradiction from (3.10) and (3.20).

Thus, in either cases one can easily say that g has no zeros. Since f and g share 0

CM, it follows that f and g have no zeros. But this is impossible because the zeros

of f and g are of multiplicities at least k. Hence h1 is constant. Then from (3.3) we

get hn+m
1 = 1. Therefore we have f ≡ tg, where t ∈ C \ {0} such that tn+m = 1.

This completes the lemma. �
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Lemma 13 ([6]). Let f be a meromorphic function on C with finitely many poles.

If f has bounded spherical derivative on C, then f is of order at most 1.

Lemma 14 (Zalcman [19], [27]). Let F be a family of meromorphic functions in

the unit disc ∆ and α be a real number satisfying −1 < α < 1. Then if F is not

normal at a point z0 ∈ ∆, there exist for each α with −1 < α < 1

(i) points zn ∈ ∆, zn → z0,

(ii) positive numbers ̺n, ̺n → 0+ and

(iii) functions fn ∈ F ,

such that ̺−α
n fn(zn + ̺nζ) → g(ζ) spherically uniformly on a compact subset of C,

where g is a non-constant meromorphic function. The function g may be taken to

satisfy the normalisation g#(ζ) 6 g#(0) = 1, ζ ∈ C.

Lemma 15. Let f and g be two transcendental meromorphic functions having

zeros of multiplicities at least k, where k ∈ N. Also let fn(f (k))m − p, gn(g(k))m − p

share 0 CM and f (k), g(k) share 0 CM and f , g share ∞ IM, where p is a nonzero
polynomial and m,n ∈ N. Then fn(f (k))mgn(g(k))m 6≡ p2.

P r o o f. Suppose

(3.21) fn(f (k))mgn(g(k))m ≡ p2.

Since f and g share∞ IM, from (3.21) one can easily say that f and g are transcen-
dental entire functions. We consider the following cases.

Case 1. Let deg(p) = l (> 1). Now from (3.21) it follows that N(r, 0; f) = O(log r)

and N(r, 0; g) = O(log r). Let

(3.22) F =
fn(f (k))m

p
and G =

gn(g(k))m

p
.

From (3.21) we get

(3.23) FG ≡ 1.

If F ≡ C1G, where C1 ∈ C \ {0}, then F is a constant, which is impossible by
Lemma 5. Hence F 6≡ C1G. Let

(3.24) Φ =
fn(f (k))m − p

gn(g(k))m − p
.
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Since f and g are transcendental entire functions, it follows that fn(f (k))m − p 6= ∞
and gn(g(k))m − p 6= ∞. Also since fn(f (k))m − p and gn(g(k))m − p share 0 CM, we

deduce from (3.24) that

(3.25) Φ ≡ eγ ,

where γ is an entire function. Let f1 = F , f2 = −eγG and f3 = eγ . Here f1 is

transcendental. Now from (3.25) we have f1 + f2 + f3 ≡ 1. Hence by Lemma 7 we

get

3∑

j=1

N(r, 0; fj) + 2

3∑

j=1

N(r,∞; fj) 6 N(r, 0;F ) +N(r, 0; eγG) +O(log r)

6 (λ+ o(1))T1(r),

as r → ∞, r ∈ I, λ < 1 and T1(r) = max
16j63

T (r, fj).

So by Lemma 6, we get either eγG ≡ −1 or eγ ≡ 1. But here the only possibility

is that eγG ≡ −1, i.e. gn(g(k))m ≡ −e−γp and so from (3.21) we obtain

F ≡ eγ1G, i.e. fn(f (k))m ≡ eγ1gn(g(k))m,

where γ1 is a non-constant entire function. Then from (3.21) we get

(3.26) fn(f (k))m ≡ ceγ1/2p and gn(g(k))m ≡ ce−γ1/2p,

where c = ±1. This shows that fn(f (k))m and gn(g(k))m share 0 CM. Clearly

from (3.26) we see F and G are entire functions having no zeros.

Let zp be a zero of f of multiplicity p (p > k) and zq be a zero of g of multiplicity q

(q > k). Clearly zp will be a zero of f
n(f (k))m of multiplicity (n+m)p− km and zq

will be a zero of gn(g(k))m of multiplicity (n + m)q − km. Since fn(f (k))m and

gn(g(k))m share 0 CM, it follows that zp = zq and p = q. Consequently, f and g

share 0 CM. Since N(r, 0; f) = O(log r) and N(r, 0; g) = O(log r), we can take

(3.27) f(z) = h(z)eα(z) and g(z) = h(z)eβ(z),

where h is a non-constant polynomial and α, β are two non-constant entire functions.

We deduce from (3.27) that

(3.28) fn(f (k))m ≡ P1(h, h
′, . . . , h(k), α′, α′′, . . . , α(k))e(n+m)α,
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where P1(h, h
′, . . . , h(k), α′, α′′, . . . , α(k)) is a differential polynomial in h, h′, . . . , h(k),

α′, α′′, . . . , α(k) and

(3.29) gn(g(k))m ≡ P2(h, h
′, . . . , h(k), β′, β′′, . . . , β(k))e(n+m)β ,

where P2(h, h
′, . . . , h(k), β′, β′′, . . . , β(k)) is a differential polynomial in h, h′, . . . , h(k),

β′, β′′, . . . , β(k).

Let F = {Fω} and G = {Gω}, where Fω(z) = F (z + ω) and Gω(z) = G(z + ω),

z ∈ C. Clearly F and G are two families of entire functions defined on C. We now

consider the following two sub-cases.

Sub-case 1.1. Suppose that one of the families F and G, say F , is normal on C.

Then by Marty’s theorem F#(ω) = F#
ω (0) 6 M for some M > 0 and for all ω ∈ C.

Hence by Lemma 13 we have that F is of order at most 1. Now from (3.23) we have

(3.30) ̺(fn(f (k))m) = ̺(F ) = ̺(G) = ̺(gn(g(k))m) 6 1.

Since F and G are non-constant entire functions having no zeros and ̺(F ) =

̺(G) 6 1, we can take

(3.31) fn(f (k))m = c1pe
az and gn(g(k))m = c2pe

bz , where a, b, c1, c2 ∈ C \ {0}.

From (3.21) we see that a + b = 0. We claim that both (n + m)α(z) − az and

(n + m)β(z) − bz are constants. If possible, suppose both (n + m)α(z) − az and

(n + m)β(z) − bz are non-constants. Let α1(z) = (n + m)α(z) − az and β1(z) =

(n+m)β(z)− bz. Note that

T (r, α′) = m(r, α′) 6 m(r, (n+m)α′) +O(1) = m(r, α′

1 + a) +O(1)

6 m(r, α′

1) +O(1) = m
((eα1)′

eα1

)
+O(1) = S(r, eα1).

Clearly T (r, α(i)) = S(r, eα1) for i = 1, 2, . . . Therefore T (r, P1) = S(r, eα1) and so

T (r, p/P1) = S(r, eα1). Similarly we have T (r, p/P2) = S(r, eβ1).

Now from (3.28), (3.29) and (3.31) we conclude that T (r, eα1) = S(r, eα1) and

T (r, eβ1) = S(r, eβ1). Therefore we arrive at a contradiction. Hence, both α1 and β1
are constants. Consequently both α and β are polynomials of degree 1. Finally, we

take

(3.32) f(z) = d1h(z)e
az and g(z) = d1h(z)e

−az, where d1, d2 ∈ C \ {0}.

Now from (3.32) we have

fn(f (k))m = dn+m
1 hn

( k∑

i=0

kCia
k−ih(i)

)m

e(n+m)az,

295



where we define h(0) = h. Similarly we have

gn(g(k))m = dn+m
2 hn

( k∑

i=0

kCi(−1)k−iak−ih(i)
)
e−(n+m)az.

Since fn(f (k))m and gn(g(k))m share 0 CM, it follows that

(3.33)

k∑

i=0

kCia
k−ih(i) ≡ d∗

k∑

i=0

kCi(−1)k−iak−ih(i),

where d∗ ∈ C \ {0}. But relation (3.33) does not hold.
Sub-case 1.2. Suppose that one of the families F and G, say F , is not normal

on C. Now by Marty’s theorem there exists a sequence of meromorphic functions

{F (z+ωj)} ⊂ F , where z ∈ {z : |z| < 1} and {ωj} ⊂ C is some sequence of complex

numbers such that F#(ωj) → ∞, as |ωj | → ∞. Then by Lemma 14 there exist
(i) points zj , |zj| < 1,

(ii) positive numbers ̺j , ̺j → 0+,

(iii) a subsequence {F (ωj + zj + ̺jζ)} of {F (ωj + z)}
such that

(3.34) hj(ζ) = ̺
−1/2
j F (ωj + zj + ̺jζ) → h(ζ)

spherically uniformly on a compact subset of C, where h(ζ) is some non-constant

holomorphic function such that h#(ζ) 6 h#(0) = 1. Now from Lemma 13 we see

that ̺(h) 6 1. Also by Hurwitz’s theorem we can see that h(ζ) 6= 0. From the proof

of Zalcman’s lemma (see [19], [27]) we have

(3.35) ̺j =
1

F#(bj)

and

(3.36) F#(bj) > F#(ωj),

where bj = ωj + zj. Let

(3.37) ĥj(ζ) = ̺
1/2
j G(ωj + zj + ̺jζ).

From (3.23) we have

F (ωj + zj + ̺jζ)G(ωj + zj + ̺jζ) ≡ 1
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and so from (3.34) and (3.37) we get

(3.38) hj(ζ)ĥj(ζ) ≡ 1.

Now from (3.34) and (3.38) we can deduce that

(3.39) ĥj(ζ) → ĥ(ζ)

spherically uniformly on a compact subset of C, where ĥ(ζ) is some non-constant

holomorphic function in the complex plane. By Hurwitz’s theorem we can see that

ĥ(ζ) 6= 0. From (3.34), (3.38) and (3.39) we get h(ζ)ĥ(ζ) ≡ 1. Since ̺(h) 6 1, we

have ̺(h) = ̺(ĥ) 6 1. Again since h and ĥ are non-constant entire functions having

no zeros and ̺(h) = ̺(ĥ) 6 1, we can take

(3.40) h(z) = c1e
cz and ĥ(z) = ĉ2e

−cz,

where c, c1, ĉ2 ∈ C \ {0} such that c1ĉ2 = 1. Also from (3.40) we have

(3.41)
h′j(ζ)

hj(ζ)
= ̺j

F ′(wj + zj + ̺jζ)

F (wj + zj + ̺jζ)
→ h′(ζ)

h(ζ)
= c,

spherically uniformly on a compact subset of C. Now from (3.35) and (3.41) we get

∣∣∣
h′j(0)

hj(0)

∣∣∣ = ̺j

∣∣∣F
′(ωj + zj)

F (ωj + zj)

∣∣∣ = 1 + |F (ωj + zj)|2
|F ′(ωj + zj)|

|F ′(ωj + zj)|
|F (ωj + zj)|

(3.42)

=
1 + |F (ωj + zj)|2

|F (ωj + zj)|
→

∣∣∣h
′(0)

h(0)

∣∣∣ = |c|,

which implies that lim
j→∞

F (ωj + zj) 6= 0,∞ and so from (3.34) we see that

(3.43) hj(0) = ̺
−1/2
j F (ωj + zj) → ∞.

Again from (3.34) and (3.40) we have

(3.44) hj(0) → h(0) = c1.

But from (3.43) and (3.44) we arrive at a contradiction.

Case 2. Let p(z) = b ∈ C\{0}. Then from (3.21) we get fn(f (k))mgn(g(k))m ≡ b2,

where f and g are transcendental entire functions. Clearly f and g have no zeros.

But this is impossible because zeros of f and g are of multiplicities at least k. This

completes the lemma. �

297



Lemma 16. Let f and g be two transcendental meromorphic functions having

zeros of multiplicities at least k, where k ∈ N and let F = fn(f (k))mp−1, G =

gn(g(k))mp−1, where p is a nonzero polynomial and m,n ∈ N such that n > (mk +

k2 + k + 2)k−1. Suppose fn(f (k))m − p, gn(g(k))m − p share (0, k1), where k1 ∈
N∪{0}∪{∞} and f , g share∞ IM. If H ≡ 0, then either fn(f (k))mgn(g(k))m ≡ p2,

where fn(f (k))m − p, gn(g(k))m − p share 0 CM or fn(f (k))m ≡ gn(g(k))m.

P r o o f. Since H ≡ 0, on integration, we get

F ′

(F − 1)2
≡ C1

G′

(G− 1)2
, i.e.

((F1 − p)p−1)′

((F1 − p)p−1)2
≡ C1

((G1 − p)p−1)′

((G1 − p)p−1)2
,

where C1 ∈ C \ {0}, F1 = fn(f (k))m and G1 = fn(f (k))m. This shows that

(F1 − p)p−1 and (G1 − p)p−1 share 0 CM and so F1 − p and G1 − p share 0 CM.

Finally, by integration we get

(3.45)
1

F − 1
≡ bG+ a− b

G− 1
,

where a, b ∈ C (a 6= 0). We now consider the following cases.

Case 1. Let b 6= 0 and a 6= b. If b = −1, then from (3.45) we have

F ≡ −a
G− a− 1

.

Therefore N(r, a + 1;G) = N(r,∞;F ) = N(r,∞; f) + N(r, 0; p). So in view of

Lemma 9 and the second fundamental theorem we get

(n−m)T (r, g) 6 T (r, gn(g(k))m)−mN(r,∞; g)−N(r, 0; (g(k))m) + S(r, g)

6 T (r,G)−mN(r,∞; g)−N(r, 0; (g(k))m) + S(r, g)

6 N(r,∞;G) +N(r, 0;G) +N(r, a+ 1;G)

−mN(r,∞; g)−N(r, 0; (g(k))m) + S(r, g)

6 N(r, 0; g) +N(r, 0; g(k) | g 6= 0) +N(r,∞; f)

−N(r, 0; (g(k))m) + S(r, g)

6 N(r, 0; g) +N(r,∞; g) + S(r, g)

6
1

k
N(r, 0; g) +N(r,∞; g) + S(r, g) 6

k + 1

k
T (r, g) + S(r, g),

which is a contradiction since n > (mk + k + 1)k−1.

If b 6= −1, from (3.45) we obtain that

F −
(
1 +

1

b

)
≡ −a
b2(G+ (a− b)b−1)

.
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So N(r, (b − a)b−1;G) = N(r,∞;F ) = N(r,∞; f) +N(r, 0; p). Using Lemma 9 and

the same argument as used in the case when b = −1 we can get a contradiction.

Case 2. Let b 6= 0 and a = b. If b = −1, then from (3.45) we have FG ≡ 1, i.e.

fn(f (k))mgn(g(k))m ≡ p2, where fn(f (k))m − p and gn(g(k))m − p share 0 CM.

If b 6= −1, from (3.45) we have

1

F
≡ bG

(1 + b)G− 1
.

Therefore N(r, (1+ b)−1;G) = N(r, 0;F ). So in view of Lemmas 2, 9 and the second

fundamental theorem we get

(n−m)T (r, g) 6 T (r,G)−mN(r,∞; g)−N(r, 0; (g(k))m) + S(r, g)

6 N(r,∞;G) +N(r, 0;G) +N
(
r,

1

1 + b
;G

)

−mN(r,∞; g)−N(r, 0; (g(k))m) + S(r, g)

6 N(r, 0; g) +N(r, 0; g(k) | g 6= 0) +N(r, 0;F )

−N(r, 0; (g(k))m) + S(r, g)

6 N(r, 0; g) +N(r, 0; f) +N(r, 0; f (k) | f 6= 0) + S(r, g)

6 N(r, 0; g) +N(r, 0; f) + kN(r, 0; f |> k) + kN(r,∞; f) + S(r, g)

6
1

k
T (r, g) +

1

k
T (r, f) + T (r, f) + kT (r, f) + S(r, f) + S(r, g).

Without loss of generality, we suppose that T (r, f) 6 T (r, g) for r ∈ I. So for r ∈ I

we have

(n−m)T (r, g) 6
k2 + k + 2

k
T (r, g) + S(r, g),

which is a contradiction since n > (mk + k2 + k + 2)k−1.

Case 3. Let b = 0. From (3.45) we obtain

(3.46) F ≡ G+ a− 1

a
.

If a 6= 1, then from (3.46) we obtain N(r, 1 − a;G) = N(r, 0;F ). We can similarly

deduce a contradiction as in Case 2. Therefore a = 1 and from (3.46) we obtain

F ≡ G, i.e.

fn(f (k))m ≡ gn(g(k))m.

This completes the lemma. �
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Lemma 17 ([2]). Let f and g be non-constant meromorphic functions sharing

(1, k1), where 2 6 k1 6 ∞. Then

N(r, 1; f |= 2) + 2N(r, 1; f |= 3) + . . .+ (k1 − 1)N(r, 1; f |= k1) + k1NL(r, 1; f)

+ (k1 + 1)NL(r, 1; g) + k1N
(k1+1

E (r, 1; g) 6 N(r, 1; g)−N(r, 1; g).

4. Proof of the theorem

P r o o f of Theorem 1. Let F = fn(f (k))m/p and G = gn(g(k))m/p. Clearly F

and G share (1, k1), except for the zeros of p, and f , g share ∞ IM.
Case 1. Let H 6≡ 0. From (3.1) it can be easily calculated that the possible

poles of H occur at (i) multiple zeros of F and G, (ii) those 1 points of F and G

whose multiplicities are different, (iii) those poles of F and G whose multiplicities

are different, (iv) zeros of F ′ which are not the zeros of F (F − 1), (v) zeros of G′

which are not the zeros of G(G− 1). Since H has only simple poles, we get

N(r,∞;H) 6 N∗(r,∞; f, g) +N∗(r, 1;F,G) +N(r, 0;F |> 2)(4.1)

+N(r, 0;G |> 2) +N0(r, 0;F
′) +N0(r, 0;G

′),

where N0(r, 0;F
′) is the reduced counting function of those zeros of F ′ which are not

the zeros of F (F − 1) and N0(r, 0;G
′) is similarly defined. Now from Nevanlinna’s

fundamental estimate of the logarithmic derivative we obtain m(r,H) = S(r, F ) +

S(r,G).

Since T (r, F ) 6 (n+(k+1)m)T (r, f)+S(r, f), T (r,G) 6 (n+(k+1)m)T (r, g)+

S(r, g), then m(r,H) = S(r, f) + S(r, g). Let z0 be a simple zero of F − 1 but

p(z0) 6= 0. Clearly z0 is a simple zero of G − 1. Then an elementary calculation

gives that H(z) = O((z − z0)), which proves that z0 is a zero of H . Now by the first

fundamental theorem of Nevanlinna we get

N(r, 1;F |= 1) 6 N(r, 0;H) 6 T (r,H) +O(1)(4.2)

= N(r,∞;H) +m(r,H) +O(1)

6 N(r,∞;H) + S(r, f) + S(r, g).

Using (4.1) and (4.2) we get

N(r, 1;F ) 6 N(r, 1;F |= 1) +N(r, 1;F |> 2)(4.3)

6 N∗(r,∞; f, g) +N(r, 0;F |> 2) +N(r, 0;G |> 2) +N∗(r, 1;F,G)

+N(r, 1;F |> 2) +N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, f) + S(r, g)
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6 N(r,∞; f) +N(r, 0;F |> 2) +N(r, 0;G |> 2) +N∗(r, 1;F,G)

+N(r, 1;F |> 2) +N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, f) + S(r, g).

Now in view of Lemmas 2 and 17 we get

N0(r, 0;G
′) +N(r, 1;F |> 2) +N∗(r, 1;F,G)(4.4)

6 N0(r, 0;G
′) +N(r, 1;F |= 2) +N(r, 1;F |= 3) + . . .+N(r, 1;F |= k1)

+N
(k1+1

E (r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G) +N∗(r, 1;F,G)

6 N0(r, 0;G
′)−N(r, 1;F |= 3)− . . .− (k1 − 2)N(r, 1;F |= k1)

− (k1 − 1)NL(r, 1;F )− k1NL(r, 1;G)− (k1 − 1)N
(k1+1

E (r, 1;F )

+N(r, 1;G)−N(r, 1;G) +N∗(r, 1;F,G)

6 N0(r, 0;G
′) +N(r, 1;G)−N(r, 1;G)− (k1 − 2)NL(r, 1;F )

− (k1 − 1)NL(r, 1;G)

6 N(r, 0;G′ | G 6= 0)− (k1 − 2)NL(r, 1;F )− (k1 − 1)NL(r, 1;G)

6 N(r, 0;G) +N(r,∞; g)− (k1 − 2)NL(r, 1;F )− (k1 − 1)NL(r, 1;G)

= N(r, 0;G) +N(r,∞; g)− (k1 − 2)N∗(r, 1;F,G)−NL(r, 1;G).

Hence using (4.3), (4.4) and Lemma 1 we get from the second fundamental theorem

that

T (r, F ) 6 N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F )−N0(r, 0;F
′)(4.5)

6 2N(r,∞, f) +N2(r, 0;F ) +N(r, 0;G |> 2) +N(r, 1;F |> 2)

+N∗(r, 1;F,G) +N0(r, 0;G
′) + S(r, f) + S(r, g)

6 3N(r,∞; f) +N2(r, 0;F ) +N2(r, 0;G)− (k1 − 2)N∗(r, 1;F,G)

+ S(r, f) + S(r, g)

6 3N(r,∞; f) + 2N(r, 0; f) +N2(r, 0; (f
(k))m) + 2N(r, 0; g)

+mN2(r, 0; g
(k))− (k1 − 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 3N(r,∞; f) + 2N(r, 0; f) +N(r, 0; (f (k))m) + 2N(r, 0; g)

+mNk+2(r, 0; g) +mkN(r,∞; g)− (k1 − 2)N∗(r, 1;F,G)

+ S(r, f) + S(r, g)

6 (3 +mk)N(r,∞; f) + 2N(r, 0; f) + 2N(r, 0; g) +mN(r, 0; g)

+N(r, 0; (f (k))m)− (k1 − 2)N∗(r, 1;F,G)

+ S(r, f) + S(r, g).
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Now using Lemmas 8 and 9 we get from (4.5) that

(n−m)T (r, f) 6 T (r, fn(f (k))m)−mN(r,∞; f)−N(r, 0; (f (k))m) + S(r, f)(4.6)

6 T (r, F )−mN(r,∞; f)−N(r, 0; (f (k))m) + S(r, f)

6 (3 + (k − 1)m)N(r,∞; f) + 2N(r, 0; f) + 2N(r, 0; g)

+mN(r, 0; g)− (k1 − 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)

6
(k + 1)(3 + (k − 1)m)

k(n+m+ (m− 2)k − 1)
(T (r, f) + T (r, g))

+
2

k
(T (r, f) + T (r, g)) +

3 + (k − 1)m

n+m+ (m− 2)k − 1
N∗(r, 1;F,G)

+mT (r, g)− (k1 − 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)

6
(mk + 4)n+m2k2 + (m2 + 3m− 2)k + 2(m+ 1)

k(n+m+ (m− 2)k − 1)
T (r) + S(r).

In a similar way we can obtain

(n−m)T (r, g) 6
(mk + 4)n+m2k2 + (m2 + 3m− 2)k + 2(m+ 1)

k(n+m+ (m− 2)k − 1)
T (r) + S(r).(4.7)

Combining (4.6) and (4.7) we see that

(n−m)T (r) 6
(mk + 4)n+m2k2 + (m2 + 3m− 2)k + 2(m+ 1)

k(n+m+ (m− 2)k − 1)
T (r) + S(r),

i.e.

(4.8) k(n−K1)(n−K2)T (r) 6 S(r),

where

K1 =
(2 −m)k2 + (m+ 1)k + 4 +

√
L1

2k
,

K2 =
(2 −m)k2 + (m+ 1)k + 4−

√
L1

2k

and L1 = ((2−m)k2 +(m+1)k+4)2 +8k((m2 −m)k2 +(m2 +m− 1)k+(m+1)).

Note that

L1 = m2k4 + 9m2k2 + 2mk2 + 6m2k3 − 6mk3 + 4k4(1−m)

+ 16k(m+ 1) + 9k2 + 4k3 + 16

< m2k4 + 9m2k2 + 6m2k3 + 10mk2 − 2mk3 + 16(3m− 1)k

+ k2 + 64 + 8k2(1−m) + 4k3(1−m) + 32k(1−m)

6 (mk2 + (3m− 1)k + 8)2.
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Therefore

K1 =
(2−m)k2 + (m+ 1)k + 4 +

√
L1

2k

<
(2−m)k2 + (m+ 1)k + 4 +mk2 + (3m− 1)k + 8

2k
=
k2 + 2mk + 6

k
.

Since n > (k2 + 2mk + 6)k−1, (4.8) leads to a contradiction.

Case 2. Let H ≡ 0. Then the theorem follows from Lemmas 16, 12 and 15. �
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