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Abstract. We design shifted LR transformations based on the integrable discrete hun-
gry Toda equation to compute eigenvalues of totally nonnegative matrices of the banded
Hessenberg form. The shifted LR transformation can be regarded as an extension of the
extension employed in the well-known dqds algorithm for the symmetric tridiagonal eigen-
value problem. In this paper, we propose a new and effective shift strategy for the sequence
of shifted LR transformations by considering the concept of the Newton shift. We show
that the shifted LR transformations with the resulting shift strategy converge with order
2 — ¢ for arbitrary € > 0.

Keywords: LR transformation; totally nonnegative matrix; Newton shift; convergence
rate
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1. INTRODUCTION

Rutishauser [13] presented the quotient-difference (qd) algorithm, which has a re-
cursion formula incorporating the quotient and the difference, for computing eigen-
values of symmetric tridiagonal matrices. Fernando and Parlett [2] showed that the
qd algorithm can be applied to compute singular values of bidiagonal matrices. The
differential form of the qd (dqd) algorithm is a subtraction-free version, and the dqd
with shift (dqds) algorithm was formulated by introducing a shift of origin to the
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dqd algorithm to accelerate convergence [2], [10], [13]. The well-known linear algebra
package LAPACK [8] adopts the dqds algorithm as a solver for singular values.
The original qd algorithm repeatedly employs the following recursion formula:

q,inﬂ) = q,gn) - egfil) + efg"), k=1,2,...,m,

(n)
(n+1) _ _Tkt1 (n) _
(1.1) e 7Wek”, E=1,2,...,m—1,
k

where q,gn) and e,in) are variables that define a symmetric tridiagonal matrix and the

superscript n refers to the iteration number. The qd recursion formula (1.1) generates
a similarity transformation, known as the LR transformation, from a symmetric
tridiagonal matrix defined by q,gn) and e,in) to one defined by q,i"H) and eng_l).
It corresponds to computing the LR decomposition of the tridiagonal matrix and
multiplying the L and R factors in the reverse order. Note that the qd recursion
formula for the LR transformation is simply the integrable discrete Toda equation,
which is a representative discrete integrable system. In the case of the discrete
Toda equation, the superscript n and subscript k£ are the discrete time and spatial
variables, respectively.

One extension of the discrete Toda equation (1.1) is the discrete hungry Toda
(dhToda) equation:

QUM — Q™M+ B — BV k=1,2,...,m,

(n)
1.2 a2 W P S
() k 7Q(n+M) k > TSy )
k

EM=0 EWM=0 n=01,...

Here, M is a positive integer. The dhToda equation (1.2) was derived in the study
of box and ball systems (BBS), see [15], and differs from the discrete Toda equa-
tion (1.1) in that it has an additional parameter M. The dhToda equation (1.2) with
M =1 coincides with the discrete Toda equation (1.1). In a previous work, we de-
signed an algorithm for computing eigenvalues of totally nonnegative (TN) matrices
of the banded Hessenberg form, where a TN matrix is a matrix with all minors non-
negative [3]. Since this algorithm is based on the dhToda equation (1.2), it is called
the dhToda algorithm. The positive integer M corresponds to the bandwidth of the
target TN matrix in the dhToda algorithm. Algorithms for computing eigenvalues
of TN matrices have been also designed using the discrete hungry Lotka-Volterra
system [3] and the discrete Bogoyavlensky lattice [14].
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Symmetric positive-definite tridiagonal matrices belong to a class of TN matrices,
and so the dhToda algorithm can be regarded as a generalization of the qd algorithm.
As in the case of the qd algorithm, it is easy to derive the differential form of the
dhToda algorithm [3]. However, the discussion in this paper makes no distinction
between the original form and the differential form of the dhToda algorithm, because
they are mathematically equivalent. Like the qd algorithm, the dhToda algorithm
can be interpreted as a recursion formula for generating the L R transformation of the
TN banded Hessenberg matrix. To accelerate convergence, we developed the shifted
dhToda equation by introducing a shift of origin into this LR transformation [5].
Further, we showed that the shifted dhToda algorithm acts without breakdown if the
shift at each step is chosen to be smaller than the minimum eigenvalue of the target
TN matrix [5]. We proved that the shifted dhToda algorithm is numerically stable in
floating point arithmetic [4]. However, no concrete shift strategy has been presented
in the literature yet. The main purpose of this paper is to propose an effective
shift strategy for the sequence of shifted LR transformations for the TN banded
Hessenberg matrix, and then to analyze its advantages with respect to convergence
rate.

The remainder of this paper is organized as follows. In Section 2, we briefly review
the shifted LR transformation for TN matrices of the banded Hessenberg form, which
is derived from the study of the dhToda equation (1.2). In Section 3, we propose
a shift strategy based on the Newton shift. In Section 4, we clarify the properties
of the minimum eigenvalue of the TN matrix, and in Section 5 we focus on the
bottom-right entry of the TN matrix and its neighboring entries. In Section 6, we
investigate the convergence rate of the sequence of shifted LR transformations under
the proposed shift strategy. We also numerically verify the convergence acceleration
through some examples. Finally, we provide concluding remarks in Section 7.

2. THE SHIFTED LR TRANSFORMATION BASED ON THE DHTODA EQUATION

This section briefly reviews our previous papers [3], [5] concerning the shifted LR
transformation for a TN matrix based on the dhToda equation (1.2).

We begin by relating the dhToda equation (1.2) to the LR transformation for
a TN matrix. We showed in [3] that the dhToda equation (1.2) has the matrix
representation

(2.1) LM Rt — ML) = 0,1,.. .,
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where L™ and R are the lower and upper bidiagonal matrices involving the
dhToda variables Q,(:) and E,gn), which are defined as:

QY LoE
(n)
L™ .= 2 , R .= 1
’ : En;l—1
1 QW 1

Here, we introduce an m-by-m lower Hessenberg matrix A(™ as the product of L("),
Lo+ L FM=1) and R(M | namely:

(2.2) AW = [ 4 pEM=1) pn),
Q™ >0 Q™ >0...,Q% >0forn=01..M-1and E” > 0,
E > 0,...,E" | > 0, then it holds that Q" > 0, Q" > 0,....Q% > 0

and EYL) > 0, Eén) > 0,... ,E,(,?zl > 0 for any n. In other words, both L(™ and
R(™) always have positive bidiagonal entries. Since both L(™) and R(™ are TN for
any n, the lower Hessenberg matrix A is also TN, see [11]. Regarding (2.1) as the
LR transformation and using it repeatedly, we can rewrite A"+M) as:

A(n+M) _ L(n+M)L(n+M+1) o L(n+2M—1)R(n+M)

— (M) [ (n+M+1)  pnM-1) [ (n+M-1)

— R(n)L(n)L(n+1) - .L("+M_1),

This implies that the dhToda equation (1.2) generates an LR transformation
from A to A+M) where

A — (L(n)L(nH) . ,L(n+M71))R(n)7
(2.3)

An+M) — R(”)(L(”)L(”+1) o L(n+M—1)).

Since it follows from (2.3) that R A (R(M)~1 = A(+M) " we see that A +M) s
similar to A,

Moreover, our previous paper [3] showed that the dhToda variables QL") and E,in)
have the following asymptotic behaviors as n — oc:

M-—1
: (n—p) _ _
(2.4) nh—{r;og)Qk =c, k=1,2,....m,
(2.5) lim B =0, k=1,2,...,m—1,
n—oo
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where ci1,c¢a,...,¢, are positive constants such that ¢; > ¢ > ... > ¢,. Con-
sidering (2.4) and (2.5) in the entries of A we observe that A converges to
a lower triangular matrix with diagonal entries ci,ca,...,¢y as n — oco. There-
fore, ci1,¢ca,..., ¢y coincide with the eigenvalues of A, Our previous paper [3]
presented the dhToda algorithm for computing eigenvalues of the TN matrix A(©) =
(LO LM LM=1)RO) hased on the above properties of the dhToda equation (1.2).

To accelerate the convergence of the dhToda algorithm, we introduced (see [5])

a shift of origin into the LR transformation (2.3) as

A _ 0] — [ [(n41) | [t M=1) R(n) _ ()] — [(m) R(n.0),
2.
( 6) An+M) — p(n,0) [ (n) 4 S(n)I,

where s is a shift of origin, L") is a lower triangular matrix, and R(™? is an
upper bidiagonal matrix whose diagonal entries are all 1. The shifted LR trans-
formation (2.6) immediately leads to A +M) = R(m0) A()(R(0))=1 " which implies
that A(™*TM) ig similar to A™. Our previous paper [5] proved that the shifted LR
transformation (2.6) does not fail if s(™) is smaller than the minimum eigenvalue
of A" This shift strategy simultaneously guarantees the TN property of A("+M)
if A is TN.

In the non-shifted case, the LR transformation from A to A*M) is performed
as a sequence of LR transformations (2.1) involving only bidiagonal matrices. We
showed that this structure is essential for computing small eigenvalues of A with
high relative accuracy [4]. We reformulate the shifted LR transformation (2.6) also
as a sequence of bidiagonal LR and RR transformations [5]. Assume for the moment

that R(™% has been computed in some way. Then compute the bidiagonal matrices
L(nJrM)’ L(nJrMJrl)’ . L(n+2M71)’ R(n,l)’R(n,2), L ,R(n,M) and R(nJrM) by

(2.7) LFMAP) plnpt1) — Rvp) p(ndp) 0y — 01, M —1,
(2.8) R(n+M) p(n,0) — p(n,M) p(n)
From (2.7) and (2.8), we derive
A(n-‘rM) _ R(n,O)A(n) (R(n,O))—l
— RO () p(n+l) 7 (ntM=2) 1 (n+M—1) p(n) (R(mo))—l
_ L(nJrM)R(n,l)L(nJrl) o L(nJerZ)L(nJerl)R(n) (R(n,O))fl

— L(n-‘,—M)L(n-‘,-M-‘rl)L(n-‘rM-‘rQ) o R(n,M—l)L(n+M—1)R(n) (R(n,o))—l
_ L(n+M)L(n+M+1)L(n+M+2) o L(nJrQMfl)R(n,M)R(n) (R(n,O))fl

_ L(n+M)L(n+M+1)L(n+M+2) o L(n+2M71)R(n+M).
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This implies that the bidiagonal LR transformations (2.7) and the bidiagonal RR
transformation (2.8) generate a similarity transformation from A to AM+M),
Moreover, by letting E,(cn’p) denote the (k,k + 1) entry of R™P) we obtain the
following recursion formula for giving the LR transformations (2.7) and the RR
transformation (2.8), respectively:

](CnJrMer) _ Q}(€n+p) n E,i"’p) _ prtl)

k-1 s
k=1,2,....m, p=0,1,.... M —1,
(n+p)
(2.9) E(n7p+1) QkJrlp E(n,p)
k O tM+p) Tk
k
k=1,2,...m—1 p=0,1,...,M —1,
B ) 4 g g0 gy
(2.10) E<">
(n,0) _ k41 ga(n,M) _
E o Bk , k=1,2,....m—2

A close examination of (2.9) and (2.10) reveals that we need not compute the entries
Eé"’o), Eén’o), . E,(:_O) in R(™9 to start the LR and RR transformations. In fact,
if only E\™? in R0 is given, then (2.9) and (2.10) allow us to compute all the
entries of R0 [(n+M) [ (n+2M=1) and R("+M) in the following order:

(QUHMHP) pnp+) (n0) p(n0)

}I) 0,1,.. 7M—17E1 ’

{Q(n-‘rM-H’)) E(" p+1)}p o1 Eén-‘rj\/f)7 E:gn’O),

e, M—1,
{Q(n-‘rM-H’)) E(" p+1)}p oL, M- 17E§:jljw)va(r?’0)a
{01, a1

The formula for EYL’O) can be obtained by observing the (1,1) and (1,2) entries of
L gt pAM=DR() s and LW R(™0) in the first equality of (2.6):

(n) A(n+1) (n+M-1)
(2.11) B — Q3 Q1 ..Q}V[ : o)
Q ”)Q("Jr ) anJr -1 _ s(m)

Therefore, the shifted LR transformation (2.6) is completed by employing (2.9),
(2.10), and (2.11).

In the actual algorithm, we modify (2.9) and (2.10) to the differential form without
subtraction by introducing auxiliary variables [4], as is done in the dqd algorithm [2].
The differential form is mathematically equivalent to the original (2.9) and (2.10) but
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has better stability properties. For details and error analysis of the shifted dhToda
algorithm in the differential form, we refer to [4].

3. NEWTON SHIFT STRATEGY

The Newton shift is known to be an effective shift for the shifted QR and dqds
algorithms [1], [12]. The Newton shift 51(\? ) in the shifted LR transformation (2.6)
from A™ to AtM) is defined by

(3.1) s = (A
where tr(-) denotes the sum of all diagonal entries of a matrix. Since the TN ma-

trix A(™ has distinct positive eigenvalues A1, Ao, ..., Ay satisfying Ay > Ao > ... >
Am > 0, we easily derive

Thus, we expect that the Newton shift 51(\? ) is useful in the shifted LR transforma-
tion (2.6). However, we emphasize that 51(\?) computed by (3.1) is a constant that
does not depend on n, because the eigenvalues of A(™ are equal to those of A(©),
This causes the convergence rate of the sequence {A("HM)}I:O,L,,, to be at most
linear.

In this section, we explain how to utilize the idea of the Newton shift more effi-
ciently for the shifted LR transformation (2.6). Suppose s(™ has been computed in
some way, and we need to determine the next shift s M) for A™+M)  The key idea
here is to apply the Newton shift to A™ := A — s instead of A+M)  Let
51(\?) := 1/tr((A"™)~1) be the Newton shift for A™ and let s(**M) .= s(n) 4 Egl).
Then, since 0 < §§\?) < Am—s™ it follows that 0 < s("tM) < )\, and s("+M) can be
used as a valid shift. Moreover, it can easily be verified that s + [tr(A(™ — sI)~1]~!
is an increasing function of s when 0 < s < \,,,. Hence, s("*M) is a better shift
gl M) 51(\? ). The difficulty with this approach is that the matrix A is not
computed explicitly in the algorithm. To address this, we consider performing the

than s

following two steps of the shifted LR transformations using the same shift s("),

A _ ()1 — E(VL)R(%O)7
AWM _ ()] = RO (),
(3:2) A+M) _ ()] — E(nJrM)‘R(nJrM,O)7

A(n+2M) _ S(n)I —_ R(n+M,O)E(n+M).
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Then we can compute 51(\?) efficiently from the quantities appearing in the twofold

shifted LR transformations (3.2), as will be clarified in the following paragraphs.
Thus, in the next two steps, we can employ the shift s("+2M) ag

(3.3) s H2M) — () 4 5(n),

To estimate the value of 51(\?), we hereinafter compute the Newton shift 51(\1”+M) =

1/tr((A+M))=1) instead of 51(\?), where A(tM) = A(n+M) _5(n) T Since eigenvalues
of A+M) are equal to those of A, it is obvious that §1($+M) can be used instead
of 51(\?). Since det(A(™) = det(A™+M))  we can express the (i, i) entry of (A" +M))~1,

denoted by ((A+M))=1), . as

_ FATTM)
4 Atmeany-1y o O )
(3.4) (( )i, det( AT

where Cof(AEZ+M)) is the (i,7) cofactor of A+tM) and denotes the determinant of
the submatrix obtained by deleting the ith row and column of A+M)  According
to the first equation of (3.2), we can decompose A = AM — (M ] using the lower
triangular matrix L(™) and the upper bidiagonal matrix R(™%) as A(") = L) R(7.0),
Noting that all the diagonal entries of R(% are 1, we see that the denominator
det(A(™) is equal to the product of all diagonal entries of L(™), namely

We can also examine the numerator cof (f_lngrM)) in terms of the principal submatri-
ces formed by gathering the 41,71 + 1,...,ioth rows and j;,71 + 1,..., joth columns
of AH+M) " denoted AHM) (i : ig: gy 1 jo). Since AMTM) is a lower Hessenberg

matrix, we easily derive
(3.6) cof(/_ll(.TM)) = det(A™M (1 :5—1;1: 1)) det(A™M (141 : m;i+1:m)).

The third equation of (3.2) immediately leads to A*M)(1 : 4 —1;1 : i —1) =
LMY (14— 151 :4 — 1)RPHMO (14— 1;1: 45— 1). Noting that L +M)(1:4 — 1;
1:i—1) is lower triangular and det(R™+M:0 (1 :4 —1;1:4 — 1)) = 1, we obtain

(3.7) det(AMHM(1:i—1;1:0—1)) = (LMY, (LMY, o (DOFM)), .
Similarly, from the second equation of (3.2), we derive

(3.8)  det(A"TM (G +1:m;i+1:m))
= det(R™V(i4+1:m;i+1:m))det(L™ (i +1:m;i+1:m))

= (E(n))iﬂ,iﬂ(E(n))i+2,i+2 cee (L(n))m,m~
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Therefore, it follows from (3.6), (3.7), and (3.8) that

(3.9) cof (ATM) = (LMY, (LMY, (LMY,
X (L™)ip1,i41 (L™ )ig2i02 - (L) m.

Combining (3.5) and (3.9) with (3.4), we have

3 <<A<”+M>>1>i,i)_l

i (LMY (LMY, o (LMY, iy -
(L)1 1 (L) 5. .. (L), 4 .

(3.10) s =

To compute values of the diagonal entries of L™ and L("tM) we employ
the first three equations of (3.2). Since the (k,k + 1) entries of A — s(W] =
— T n n+1 n+M-—1 n
LOVLOHD L LMD RO g0 T and LR are QU QY L QM TV B
and (L("))th,(cn’O), respectively, we derive the following from the first equation
of (3.2)

_ an)QLn-i-l) o QLTH_M_DE](:)

(3.11) (L™)
El(cn,O)

On the other hand, the equality of the (m — 1,m) entries on both sides of the second
equation of (3.2) leads to

+M +M+1 +2M—1 +M
(3 12) (E(n)) _ QE:LL—l ) 5)?—1 ) e Qi}?—l )Er(nn—l )

E(nvo)

m—1
Finally, we compute the diagonal entries of L("*™) from the third equation of (3.2)
(3.13)

(n+M) ~(n+M+1) (n+2M —1) ~(n+M)
(E(n+M))k L = an an an Ekn

El(anrM,O) ’

At the beginning of the iteration, we determine the shift s() < \,, in some way;
for example, using the Newton shift (3.1). Then we perform two steps of shifted
LR transformations using s(°) as in (3.2), and obtain L) M+ (EM=1)
R RM)  RO.0) and RMO). By substituting the entries of these matrices
into (3.11), (3.12), and (3.13), we can compute (L(9); 1, (L9)29,...,(L),,.m and
(LODYy 4 (LMD)g o oo (LMD, 1. Then, we can compute 51(\?) from (3.10)
and the shift to be used in the next two steps by sM) = s(0) 4 51(\?). This pro-
cess is repeated and the shift is updated at each step of the twofold shifted LR
transformations.
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4. MINIMUM EIGENVALUE

To examine the convergence rate of the sequence of shifted LR transformations,
we need to understand the behavior of the minimum eigenvalue A, of the TN ma-
trix A("). In this section, we prepare three lemmas for the value of \,,.

We first clarify the relationship between the minimum eigenvalues of the TN ma-
trix A and its principal submatrix A™(1 : m — 1;1 : m — 1). Here, we ex-
press A(")(l :m —1;1 : m — 1) using the leading principal submatrices of LM,
L+ LeAM=1) and ROV as

(41) A™MA:m-1;1:m—-1)

I,
= (Imo1 Opp_y) LWLOHD [ M=) () (OT 1>

m—1
= (LMW1 :m—1L1:m—1) 0y_y)L0L0)  phrM=1)
<R(")(1:m—1;1:m—1)>
X
OT

m—1

=LMW1 :m—L1:m—1D)LO 1 im—1;1:m —1)
><...><L("+M71)(1:m—l;l:m—l)xR(")(lzm—l;lzm—l),

where I}, and 0O denote the k-by-k identity matrix and the k-dimensional zero column
vector, respectively. Since bidiagonal entries of L(")(l :m—1;1:m—1) and
RM™(1:m—1;1:m—1) are positive, A (1 :m —1;1:m —1) is a nonsingular TN
matrix and its eigenvalues are positive. The interlacing theorem [7], [9] immediately
leads to the inequality A,, < pm—1, where p,,—1 denotes the minimum eigenvalue
of A™(1:m —1;1:m —1). Noting the TN property of A™ and A™ (1 :m — 1;
1:m — 1), we derive the following lemma for a stricter inequality:

Lemma 4.1. The minimum eigenvalues A, and fi,,—1 satisfy:

(42) Am < Mm—1-

Proof. We define two matrices that are similar to L™ and R("), respectively,
by L™ := J,,L( J,, and R := J,, R".J,,,, where .J,, := diag(1,—1,...,(=1)™"1).
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Then L(™ and E(")(l :m —1;1:m — 1) have positive diagonal entries and negative
lower subdiagonal entries, so we easily see that all lower triangular entries, including
diagonals, of (L)~ and (L™ (1 : m — 1;1 : m — 1))~! are positive. Similarly,
all upper triangular entries, including diagonals, of (JTB("))’1 and (E(")(l m—1;
1:m —1))~! are positive.

Next, we express L(™ and R™ as 2-by-2 block matrices:

£ _ <£<”>(1:m—1;1:m—1) 0m1>

—e, (n)
~ m—1 m
ﬁ(n) . R(n)(l m—1;1 ;m_l) _Er(r?zlem—l
- 0,1 1 ;

where ey, denotes the k-dimensional unit column vector whose kth entry is 1. With
the formula for the inverse of a block matrix, we obtain

(4.3) (L0~
(L1 :m—1;1:m—1))"" 0,1
_<@W)%2ﬂﬂwhm—hhm—ml @W>J’
(4.4) (R(M)~1
B ((ﬁ(”)(l cm—1;1:m—1)"" E™ (R™W(1:m—1;1:m— 1))_1em1)
B 0, 1 '

m—1
Equations (4.3) and (4.4) suggest that

7 (n) -m—1:1:m — -1 1 B o
<(L (1: I;1 1)) OO >_<(L(n)) ’

o7
~ m—1
n . . . -1
<(R( )(1,m_T1,1.m—1)) 0m1>_<(R(n))1’
Omfl 0

where X =< Y signifies that ¥ — X is nonnegative. For nonnegative square matri-
ces X1, Y7, Xs, and Yo, if X7 X Y7 and X <X Y, then X7 X5 < Y1Y5 [7]. Therefore,

we derive

(15) Cﬁmhm—hhm—n>lanj

0,1 0
. (LOAM=D(1:m —1;1:m—1))"1 0,4
(UL 0
. ((j(n+M—2>(1:m—1;1:m—1))—1 Om_1>
o 0
y y (LA :m—-1;1:m—-1)"" 0,1
1

< (E(n))fl(z(nJerl))fl(E(nJerZ))fl o (z(n))f )
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We introduce a matrix similar to A as
A = g A g = [ (D)t M=1) p(n)

Similarly to (4.1), it follows that A®(1 : m — 1;1 : m —1) = L™WQA : m — 1;
1L:m—1DLOD1:m—1;1:m—1). .. LOTM-D(1:m—1;1:m—1)RM™(1 : m—1;
1:m —1). Thus, we can rewrite (4.5) as

((A(")(l :m —Tl; L:m—1))71! Om_l) < (A,

0,,_1 0
From the positivity of (E("))’l, (JTB("))’1 and their principal matrices, it is obvious
that (A7)~ and (A (1:m —1;1:m —1))~! are positive matrices.

Using the Perron-Frobenius theorem [7], we see that the normalized eigenvector of
fl(")(l :m —1;1:m — 1) corresponding to the maximum eigenvalue H;L1_1 has only
positive entries. For € > 0, n > 0, and the normalized eigenvector x,,_1, we prepare
the positive matrix:

(4.6) (@(”’(1 om =11 m = 1) %) |

[t ana), en

Then, we derive

((A(")(l cm—1;1:m—1))7 ! Ewm_1> (:I:m_1>
P11, 1) n

-1
umlwm1+6nwm1> (o) <wm1>
=" = (M1 + €M) ,
<um1177||wml||2 + en? ! n

which implies that the nonnegative matrix in (4.6) has an eigenvalue anlq + en.
Since (A(”))_l is a positive matrix, there exist some £ and 7 satisfying

(4.7) <(1‘~1(")(1 m—11:m—1))"Y ez,

=< (A~
(fm—1) " T 1" €ﬂ> (47)

According to Horn and Johnson [7], p.491, for positive square matrices X and Y,
the spectral radius of X is smaller than or equal to that of Y if X <Y. Thus, we
obtain

Pt < Ry +en <A
which immediately yields (4.2). O
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For convenience, we hereinafter use the abbreviations flg\"j = A — X, I and
flg\"j(l chil:k) =AU (1: k;1: k) — A\ Ip. We next present an implicit expression
of the minimum eigenvalue \,, using the entries of A™).

Lemma 4.2. The entries and minimum eigenvalue of A™ satisfy
(4.8)
Am = (A™) 0 — (A™) 1 0 A (12 m— 1)(14_1&72 (1:m—1;1:m—1))"en,_1.

Proof. It is obvious that A( ") has an eigenvalue of 0. Let z be the eigenvector
corresponding to the 0 elgenvalue Moreover, let z(i) denote the ith entry of z.
Then, from Ag\")z = 0, it follows that

(4.9) AE\TZ(l cm—11:m—1)z(1:m—1)+ (A™),, 1 mz(m)enm_1 =0,
(4.10) A™(m;1:m—1)z(1:m—1)+ (A™ ) — An)z(m) = 0.

With the help of Lemma 4.1, we see that /_1&7:3 (1:m—1;1:m — 1) is nonsingular.
Therefore, (4.9) leads to

(411)  z(L:m—1) = —(A™),y z(m) (A (Lim — 11 :m — 1)) ey
Combining (4.10) with (4.11), we derive
(4.12)  [—(AM)p 1AM (s 1 em — 1A (Lim— 151 :m — 1)) Len
+ (A = Am]z(m) = 0.

Let us assume here that z(m) = 0. Then, we can simplify (4.9) as

AV im—11m—1)z(1:m 1) =
which implies that \,, is an eigenvalue of A" (1 :m—1;1:m—1). This contradicts
Lemma 4.1. Consequently, noting that z(m) # 0 in (4.12), we have (4.8). O

We also present a lemma for an implicit expression of the minimum eigenvalue A,

by considering the LU decomposition of flg\")

Lemma 4.3. There exists a lower triangular matrix L™ with ([V/(n))m m = 0 and
a unit upper bidiagonal matrix R(™9) guch that A W) — R0 Let E ) be
the upper diagonal entries of R(m0), Moreover, let E ”) =Lt L(”JFM D,
Then,

-1

m
(4.13) [Z (BB B (L)
7j=1
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Proof. Using Lemma 4.1 recursively, we observe that all eigenvalues of principal
submatrices A (1:m —1;1:m—1), A1 :m —2;1:m —2), ..., A™(1;1) are
larger than A,,. In other words, det([lgfz(l ck;1:k)#0for k=1,2,...,m— 1.
Hence, flg\")(l :m —1;1 : m — 1) admits the LU decomposition flg\n)(l :m — 1;
1:m-1)= i(")(l :m—1;1: m—l)é("’o)(l :m—1;1:m—1), where E(")(l :m—1;
1:m—1)and R™9(1 :m —1;1 : m — 1) are nonsingular. Using the block LU
decomposition of a 2-by-2 block matrix [6], we obtain

X1 Xip Ly (0]
(4.14) = . ~ 1
Xo1 Xop XonRyp Xoo— X1 X X1
y Rii (L11) ' Xy
(0 I ’

which holds when the (1, 1) block X7 ; admits the LU decomposition Xy 1 = L1 1R 1.
We can obtain the LU decomposition of flg\nj by

(4.15)
A _ i(”)(lzm—l;lzm—l) 0
Am T A(”)(m; 1:m— 1)(Fi("’0)(1 tm—1;1:m—1))7! ([u/("))m,m

R(”’O)(l cm—1;1:m—1) (A(”))m_Lm(Iu/(")(l m—1;1:m—1))"te, 1

X )
0 1

Since AE\Z) is singular and both L™ (1 : m—1;1: m—1) and R™(1 : m—1;1: m—1)

are nonsingular, (Iu/("))mm must be 0. Therefore, we can adopt the first and second

matrices on the right-hand side of (4.15) as L™ and R0, respectively.
Noting that A™ = £ R(") we derive the following equality for L™ and R(M0);

(4.16) ROOLM 4\, 1 = RO L0V RO (R(0))=1,

Since the mth column of L(™ is 0, the (m,m) entry of AntM) .— RO [ () 4\ T
is A,. Equation (4.16) implies that the (m,m) entry of R0 £ R (R(m0)~1 jg
equal to A\,,. Considering the (m — 1)-by-(m — 1) principal submatrix in the matrix
equality AHM) = R(m:0) £(n) R(n) (R(0))=1 e obtain
(417) A1 —1;1:m - 1)

= RO :im—1;1:m)L™ (1 imy1:m—1)

x R™(1:m—1;1:m—1) (RN :m—1;1:m—1).

Noting here that all the diagonal entries of R(™ and (R"9)~! are 1 in (4.17), we
derive

cof (ATM)) = det(R™V (1 :m — 1;1:m)L™ (11 m;1:m —1)).
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With the help of the Cauchy-Binet formula [7], p. 22, we derive

m
det(R™O(1:m—1;1:m)L™M (1 :m;1:m—1)) = Zcof(éxl”]@)cof(ﬁyl%).
j=1

Recalling the matrix form of R(™ and R(m9) we see that

»(n,0 =(n,0) 74(n,0 (1,0
cof(RYD) = ESOEY L E)

m—

and -
cof (L)) = (L)), det(L™)

((£97) g Aet(A) = ((£00) )5 det(ATH20)

It follows that

m
(418)  cof (AGEM) = S (B B B (L) g det (AT,
Jj=1

Since
det(A™HM) = det(A" M) and cof (AL EM)) /det(AmTM)) = (AHM 1)
we can rewrite (4.18) as

v

(4.19) ((A(n+M)y= =N ETOEEY B (L) T
7j=1

Noting that A +M) is a 2 x 2 block lower triangular matrix with the (2,2) block A,
we know that ((AtM))=1), = X\-1. Substituting this into the left-hand side
of (4.19), we obtain (4.13). O

5. BOTTOM-RIGHT ENTRY AND ITS NEIGHBORING ENTRIES

We can observe the asymptotic convergence of the shifted LR transformation (2.6)
with s < ), from A to A"+M) as n — oo by comparing the (m,m) and
(m — 1,m) entries of A™TM) with those of A, In this section, we present an
expression of the (m, m) and (m — 1,m) entries of A®*™) using the entries of A(™)
and the shift s(™).

We first give a lemma for a relationship of the (m,m) entry of A"+M) to that
of A™ involving the other entries of A, the minimum eigenvalue \,,, and the
shift s(™).
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Lemma 5.1. Under the shifted LR transformation (2.6) from A(™ to A(+M)
with s(") < \,, , it holds that

(5.1) (AWM — s
= A — s+ (AD (m;1m — D) AM A m— 151 0m 1))
X (AM1:m—=1;1:m—1)) " en 1(A™) 1]

Proof. Since A" with s(™) < \,, has the LU decomposition A = L R(0),
we can also decompose A™(1:m —1;1:m—1)as AMW1 :m—1;1:m—1) =
LMW1 :m—1;1:m—-1)R™O(1:m—1;1:m—1). By letting X;, = A™(1:m—1;
1:m-— 1), X172 = (A(n))m,Lmem,l, X2’1 = A(")(m,l Lm o— 1), and X2’2 =
(A = (A, 0 — 50 in (4.14), we obtain

(5.2)

A — LA :m—1;1:m—1) 0
o A(")(m; 1:m— 1)(R("’0)(1 cm—1;1:m—1))7! (E("))mm

(R("’O)(l cm—11:m—1) (A™) 1 (L1 im—1;1:m — 1))_1em_1)
X
0 1 ’

where

(5.3) (]j(n))mm = (A("))m,m — s
— (A A (M1 im = DA™ m = 1;1:m— 1)) Le, .

Equation (2.6) immediately leads to
Combining (5.4) with (5.3), we derive

(5-5) (A(n—i_M))mm = (A(n))m,m
— (A A (M1 m = DA™ m = 1;1:m— 1)) Le, .

Using Lemma 4.2, we can rewrite (5.5) as

(5.6) (AT = A+ (A1 AT (M1 m — 1)
(AN @ :m=11:m—1)" = (A1 m =151 :m 1)) Yenr.

Since Y ! — X~ = X~1(X — Y)Y ! for nonsingular matrices X and Y in (5.6), we
have (5.1). O
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Similarly to the case of the (m, m) entry of A®*M) e can derive a lemma for the
case of the (m — 1, m) entry of A"+M) with the help of the block LU decomposition
of the principal submatrix.

Lemma 5.2. Under the shifted LR transformation (2.6) with s") < \,,, from A™
to A(TM) it holds that
(5.7) (APt = (AT m(Am —s)
[(A("))m 11— 8™ — (A, o A (m =11 0m - 2)
X (AM1:m—21:m—2) " eno] !
X 14 (AM™), 1 A (m; 1 :m — 1)(Ag:3(1 cm—1;1:m—1))""!
X ([l(”)(l cm—1;1:m—1))"e, 1]

Proof. From (2.6), we easily observe that

(5.8) (A = (RO 1 (D),
(5.9) (L)Y = (AWM — s,

s

The block LU decomposition (5.2) also leads to
(5-10) (R(mo))m—l,m = (A(n))m—l,m((i(n))m—l,m—l)_l

Considering the resulting block LU decomposition:

AT im—-11:m—1)=L™1:m-1;1:m-1)R™Y1:m—1;1:m—1)

A 1 m—2;1:m—2) (A™) 0 1€m 2
N ~L1:m=2)  (AM) g —s™ )7

we derive

(5.11)

(L(n))m—l,m—l = (A(n))m—l,m—l - S(n)

— (A("))m_gm_lA(") (m—1;1:m— 2)(14_1(”)(1 cm—21:m—2))"te,_o.
Substituting (5.9), (5.10), and (5.11) into (5.8) and using Lemma 5.1, we obtain (5.7).
(]

The following lemma also gives an expression of the product Q%L +M)Q$,? MY

Qs,? +2M_1), which plays an important role in Section 6.

Lemma 5.3. The product Q$7?+M)Q%L+M+l) e %LHM_D satisfies
(5.12)
m -1
n n (n 0 0 ,0 n)\—
QUHMIQEIMTY QMY = [Z (B OB - EGEOD(L)

J=1
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Proof. It is obvious that Q%L+M)Q%L+M+l) .. .Q%LHM_” = (E(”JFM))m,m.
According to the formula concerning the bottom-right entry of the lower triangular
matrix in the LU decomposition, we can rewrite (£TM),. . as det(A"+M))/
cof(As,?}_nM)). It follows that

(5 13) Q(n+M)Q(n+M+1) Q(n—i-QM—l) — det(A(n+M))
. m m Qo T
cof (Amm )

Similarly to the proof of Lemma 4.3, we derive

m
(5.14)  cof(ALEM) =SBV ENEY BN (L)) g det(ATHM)),
Jj=1
Therefore, by combining (5.13) with (5.14), we have (5.12). O

6. CONVERGENCE RATE

In this section, we clarify the convergence rate of the sequences {Q,(CQZM)}ZZ()?LW,
{E,(QQIM)}ZZ()?LW, and {S(QlM)}l=0717___ appearing in the shifted LR transforma-
tion (2.6) as ! — oo under the shift strategy (3.3). We also provide a numerical
example to check the convergence acceleration.

We first investigate the convergence rate of s(**) as | — co. Rewriting the shift
strategy (3.3) in terms of the eigenvalues A1, Ag, ..., Ay, we obtain

5(20M)

(6.1) sCATDID = (D 4 2[;\\/Im < m—1 2IM))—1
Lot (A = 5@ S50 (A — sI0)

From this expression, it is clear that if s(2*) < X, the denominator in the second
term on the right-hand side is larger than 1. Therefore, we have

SCUADM) o (M) |\ (2IM) _

Since s is chosen to be smaller than \,,, we know by induction that s < X,
holds for all [ > 0. Furthermore, we see that the sequence {S(QZM)}l=0717___ is mono-
tonically increasing, since the second term on the right-hand side of (6.1) is positive.
That is, it is a monotonically increasing sequence bounded above and it converges
to some constant smaller than or equal to Ay,. Now, we rewrite (6.1) as

m

A -t
2(I+1)M) 2IM m
(6.2) )\m — S( ( M) — ()\m ( ) { [1 + E ( m)} }
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Since {s QlM)}l —o,1,... is monotonically increasing, there is a constant 0 < c < A,
such that s > ¢ holds for any sufficiently large . For a sufficiently large [, the
following inequality holds:

0<1—{1+Z( %)Tl [ i::( /\_c')}_1<1.

Therefore, the sequence {\,, — s(2M )}120717.“ converges at least geometrically to 0

and llim sM) = )\, . We can further rewrite (6.2) as
—00

S (= sy

T O = sC0) ST (3, = 500

(63) Ap — G = (,, — 5102

Noting that the second factor on the right-hand side converges to a positive constant
as | — oo, we can conclude that {S(QZM)}l=0717___ converges to A\, quadratically as

follows:
A — sGUFDM) Zﬁ;l()\j — g@))-1
(64) lim —_— = lim J —
=00 (A — sCIM))2 1500 1 4 (), — s(2UM)) Z;L (A — s(2M))—1
m—1
o Aj— Am
With respect to the convergence rate of the sequence E,(flM) as [ — oo, we present

the following theorem.

Theorem 6.1. Under the shifted LR transformation (2.6) with the shift stra-
tegy (3.3), Eglf\f) converges to 0 with order 2 — ¢ for arbitrary ¢ > 0, that is,

E<2(1+1>M>

Proof. It is easy to check that

(A(QIM)) (Q(QIM)Q(QIM-H) Q((2l+1)M 1))E(21M)
20+1) M) ~((21+1)M+1) 2(141)M—1 20+1)M
(A((2l+1)M)) 1 (Q(( +1) Q(( +1)M+1) Q( +1) )) ( Ir ) ).

m, —

Combining these with Lemma 5.2, we derive

(6.6) ELCEHDM) _ i) () - (@iM)) p2IM)

—1 >
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Q(2lM Q(2IM+1 Q((2l+1)M 1)

(2tM)
Q(( +1) )Q(( +1) M+ ) Q( (+1 ) )

1+ (A(QlM))m_LmA(QlM) (m;1:m— 1)(14&%5LM)(1 m—1;1:m—1))" €,
X (AR, TSR — (ACDDY, AR (1,1 i m — 2)em 2
égl_]\? = (A(QZM)(l cm—1;1:m—1)"ten 1,
éfﬁ%) = (ACM (1 :m—21:m—2)) Len_s.

Since we proved in [5] that A™M) converges to a lower triangular matrix with di-
agonals A1, Aa,..., Ay as | — oo, the term (A(QIM))m,Lm,l in (6.7) converges to
Am—1 and both (A(QZM))m,Lm and (A(QZM))m,Q’m,l converge to 0. The row vectors
ACM) (1 2 m—1) and ACM) (m —1;1 : m —2) converge to some constant vectors.
Since AGIM) = ARIM) _s(2M) [ ig nonsingular, the inverse matrices (AM) (1 : m—1;
1:m—1))""and (A®M)(1:m—2;1:m—2))"" converge to some constant matrices.
Moreover, we showed in [5] that Q(QZM)Q(QZMH) Q((QH_DM D converges to A\, _1

as | — oo, so the ratio Q(zzM)Q(le+1) Q((2l+1)M 1)/(Q((2l+1)M)Q((2l+1)1\1+1) -

Qi,(i(ll“)M 1)) converges to 1. Substituting all of these into (6.7), we obtain

1 1
(6.8) R WA i) Hl e W

We now consider the ratio E(Q(Hl)M)/(Eglf\f))Q_s where ¢ is arbitrary positive.

First, by using (6.6) twice and noting that s((TDM) = 52IM) in (3.2 we have

(6.9) E(2(l+1)M) Q(2lM)Q((21+1)M)(>\m _ s(QIM))QE,(,flf\f).
From (6.9), we immediately derive
(6.10)
E(2(l+1)M) o21M) p((21+1)M) N\ g(2UM) 2
@IM)\g_.  (o((21—2)M) ,((2I—1)M) 275< A, — s(20-1)M) 2)
(B2 (o 0 )27 N (Am )
E2M)
_ g(2U-1)M)y2e _ “m—1
X ()\m S ) (E(2£l;1)M))2_6
-1 Q((2j+2)M) (@5+3)M) ) - g2EHM) 2 (25M)\2 Eﬁfﬁ?
= jo[(Q(QJM)Q((2]+1)M))2 € ( (/\m — 5(2jM))2 ) (Am = ) i| (Er(r?)fl)27€ ’

From (6.8) and (6.4), we see that the rates p((21T2)M) o((27+3)M)  o(27M) 5((2j+1) M) )2 =<
and (X, — sCUHDM)Y) /(N — s(ZIM))2 converge to some constants as j — oo. More-
over, (A — s2M))e — 0 as j — oo. Thus, the bracketed part on the right-hand
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side of (6.10) converges to 0 as j — oo. Therefore, their product also approaches 0
as | — oo. This immediately leads to (6.5). O

Before analyzing the convergence of the sequence Q,(flM) as | — oo, we present

the relationships of E,(flM’O) and E,(flM’O) to E,(flM).

Lemma 6.1. The variables E,(flM’O), E,(flM’O), and E,(flM) satisfy
(6.11) BP0 — gBIM) pEIM) g 9 m -1,
(6.12) BRI — gEIMY pEIM) g 9 m -1,
where

5}(flM) — [(A(QZM))k’k _ @) (A(QZM));C,L;@A(”M) (k;1:k—1)
X (A(QZM)(l ck—1;1:k— 1))716k—1]71( ;(CQZM)Q;(CQZMH) . -Q;(c(QH_l)M_l))
B = (AP = Ay = (AP g AP (k12 k- 1)

X (AP k= 110k — 1) ey THQEM QMY L QiPTIMTD),

Moreover, ,(flM) = /(A — A\p) and B,(flM) = A/ (A — Am) as l — oo.

Proof. Similarly to the derivation of (5.11), we derive for k =1,2,...,m — 1:

(6.13) (LMY, ) = (ARMDY, I

— (ACM)Y, AP (1 e — D (ACM (1 ke — 151k — 1)) e,

Combining this with (3.11), we have (6.11). By replacing s**) with \,, and re-
peating the same argument, we obtain (6.12). The limits of B,(flM) and ﬂu,(flM) as
I — oo are easily checked by using (A(QIM))k,k - Ak, (A(QlM))k,UC — 0, and
ngle)ng2lM+1) o QI(€(2I+1)M71) Sy A as | — oo 0

Combining Lemma 6.1 with the lemmas from the previous sections, we obtain the

following theorem concerning the convergence rate of Q,(flM) as | — oo.

Theorem 6.2. Under the shifted LR transformation (2.6) with the shift stra-
tegy (3.3), the product leM)QgZMH) e Q&,(?H_DM_D converges to the minimum
eigenvalue \,, with order 2 — ¢ for arbitrary € > 0, that is,

Ay — Q;QL(Z+1)M)Q$72LU+1)M+1) N .er(LQl+3)M—1)

(6.14) lim

=50 (A — Q%QLZM)Q%QJM-H) o Q%QHHM_I))%E =0.
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Proof. From Lemmas 4.3 and 5.3, we easily derive

(6.15) A — Qgs2l+1)M)Q$)g2l+1)M+1) o Qg(lJrl)M—l))
[ B B O£
=1

< IM IM = (21M, _
X[Z (2 o)E(z 0) ~E,(3,10))((£(21M)) 1)m’j]

_ 21M,0) ~(21M,0 21M,0
= D (L) (B BN B

2IM,0 QZMO - QZM,O
j( ) RO EM0)
—1 m—

2lM0 2lM0 7 (20M,0
= S [((eey- m,JZ BP0 pEO0) o))
1 k=j

21M,0) ~(21M,0 21M,0 21M,0 2(21M,0
x (EZO R0 pRIL0 (R0 BEIM0))

3

<.
Il

Using Lemma 6.1, we can rewrite EV,(flM’O) — E,(flM’O), appearing in (6.15), as
(6.16) El(cle,o) B E}gle,o) - S(QZM))’Y;(flM)E;gmM),
where
6.17) AWM = 1 A (e — 1) (A (1 k- 1,1k — 1)) !
k

X (flgfiM)(l ck—1;1:k— 1))_1ek—1(A(2lM))k—l,k]ﬁ;ile)B;glM)

21M 21M 204+1)M—1)\ —
(@D QE g

Recalling that A®™) converges to a lower triangular matrix as | — co, we see that
the (k — 1)-dimensional row vector A (k:1 : k — 1) converges to some constant
vector as | — co. Similarly, the inverse matrices (A (1:k —1;1:k—1))"" and
(flgiiM)(l :k—1;1 : k—1))"! converge to some constant matrices as n — oo.
Considering this result and using (A(QZM))k,lyk = 0, B,(flM) = A/ (Ak = Am)s
3 N/ (\k = Am) and QPMIQEIMED | QURHDM=L A as 1 = oo
n (6.17), we see that

lim 7(2lM) _ Ak
l—00 (/\k - )\m)Q .
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Using Lemma 6.1 and (6.16), we can rewrite (6.15) as

(6.18) (Am — Q(EHDM) QDM+ - ARUH)M 1)y
% {Z(Ejgle,o)Ej(%rly,o) o E(leo )((E(QIM)) )m’]}
j=1

[Z BB B ’°>><<£<21M>>-1>m,j}

= (A — S(QlM))é(QlM)ESl_Af),
where

m—1

(6.19) 6C = BB EERY BRI (L) )

=1
m—1
2IM) 3(21M) 2lM 21M) ,(2AM 20M 21M
X Z 5( 5](+1 . ( )(5k )5k+2 )"'ﬂﬁrzfl))’yl(c )'
k=j

Since A®M) converges to a lower triangular matrix with positive diagonals Aj,
A2, ...y Am, from the continuity of the LU decomposition, its lower triangular fac-
tor L) also converges to the same nonsingular matrix. Thus, the limit of
(LGMY=1),  as | — oo exists. Letting oy := lli%lo((ﬁ(QlM))’l)m,k and not-

ing that B = 0, 8™ = /O — Am)y B2 = A/ — Am), and
'y,(flM) — =M/ (M — Am)? as | — oo in (6.19), we obtain

o S(2AM) _ (2UM)— @M) _ __ Om-1Am—1
(6.20) 113?05 zlggo((ﬁ )" mm—1Ym1 Con s =)

Considering (6.18) again, we derive

(6.21) A, — QURHDM) Q(QIFDM+1) - ARUFDM=1) _ () S(QlM))T(QlM)ET(jl_I\iI)

?

where

m -1
(6.22) F@M) . 5(21M) {Z(EJ(QZM,O)EJ(%FZ{\/I,O) B ~E7(3“\1[’0))((£(21M))1)m,j:|
j=1

m —1
= (21M,0) 3(21M,0 2(21M,0 _
x [Z(Eﬁ- VEEULO) | BRI (o2 1>m,]} .

J=1
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Combining (6.22) with EZ'™ — o, EPMO 5 0 and ((£@M)1),,,. =
(£, )™= (AR )~ — AL as | — oo with (6.20) leads to

1 Amo1 A2
9 lim @M — _Im=1Am—1Am
(6.23) oo 1 — A )2

From (6.21), it follows that, for arbitrary positive ¢,

)\m B Q$7(L2l+3)M)Q$7(L2l+3)M+1) o Qsz(l—i-Q)M—l)
)\m i (Q%21+1)M)Q%21+1)M+1) o ngrQL(H-l)M—l))276

(6.24)

FEEEDM) - ((2041)M)

= (r@M))2—< ‘ v — s(21M))2

2(1+1)M
e

(B )2

(A — $2IMe

On the right-hand side of (6.24), 7(UFDM) /(7(2IM))2=2 and (), — sEUFDM)Y))/
(A — sM)2 converge to some positive constants and (A, — s2!M))* converges
to 0 as | — oco. Furthermore, from Theorem 6.1, we see that E,(f(ffl)M)/(E,(flf\f))Q*E
also converges to 0. Therefore, the right-hand side of (6.24) converges to 0 as [ — oo.

This immediately leads to (6.14). O

We present a numerical example to demonstrate the accelerated convergence in the
sequence of shifted LR transformations with the shift strategy proposed in Section 3.
Numerical tests were carried out with IEEE double-precision arithmetic.

For test matrices, we prepare a TN matrix with M =5

A0 = O @ RO)

2
L= | 2 . € R0 —0,1,...,4,
1 2
11
RO .— 1 € R100x100
o1
1

In the sequence of shifted LR transformations, the initial values are given as Q,(CO) =

21) =...= 24) =2for k=1,2,...,m, and E}(€0) =1fork=12,...,m— 1.
With respect to the convergence history, we numerically compare the proposed shift
strategy with s(°) = 0 to the zero-shift strategy, namely, s(™ = 0 for every n in
the shifted LR transformations. Figure 1 shows the convergence of EégM) to 0 as !
increases in the shifted LR transformations. In Figure 1, the horizontal and vertical
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axes denote the values of | and EégM), respectively, and the solid lines with the
(1M)
represent the values of Fgq

Wy ”

symbols “x” and “o”

in the cases of the zero-shift
strategy and in the proposed strategy, respectively. From Figure 1, we see that
the proposed shift strategy enables us to accelerate the convergence of the shifted
LR transformations in comparison with the linear convergence of the zero-shift LR
transformations. Similarly to the convergence of EélgM), we observe that a higher-
order convergence is achieved in the other variables in the shifted L R transformations

with the proposed shift strategy.
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Figure 1. A graph of the values | of n = IM (horizontal axis) and the values Eég) (ver-
tical axis with logarithmic scale) in the sequence of shifted LR transformations.
x: zero-shift strategy and o: proposed shift strategy.

7. CONCLUSION

In this paper, we briefly explained the shifted LR transformation for a TN banded
Hessenberg matrix, which is based on the discrete hungry Toda equation. We then
designed an efficient shift strategy for the shifted LR transformation using the idea
of the Newton shift. The Newton shift usually produces a valid shift, which is smaller
than the minimum eigenvalue of the updated target matrix. However, a simple ap-
plication of the Newton shift results in only linear convergence. This is because all
the updated target matrices are all similar and the Newton shift strategy always
generates the same shift for all iterations. To develop a more efficient shift strategy,
we proposed a method of computing the Newton shift not from the updated target
matrix itself, but from the shifted one, which implicitly appears in the shifted LR
transformations. We showed that the resulting shift strategy achieves a convergence
rate of order 2 — € for any € > 0 for the variables appearing in the shifted LR trans-
formations. We also numerically verified the convergence acceleration by comparing
it with the zero-shift LR transformations.
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