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Abstract. Computing powers of interval matrices is a computationally hard problem.
Indeed, it is NP-hard even when the exponent is 3 and the matrices only have interval
components in one row and one column. Motivated by this result, we consider special types
of interval matrices where the interval components occupy specific positions. We show
that computing the third power of matrices with only one column occupied by interval
components can be solved in cubic time; so the asymptotic time complexity is the same as
for the real case (considering the textbook matrix product method). We further show that
for a fixed exponent k and for each interval matrix (of an arbitrary size) whose kth power has
components that can be expressed as polynomials in a fixed number of interval variables,
the computation of the kth power is polynomial up to a given accuracy. Polynomiality
is shown by using the Tarski method of quantifier elimination. This result is used to
show the polynomiality of computing the cube of interval band matrices, among others.
Additionally, we study parametric matrices and prove NP-hardness already for their squares.
We also describe one specific class of interval parametric matrices that can be squared by
a polynomial algorithm.
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1. Introduction

Many real-world problems with origin in the system control theory are described by

systems of linear differential equations, whose solutions are characterized by matrix

powers in the discrete time case and by matrix exponentials in the continuous time

case. Interval analysis is a tool that helps to handle uncertainty in the description

of their state-space caused by inexactness of measurements [1], for example when

using interval impulse response to efficiently design a robust controller [26]. The key
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problem when determining the impulse response for an uncertain system is to find

the power of the corresponding interval matrix. Related problems dealing with the

computation of the matrix exponential were studied in [8], [20].

Improving the complexity of computing an interval matrix power is thus a well

motivated task. The problem of computing the square can be solved in polynomial

time [15] by employing interval arithmetic. However, due to the properties of interval

arithmetic, we cannot utilize it to compute the higher powers exactly. Indeed, it was

shown that already computing the cube of an interval matrix is an NP-hard problem.

For this reason, the problem of computing interval matrix powers was addressed

using approximation algorithms [12]. Mayer [18] also studied interval matrix powers

motivated by studies of initial value problem stability.

Recently, for a specific class of interval matrices, the problem has been shown to

be polynomially tractable [13]—namely for a class of diagonally interval matrices,

i.e., those having intervals on the diagonal while leaving remaining components to

be real-valued. Motivated by this recent result, we explore the problem for other

classes of interval matrices.

1.1. Computing interval matrix powers. First, we introduce some notions

necessary for handling intervals and interval matrices. By convention, an interval

means a compact real interval. A (square) interval matrix is defined as

A = [A, Ā] = {A ∈ R
n×n ; A 6 A 6 Ā},

where A 6 Ā are given matrices and inequalities are considered elementwise. To

avoid any confusion, we refer to the particular interval items Aij (or aij) of an

interval matrix A as components, and we refer to real matrices A ∈ A as instances.

We denote the set of all n-by-n interval matrices by IRn×n. By

Ac :=
1

2
(A+ Ā), A∆ :=

1

2
(A− Ā)

we denote the midpoint and the radius of A, respectively. When referring to the

components of an interval matrix A, we use Ac
ij and A∆

ij for the midpoint and the

radius of Aij , respectively. When Ai,j = Āi,j , we call the (i, j)th component of A

degenerate. Note that for a degenerate component Aij we have A
∆
ij = 0.

An enclosure of a bounded set B ⊂ Rn×n is any B ∈ IR
n×n such that B ⊆ B.

The interval hull of B is denoted by �B and it is the smallest enclosure of B, that is,
�B :=

⋂

B⊆B∈IRn×n

B.

We define the kth interval matrix power or kth power of interval matrix A as

Ak := {Ak ; A ∈ A}.
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Since this is not an interval matrix in general, we are content with its interval hull

[Ak] := �{Ak ; A ∈ A}

instead. Not all components of A have to be non-degenerate intervals. Let m denote

the number of non-degenerate interval components, that is,

m := |{(i, j) ; A∆
ij > 0}|.

Since the problem of computing matrix powers depends on an efficient realization

of sequences of the corresponding arithmetic operations, it is reasonable to introduce

basic operations with intervals [19]. Let a, b ∈ IR and let ◦ be an arbitrary real
binary operation. Then a ◦ b = {a ◦ b ; a ∈ a, b ∈ b}. In particular, for arithmetic
operations we can write simpler expressions

a+ b = [a+ b, ā+ b̄],

a− b = [a− b̄, ā− b],

a · b = [min(M),max(M)], where M := {ab, ab̄, āb, āb̄}.

We can further generalize this approach from simple arithmetic operations to more

general functions. For a given function f = f(x1, x2, . . . , xn), the image of a set of

interval variables x1,x2, . . . ,xn is

f(x1,x2, . . . ,xn) = {f(x1, x2, . . . , xn) ; x1 ∈ x1, x2 ∈ x2, . . . , xn ∈ xn}.

For some basic functions, computing the image is easy. For instance, for the square

function f(x) = x2 and x ∈ R, we have

f(x) =

{

[min(x2, x2),max(x2, x2)] if 0 6∈ x,

[0,max(x2, x2)] otherwise,

which we will utilize later in the paper. In general, however, computing the image is

an NP-hard problem [16]. Note also that for a given function f we can have several

equivalent expressions, each one of which can be used to compute an enclosure of

the image using interval arithmetic; computing a matrix power is a good example.

Moreover, some of these enclosures are possibly tight; see examples in [19]. If we

consider the components of the original matrix as variables, we can express any

component of the matrix power as a polynomial in these variables. Moreover, if

some of the original components are degenerate intervals, we can simply use them

as real coefficients in this polynomial.
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We can obtain the exact image by interval arithmetic if an expression of the

function meets the condition called single-use of expression (SUE). An expression

satisfies SUE if every variable xi appears only once there [9]. Considering this condi-

tion, some of the functions can be presented in an equivalent form that enables exact

evaluation—this idea was used to prove that computing the square of an interval

matrix is polynomially solvable [16].

1.2. Solving the hard case. NP-hardness of computing the cube of an interval

matrix was shown [15] using NP-hardness of computing the matrix norm [22]

‖A‖∞,1 = max
‖x‖∞=1

‖Ax‖1.

This norm has many applications including the proof of intractability of computation

of the regularity radius [21], which is defined as the distance from a given real matrix

to the nearest singular one in maximum norm. Computing the regularity radius can

be handled via approximation algorithms [10], or by solving this problem for specific

classes of matrices [11]. In this paper we also focus on special classes of matrices

to study the borderline between polynomiality and NP-hardness of the problem in

question.

NP-completeness of the interval matrix power problem can be shown via a con-

struction of a specific interval matrix for which the corresponding third power leads

to the computation of the above-mentioned norm [15]. This interval matrix A can

be defined as follows. Let B be any real-valued matrix. Then

(1.1) A =

(

0 U

L 0

)

,

where

L =













0 . . . 0 . . .
...

0 B
...













, U =











0 x1 . . . xn

y1

... 0

yn











.

Using a proper rearrangement, we can reduce the computation of the third power

of this matrix to the computation of the above-mentioned norm [15]. Note that the

interval components in this matrix are located only in the submatrix U containing

one row and one column with non-degenerate intervals. This suggests that interval

matrices having at least one row and one column composed of O(n) non-degenerate

intervals lead to NP-completeness. On the other hand, the second author [13] shows

an example of an interval matrix with a non-trivial structure for which the compu-

tation can be reduced to a polynomial one—namely an interval matrix that has only
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the diagonal components non-degenerate. Motivated by both these results, we aim

to find the most “complex” interval matrix for which the computation of the third

power can be done in polynomial time.

Let us mention another important phenomenon. When showing that the compu-

tation of the interval matrix power is a polynomial problem for a particular class,

we can always do it only up to a given accuracy: It cannot be computed exactly

in rational arithmetic, since the values might be irrational as Example 1.1 shows

(notice they are still algebraic numbers).

E x am p l e 1.1. Consider the interval matrix

A =

(

[1, 2] 3

−1 0

)

.

Then (A3)1,1 = a31,1 − 6a1,1 and its smallest value on the interval a1,1 ∈ a1,1 = [1, 2]

is the irrational value of −4
√
2, which is attained at a1,1 =

√
2. The third power of

the whole matrix is

[A3] =

(

[−4
√
2,−4] [−6, 3]

[−1, 2] [−6,−3]

)

.

2. Matrices with linearly many interval components

In the introduction we mention two different interval matrices having O(n) non-

degenerate interval components for which different complexity results are known. For

matrices having non-degenerate intervals only on the diagonal, there is a polynomial

algorithm to compute their powers, while powers of matrices given in equation (1.1)

cannot be handled polynomially. For this reason, a natural choice for further testing

is represented by interval matrices having non-degenerate intervals only in one of

their columns while leaving the remaining components real.

2.1. Third power of matrices with one interval column. Consider a class

of interval matrices, where each matrix has one column occupied by non-degenerate

interval components, while the remaining are degenerate. Note that this is equivalent

to considering a row instead of a column. Moreover, without loss of generality, we

can assume that such a column is the last one, i.e., the matrix can be written as

follows

(2.1) A =















a1,1 a1,2 . . . a1,n−1 a1,n

a2,1 a2,2 a2,n

...
. . .

...

an−1,n−1 an−1,n

an,1 . . . an,n−1 an,n















.
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To analyse the complexity of computing the third power of this interval matrix

we can write down polynomials for each component of the matrix power and try to

express them in forms that are convenient for evaluation. This simplification aims

either to obtain a form for which the SUE condition is met or to obtain a form

for which we are able to evaluate the corresponding polynomial using a different

approach. As a first step, we evaluate the components of the square of a real matrix.

Proposition 2.1. Let A ∈ Rn×n. Then the components of the matrix B := A2

can be written as

Bi,j =

n−1
∑

k=1

ai,kak,j + ai,nan,j ∀ i ∈ {1, . . . , n}, j ∈ {1, . . . , n− 1},(2.2)

Bi,n =

n−1
∑

k=1
k 6=i

ai,kak,n + ai,n(an,n + ai,i) ∀ i ∈ {1, . . . , n− 1},(2.3)

and

Bn,n =
n−1
∑

k=1

an,kak,n + a2n,n.(2.4)

P r o o f. All equations are obtained via a simple application of matrix multiplica-

tion. Additionally, we adjust the expressions to avoid multiple occurrences of interval

parameters a1,n, . . . , an,n. �

Using the expressions from Proposition 2.1, the components of the interval matrix

B := [A2] can be computed by interval arithmetic combined with basic interval

functions (herein, the square of an interval). This is due to the fact that the SUE

condition is fulfilled.

⊲ Bi,j , ∀ i, j : j 6= n: all components except the components from the last column

Bi,j =
n−1
∑

k=1

ai,kak,j + ai,nan,j

⊲ Bi,n, ∀ i 6= n: last column components except the last one

Bi,n =

n−1
∑

k=1
k 6=i

ai,kak,n + ai,n(an,n + ai,i)
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⊲ B2
n,n: the last bottom-right component

Bn,n =
n−1
∑

k=1

an,kak,n + a2
n,n

Since we are interested in computing the cube of an interval matrix, we now derive

expressions for the components of the cube of ordinary matrices.

Lemma 2.2. Let A ∈ Rn×n. Then the components of the matrix C := A3 can

be written as

Ci,j =

n−1
∑

l=1

n−1
∑

k=1

ai,kak,lal,j + ai,n

(n−1
∑

l=1

an,lal,j + an,j(an,n + ai,i)

)

(2.5)

+ an,j

n−1
∑

k=1
k 6=i

ai,kak,n ∀ i, j ∈ {1, 2, . . . , n− 1},

Cn,j =

n−1
∑

l=1

n−1
∑

k=1

an,kak,lal,j + an,n

n−1
∑

l=1

an,lal,j + an,j

n−1
∑

k=1

an,kak,n(2.6)

+ a2n,nan,j ∀ j ∈ {1, 2, . . . , n− 1},

Ci,n =

n−1
∑

l=1
l 6=i

al,n

(n−1
∑

k=1

ai,kak,l + ai,nan,l + an,nai,l

)

+ ai,n

n−1
∑

k=1

ai,kak,i(2.7)

+ a2i,nan,i + ai,na
2
n,n + ai,nan,nai,i ∀ i ∈ {1, 2, . . . , n− 1},

Cn,n =
n−1
∑

l=1

al,n

(n−1
∑

k=1

an,kak,l + 2an,nan,l

)

+ a3n,n.(2.8)

P r o o f. To compute the third power, we can start with the expressions for the

square B derived in Proposition 2.1 and multiply them by the matrix A. To achieve

the expression in (2.5), we need to use the expressions from equations (2.2) and (2.3).

Let i, j ∈ {1, 2, . . . , n− 1}. Then

Ci,j =

n−1
∑

l=1

Bi,lal,j +Bi,nan,j

=

n−1
∑

l=1

(n−1
∑

k=1

ai,kak,l + ai,nan,l

)

al,j +

(n−1
∑

k=1
k 6=i

ai,kak,n + ai,n(an,n + ai,i)

)

an,j

=

n−1
∑

l=1

n−1
∑

k=1

ai,kak,lal,j + ai,n

n−1
∑

l=1

an,lal,j + an,j

n−1
∑

k=1
k 6=i

ai,kak,n + ai,nan,j(an,n + ai,i),
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from which (2.5) follows. For the components in the last row of C, see equation (2.6),

we use the expressions from equations (2.3) and (2.4). For all j ∈ {1, 2, . . . , n − 1}
we have

Cn,j =

n−1
∑

l=1

Bn,lal,j +Bn,nan,j

=

n−1
∑

l=1

(n−1
∑

k=1

an,kak,l + an,nan,l

)

al,j +

(n−1
∑

k=1

an,kak,n + a2n,n

)

an,j,

from which (2.6) follows. For all i ∈ {1, 2, . . . , n − 1}, the components defined in
equation (2.7) can be derived as

Ci,n =

n−1
∑

l=1

Bi,lal,n +Bi,nan,n

=

n−1
∑

l=1

(n−1
∑

k=1

ai,kak,l + ai,nan,l

)

al,n +

(n−1
∑

k=1
k 6=i

ai,kak,n + ai,n(an,n + ai,i)

)

an,n

=

n−1
∑

l=1

al,n

n−1
∑

k=1

ai,kak,l + ai,n

n−1
∑

l=1

an,lal,n

+ an,n

n−1
∑

k=1
k 6=i

ai,kak,n + ai,na
2
n,n + ai,nan,nai,i,

from which (2.7) follows. Finally, the components in equation (2.8) can be derived as

Cn,n =

n−1
∑

l=1

Bn,lal,n +Bn,nan,n

=

n−1
∑

l=1

(n−1
∑

k=1

an,kak,l + an,nan,l

)

al,n +

(n−1
∑

k=1

an,kak,n + a2n,n

)

an,n

=

n−1
∑

l=1

al,n

n−1
∑

k=1

an,kak,l + an,n

n−1
∑

l=1

an,lal,n + an,n

n−1
∑

k=1

an,kak,n + a3n,n,

from which (2.8) follows. �

Note that the particular forms of these expressions were motivated by an effort

to achieve the lowest number of occurrences of the last column components of the

original matrix, i.e., those that represent the interval variables. We will use the

formulae from the previous proposition to express the interval images or enclosures
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of the components of the third power of an interval matrix, yielding Proposition 2.3

below. In the case of (2.9) we get the exact image by simple interval arithmetic

evaluation thanks to the SUE condition. In the other cases, we obtain only interval

enclosures in general.

Proposition 2.3. Let A be from (2.1) and C := [A3]. Then

Ci,j =

n−1
∑

l=1

n−1
∑

k=1

ai,kak,lal,j + ai,n

(n−1
∑

l=1

an,lal,j + an,j(an,n + ai,i)

)

(2.9)

+ an,j

n−1
∑

k=1
k 6=i

ai,kak,n ∀ i, j ∈ {1, 2, . . . , n− 1},

Cn,j ⊆
n−1
∑

l=1

n−1
∑

k=1

an,kak,lal,j + an,n

n−1
∑

l=1

an,lal,j(2.10)

+ an,j

n−1
∑

k=1

an,kak,n + a2
n,nan,j ∀ j ∈ {1, 2, . . . , n− 1},

Ci,n ⊆
n−1
∑

l=1
l 6=i

al,n

(n−1
∑

k=1

ai,kak,l + ai,nan,l + an,nai,l

)

+ ai,n

n−1
∑

k=1

ai,kak,i(2.11)

+ a2
i,nan,i + ai,na

2
n,n + ai,nan,nai,i ∀ i ∈ {1, 2, . . . , n− 1},

Cn,n ⊆
n−1
∑

l=1

al,n

(n−1
∑

k=1

an,kak,l + 2an,nan,l

)

+ a3
n,n.(2.12)

In cases (2.10)–(2.12), interval arithmetic overestimates in general. However, we

can determine the exact images by other means. We begin with the most complicated

case (2.11).

Proposition 2.4. Each of the components Ci,n, i = 1, . . . , n − 1, is computable

in quadratic time.

P r o o f. Consider the system of lines in R2 determined by n − 2 equations in

variables ai,n, an,n:

ai,nan,l + an,nai,l +

n−1
∑

k=1

ai,kak,l = 0, l 6= i, n.

This system of lines constitutes a system of cells. The number of cells is quadratic

in n [2], and an enumeration of them can be also performed in quadratic time [5].
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Thus, we enumerate all the cells intersecting the rectangle ai,n × an,n. Each cell

uniquely determines the signs of coefficients of the parameters al,n, l 6= i, n, so that

we can set their values at al,n or āl,n accordingly; let us denote them by ãl,n. As

a consequence, the computation of Ci,n reduces to the computation of the ranges of

polynomials of the type

n−1
∑

l=1
l 6=i

ãl,n

(n−1
∑

k=1

ai,kak,l + ai,nan,l + an,nai,l

)

+ ai,n

n−1
∑

k=1

ai,kak,i + a2
i,nan,i + ai,na

2
n,n + ai,nan,nai,i.

However, this is a polynomial of a fixed degree in two variables. Its coefficients

are evaluated in quadratic time, and the polynomial itself then can be computed in

constant time, e.g., by employing optimality conditions. �

Having this expression resolved, we can go through all remaining cases and

show that computing the cube of an interval matrix with only one column of

non-degenerate interval components can be done in polynomial time.

Theorem 2.5. Let A be the matrix defined in (2.1). Then the interval matrix

C := [A3] can be computed in O(n3).

P r o o f. (1) Tractability of particular cases. Cases (2.9) and (2.11) have been

already discussed in Propositions 2.3 and 2.4.

Case (2.10) is also easy, since we enumerate the first and the third terms by interval

arithmetic, and the remainder represents a quadratic function in one variable an,n

with domain an,n, which can be resolved analytically.

Computing a tight enclosure for case (2.12) is also a polynomial problem. The

component Cn,n is a linear function with respect to the parameters al,n ∈ al,n,

l 6= n. Therefore, its maximum (and similarly its minimum) is achieved for al,n ∈
{al,n, āl,n}. Which one of the values is the right one depends on the signs of their

coefficients. Let cl be the value of an,n, for which
n−1
∑

k=1

an,kak,l + 2an,nan,l = 0

(if it exists). Then an,n is split according to these values to at most n subinter-

vals. On each subinterval, all coefficients have constant signs, so that the values of

al,n ∈ {al,n, āl,n}, l 6= n, can be fixed. Then the expressions get reduced to a cubic

polynomial in variable an,n, which is easily resolved.

(2) Overall complexity. The overall computational complexity is analysed by in-

vestigating the four cases; each of them takes cubic time in total (for the corre-

sponding components together). Case (2.9): Each component Ci,j needs quadratic
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time and there is a quadratic number of components. So the direct evaluation will

be too expensive, and we have to evaluate them in another way. Define a matrix

G ∈ R
(n−1)×(n−1) as Gij =

n−1
∑

l=1

n−1
∑

k=1

ai,kak,lal,j . This matrix can be evaluated in

cubic time, since it is the cube of A after removing the last row and the last column.

Now, we evaluate the component Ci,j , i, j ∈ {1, 2, . . . , n− 1}, as

Ci,j = Gi,j + ai,n

(n−1
∑

l=1

an,lal,j + an,j(an,n + ai,i)

)

+ an,j

n−1
∑

k=1
k 6=i

ai,kak,n.

Case (2.10): For each component, we need quadratic time to compute the coefficients

of the polynomial. The rest takes constant time. Case (2.11): By Proposition 2.4,

each component needs quadratic time. Case (2.12): By the above reasoning, we have

to inspect a linear number of instances. For each of them we evaluate the polynomial

in quadratic time. �

2.2. Third power of an interval companion matrix. For some classes of in-

terval matrices having only one column composed of non-degenerate intervals we can

find a polynomial algorithm for computing their cube in a simpler way. For a monic

polynomial p(x) = c0 + c1x + . . . + cn−1x
n−1 + xn, the corresponding companion

matrix is

C =















0 0 . . . 0 −c0
1 0 . . . −c1

0 1 . . . 0 −c2
...
...
. . .

...
...

0 0 . . . 1 −cn−1















.

We will consider an interval version of this matrix called an interval companion

matrix, in which all coefficients ci are considered as interval coefficients ci. Consid-

ering ci’s as variables, we can show that the third power of the companion matrix

has components which can be expressed with at least one occurrence of a variable

only in the last three columns. In column n − 2, there is a copy of the last column

from the original matrix. In column n − 1, the component on row position j 6= n

can be expressed as −cj−2 − cj−1cn−1 and the component on row position j = n as

−cj−2 − c2n−1. The most complex terms are in the last column. On row positions

j 6= 1, 2, n, they are expressed as

(2.13) cj−2 + cjcn−2 − cn−1(−cj−1 + cjcn−1).

It is a linear function in variables cj−2, cj−1, cj , cn−2 with appropriate interval do-

mains, so the maximum and minimum are achieved at their lower and upper bounds.
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For each combination of them (there are 24 = 16 possibilities), the expression reduces

to a quadratic function of cn−1, which is easily resolved. The component in the last

column with row index j = n can be expressed as

−cj−2 + cj−1cn−1 − cn−1(−cj−1 + c2n−1).

This is handled in a similar way as above. Let us also note that cases when j is

equal to 1 or 2 can be handled similarly. For j = 2 the expression is the same as in

equation (2.13) only with the first term cj−2 missing. For j = 1 the corresponding

expression is cj−1(cn−2 − c2n−1). Altogether it leads to the following result.

Proposition 2.6. The problem of computing the third power of an interval com-

panion matrix can be solved in O(n2).

3. Powers with constant expressions

The components of a matrix power can be expressed as polynomials in variables

corresponding to the components of the original matrix. This potentially leads to

violation of the SUE condition when computing the interval matrix power. The

previous section shows that the third power can be efficiently computed when we

restrict ourselves to a particular class. We define another class of interval matrices

generically via conditioning on the expressions of components of their powers.

Definition 3.1. Let k and me be fixed. We say that a class of interval matrices

has constant expression of kth power if any component of their kth powers can be

expressed as a polynomial in at most me interval variables.

Notice that a class of interval matrices from the above definition is not restricted

in the size of interval matrices, which are potentially unbounded. As an example,

consider the class of all tridiagonal interval matrices of all sizes with k fixed and

me = (5 · 3k−1 − 3)/2. This class satisfies the property of constant expression of kth

power.

Theorem 3.2. Let k be fixed and let A be an interval matrix having rational

endpoints with constant expression of kth power. Then the computation of the kth

power ofA up to any given accuracy ε is a polynomial problem with respect to input

data and log(1/ε).

P r o o f. Following the assumption, each component of the kth power of A can be

represented as the interval image of a polynomial of at most me variables of degree
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at most k. To find tight interval enclosure of any such component means to find

tight lower and upper bounds of the corresponding polynomial, where me variables

vary in their interval domains. We will focus on the lower bound of [Ak]; the upper

bound is dealt with analogously.

Consider an arbitrary component of the matrix Ak. By the assumption, it can

be expressed as a polynomial p(x1, x2, . . . , xme
), where x1, x2, . . . , xme

are interval

parameters coming from interval domains {a1,a2, . . . ,ame
}. Our aim is to compute

the left endpoint p of its image [p, p] = p(a1,a2, . . . ,ame
). Let y ∋ p be an initial

enclosure of the minimum. It can be computed by evaluating the interval matrix

power by interval arithmetic, for instance.

Now, the basic idea of the method is to apply a binary search on y, and iteratively

make it tighter up to a given accuracy. To this end, we need to check if y 6 p for

a given value y, that is, if y is a lower bound on p. Inequality y 6 p equivalently

reads

(3.1) (∀x1)(∀x2) . . . (∀xme
)

(x1 − a1 > 0 ∧ x1 − ā1 6 0) . . . (xme
− ame

> 0 ∧ xme
− āme

6 0)

⇒ p(x1, x2, . . . , xme
)− y > 0.

To check for (3.1), we utilize the Tarski elimination method [25] to eliminate all

universal quantifiers from this formula and thus determine whether this formula is

true or not. Note that the values ai, āi and y in (3.1) are constant.

Let us describe the approach in an algorithmic way.

(1) Compute an initial interval enclosure y of p.

(2) Test whether the midpoint satisfies yc 6 p.

(3) If the answer is yes, set y = [yc, y].

(4) If the answer is no, set y = [y, yc].

(5) Goto 2 unless y∆ < ε.

It remains to show the polynomiality of this algorithm. In step 2, we call the variant

of Tarski’s method from Collins [4]. To analyse the complexity of the quantifier elim-

ination we need to examine the formula (3.1). We already know that the number of

variables me and the exponent k are fixed. In the formula there are M = 2me + 1

polynomials, namely me polynomials xi − ai, me polynomials xi − āi and one poly-

nomial p(x1, x2, . . . , xme
) − y. Each of these polynomials gives rise to an atomic

formula, so the number of formulas is a = 2me + 1. The corresponding atomic for-

mulas are xi − ai > 0, xi − āi 6 0 and p(x1, x2, . . . , xme
)− y 6 0. Since me is fixed,

values M and a are fixed as well.

There is, however, another important characteristic of the formula that plays its

role when evaluating the overall complexity. This characteristic is related to the max-
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imum length of representation of any polynomial coefficient. The original algorithm

of Collins [4] considers integer coefficients and their lengths. We have a rational

matrix as an input, but we can simply transform the situation into integer data

by an appropriate multiplication. Due to this reason, we can call d the maximum

length of representation of any polynomial coefficient and consider it as polynomially

bounded.

Having all these descriptors of the formula set up, we can evaluate the complexity

of the quantifier elimination, following Collins [4], as (2k)2
2me+8

M2me+6

d3a. By the

assumption of the theorem, the only nonconstant variable is d, resulting in complexity

O(d3).

We use this elimination step in binary search for the initial interval with radius y∆.

Since we are able to provide an initial estimate of the enclosure with polynomial size

using interval arithmetic, the overall complexity can be written as O(d3 log(y∆/ε)).

�

We will present two classes of interval matrices satisfying the assumption of The-

orem 3.2. The first one are interval matrices with a constant number of interval

parameters, and the second one are interval band matrices.

Corollary 3.3. Let k and m be fixed. Then the computation of the kth power of

an interval matrix withm non-degenerate interval components up to a given accuracy

is a polynomial problem.

Definition 3.4. A matrix A ∈ Rn×n is called an l-band matrix (or simply a band

matrix) if ai,j = 0 for every i, j such that |i− j| > k.

Note that specific values of k provide well known classes of matrices such as a diag-

onal matrix (k = 0), a tridiagonal matrix (k = 1) or a pentadiagonal matrix (k = 2).

Note also that band matrices are traditionally defined using two parameters deter-

mining the width of the band in super- and subdiagonal directions. For the purpose

of this paper and simplicity of arguments we assume equality of both parameters and

introduce just one, as given in Definition 3.4. Let us recall a well-known observation

about band-matrices.

Proposition 3.5. Let A,B be two l-band matrices both of size n× n. Then the

matrix A ·B is a 2l-band matrix.

Considering this property, we can express the components of Ak as polynomials

of the components of A. As summarized in the following observation, this results

in a fixed number of variables appearing in each of the polynomials, leading conse-

quently to the fulfillment of the condition from Definition 3.1. The value of me is

derived based on a combinatorial calculation with a first-order recurrence equation.
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Proposition 3.6. Let k be fixed and let A be an interval l-band matrix. Then A

has constant expression of its kth power with

me =
(4l+ 1)(2l + 1)k−1 − 2l− 1

2l
.

Using this observation and Theorem 3.2, we can write the following theorem de-

scribing the complexity of computing interval powers of interval band matrices.

Corollary 3.7. Let k, l be fixed and let A be an interval l-band matrix. The

problem of computing the kth power of A up to a given accuracy is a polynomial

problem.

4. Powers of parametric interval matrices

Many problems that are tractable for interval matrices become problematic for

parametric ones even when considering a linear parametric case, see [6], [23], [24].

A linear parametric matrix reads

(4.1) A(p) :=
m
∑

q=1

pqA
(q), pq ∈ pq,

where p1, . . . ,pm ∈ IR. Note that this represents a generalization of an interval

matrix. We can evaluate the expression A :=
m
∑

q=1
pqA

(q) using interval arithmetic,

reducing thus the problem to a standard, non-parametric interval case, however, at

the cost of overestimation. Therefore, it is better to exploit the special structure of

parametric matrices. The interval hull of the kth power draws

[A(p)k] := �{A(p)k ; p ∈ p}.

We want to handle the parametric case exactly without relaxation to ordinary in-

terval matrices, which makes the problem of computing the kth power different. This

can also be observed in the following result showing that the problem of computing

the squares for the parametric case is difficult compared to the ordinary interval case.

Theorem 4.1. Computation of [A(p)2] is an NP-hard problem.
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P r o o f. Consider a quadratic form pTAp on an interval domain p ∈ p ∈ IR
n. It

is known [3], [16] that computing the endpoints of the interval spanned by the range

{pTAp ; p ∈ p}

is an NP-hard problem. Define a parametric matrix of size n + 1 as follows (the

empty positions can possess any values)

A(p) =















0 p1 . . . pn
∑

j

a1jpj

...
∑

j

anjpj















.

Then

(A(p)2)11 =
∑

i

pi
∑

j

aijpj = pTAp.

Therefore, determining the value of [A(p)]11 is NP-hard. �

In the same spirit as handling the hard problem of computing the cube for interval

matrices we can study the square of a parametric matrix by restriction to specific

cases.

Proposition 4.2. Set

Mi := (A
(1)
i,∗ | . . . | A(m)

i,∗ ), Nj := (A
(1)
∗,j | . . . | A

(m)
∗,j ),

and let r be fixed. The computation of [A(p)2] can be performed in polynomial time

on a class of problems with rank(MiNj) 6 r for each i, j = 1, . . . , n.

P r o o f. For any i, j and p ∈ p, we have

(A(p)2)i,j =

n
∑

l=1

( m
∑

q=1

A
(q)
i,l pq

)( m
∑

q′=1

A
(q′)
l,j pq′

)

=

n
∑

l=1

(Mip)l(Njp)l = pT (MiNj)p.

Finding the exact bounds for [A(p)2]i,j is thus reduced to finding the minimum and

maximum of the quadratic form pT (MiNj)p on the box p. This can be done in

polynomial time [14] since the rank of MiNj is fixed due to the assumption. �

Notice that the condition rank(MiNj) 6 r for all i, j is achieved if rank(Mi) 6 r

for each i, or if rank(Nj) 6 r for each j.

We can also restate Theorem 3.2 for the parametric case. Since the linear para-

metric matrix defined in (4.1) is not an ordinary interval matrix, we need to restate

Definition 3.1 as follows.
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Definition 4.3. Let k and mp be fixed. We say that a class of linear parametric

matrices has constant expression of kth power if any component of their kth power

can be expressed as a polynomial in at most mp parameters.

Using this definition, we can write the variant of Theorem 3.2 for linear parametric

matrices. To show that this theorem holds we can follow the same steps as in the

proof of Theorem 3.2.

Theorem 4.4. Let k be fixed, p1, . . . ,pm be interval parameters with rational

endpoints and A(1), A(2), . . . , A(m) be n-by-n rational matrices. Let A(p) be a linear

parametric matrix defined as in (4.1) with constant expression of kth power. Then

the computation of the kth power of A(p) up to any given accuracy ε is a polynomial

problem with respect to input data and log(1/ε).

5. Conclusion

In this work we deal with computing matrix powers of interval and parametric

matrices. It is an NP-hard problem already for the third powers. For this reason,

we investigate problems of computing powers of special types of interval matrices to

approach to the borderline between polynomiality and NP-hardness of the problem

in question. Theorem 2.5 shows that the problem of computing the third power of an

interval matrix (2.1) with only one column occupied by non-degenerate interval com-

ponents can be solved in O(n3). Additionally, Proposition 2.6 shows that computing

the third power of an interval companion matrix can be done in O(n2). Consid-

ering the one-column case it would be interesting to find the borderline between

complexities if such a borderline exists.

P r o b l e m 5.1. Let A be an interval matrix defined in (2.1). Determine whether

there exists k for which a problem of computing the kth power is NP-complete.

Along similar lines, it would be interesting to investigate computational complexity

of higher powers of the so-called diagonally interval matrices [13] or other special

classes of interval matrices.

For higher powers of interval matrices we show that the problem is polynomial

under certain assumptions given in Definition 3.1. This means that the exponent k is

fixed and each component of Ak can be expressed as a polynomial in a fixed number

of interval variables. The main ingredient of the proof is Tarski’s quantifier elim-

ination technique. This shows theoretical polynomiality of the computation of the

interval matrix power up to a given accuracy. However, due to its intrinsic com-

plexity, it might be difficult to implement this method in practice. As an alternative
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approach, one can utilize Bernstein polynomials. They turned out to provide a tight

approximation for the range of a polynomial on a hypercube or a simplex; see [17]

and other papers in volume 17 of Reliable Computing [7].

Further, we consider linear parametric matrices, as defined in (4.1). For them we

show that already the problem of computing the square of a linear parametric matrix

is an NP-hard problem. On the other hand, we also present a class of parametric

matrices with polynomial complexity. Finally, we provide a variant of the above-

mentioned Tarski method for linear parametric matrices.
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