Kybernetika

Zuming Peng
The study on semicopula based implications

Kybernetika, Vol. 56 (2020), No. 4, 662-694
Persistent URL: http://dml.cz/dmlcz/148378

Terms of use:

© Institute of Information Theory and Automation AS CR, 2020

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

THE STUDY ON SEMICOPULA BASED IMPLICATIONS

Zuming Peng

Recently, Baczyński et al. (2017) proposed a new family of implication operators called semicopula based implications, which combines a given a priori fuzzy implication and a semicopula. In this paper, firstly, the relationship between the basic properties of the priori fuzzy implication and the semicopula based implication are analyzed. Secondly, the conditions such that the semicopula based implication is a fuzzy implication are studied, the study is carried out mainly in the case that the semicopula is a special family semicopula and the priori fuzzy implication is a (U, N)-implication. Moreover, the case that the semicopula based implication is 2 -increasing (directionally decreasing, respectively) is also considered.

Keywords: fuzzy implications, semicopula based implications, (U, N)-implications, semicopula, 2-increasing
Classification: 03E72, 03B52

1. INTRODUCTION

Fuzzy implications are the generalization of the classical (Boolean) implications on the unit interval $[0,1]$, and are the basis for fuzzy logic systems, fuzzy control, decision theory, expert systems [2, 6, 11, 15]. The main way of generating fuzzy implications is from basic fuzzy logic connectives [1, 2, 3, 4, t-norms, t-conorms and negations. Other way of generating fuzzy implications is from monotone functions [13, 14, 16, 22, [26, or from convex combination of two fuzzy implications [17, 18, 19, 21, 23, 24, 25, Moreover, in consideration of imperfect knowledge that involve uncertainty, imprecision and randomness, the probability implications and probability S-implications [10] were proposed.

Recently, Baczyński et al. 5] introduced a new method of constructing implications based on a fuzzy implication I and a semicopula B. The resulting implication $J_{I B}$ is defined by

$$
\begin{equation*}
J_{I B}(x, y)=I(x, B(x, y)), \quad x, y \in[0,1] . \tag{1}
\end{equation*}
$$

The implication $J_{I B}$ can be seen as a generalization of the probabilistic implication and the probabilistic S-implication. However, its monotonicity in the first coordinate may fail, and thus it need not be a fuzzy implication. Due to this, in this paper, as a supplement of this research topic from the theoretical point of view, we attempt a systematic study of $J_{I B}$.

```
DOI: 10.14736/kyb-2020-4-0662
```

The paper is organized as follows. In Section 2, some concepts and results are recalled. In Section 3, we discuss the relationship between the properties of $J_{I B}$ and I. In Section 4 , conditions for $J_{I B}$ being a fuzzy implication are deeply studied. In Section 5, some trivial results of Φ-conjugate with $J_{I B}$ are given. The last section is the Conclusion.

2. PRELIMINARIES

For the convenience of reading, in this section, we recall some definitions and results that will be used in the rest of the paper.

Definition 2.1. (Durante et al. [8]) A function $B:[0,1]^{2} \rightarrow[0,1]$ is said to be a semicopula if, and only if, it satisfies the two following conditions:
(i) $B(x, 1)=B(1, x)=x$ for all x in $[0,1]$,
(ii) $B(x, y)$ is increasing in each place.

Definition 2.2. (Klement et al. [12], Nelsen [20]) A function $T:[0,1]^{2} \rightarrow[0,1]$ is said to be a t-norm if it is an associative and commutative semicopula. A function $S:[0,1]^{2} \rightarrow[0,1]$ is said to be a t-conorm if it is an associative and commutative dual semicopula. A function $C:[0,1]^{2} \rightarrow[0,1]$ is said to be a copula if it is a semicopula and satisfies $C\left(x_{1}, y_{1}\right)+C\left(x_{2}, y_{2}\right) \geq C\left(x_{1}, y_{2}\right)+C\left(x_{2}, y_{1}\right)$ for all $x_{1}, x_{2}, y_{1}, y_{2} \in[0,1]$ with $x_{1}<x_{2}$ and $y_{1}<y_{2}$.

Five basic t-norms that will be used throughout this paper are given as follows:

- $T_{M}(x, y)=\min (x, y)$, is the greatest semicopula.
- $T_{P}(x, y)=x y$.
- $T_{L K}(x, y)=\max (x+y-1,0)$.
- $T_{D}(x, y)=\left\{\begin{array}{ll}0, & \text { if }(x, y) \in[0,1)^{2}, \\ \min (x, y), & \text { otherwise },\end{array}\right.$ is the smallest semicopula.
- $T_{n M}(x, y)= \begin{cases}0, & \text { if } x+y \leq 1, \\ \min (x, y), & \text { otherwise } .\end{cases}$

These basic t-norms form the following chains:

$$
T_{D} \leq T_{L K} \leq T_{P} \leq T_{M}, T_{D} \leq T_{L K} \leq T_{n M} \leq T_{M}
$$

Definition 2.3. (Baczyński et al. [2]) A function $I:[0,1]^{2} \rightarrow[0,1]$ is called a fuzzy implication if it satisfies, for all $x, x_{1}, x_{2}, y, y_{1}, y_{2} \in[0,1]$, the following conditions:
(I1) if $x_{1}<x_{2}$, then $I\left(x_{1}, y\right) \geq I\left(x_{2}, y\right)$, i. e., $I(\cdot, y)$ is decreasing,
(I2) if $y_{1}<y_{2}$, then $I\left(x, y_{1}\right) \leq I\left(x, y_{2}\right)$, i. e., $I(x, \cdot)$ is increasing,
(I3) $I(0,0)=1, I(1,1)=1, I(1,0)=0$.
The set of all fuzzy implications will be denoted by $F I$.

Important fuzzy implications that will be used throughout this paper are given as follows:

- The Lukasiewicz implication: $I_{L K}(x, y)=\min (1,1-x+y)$.
- The Rescher implication: $I_{R S}(x, y)= \begin{cases}1, & \text { if } x \leq y, \\ 0, & \text { if } x>y .\end{cases}$
- The Weber implication: $I_{W B}(x, y)= \begin{cases}1, & \text { if } x \in[0,1), \\ y, & \text { if } x=1 .\end{cases}$
- The greatest implication: $I_{G}(x, y)= \begin{cases}1, & \text { if } x=1 \text { and } y=0, \\ 0, & \text { otherwise } .\end{cases}$

Remark 2.4. (Baczyński et al. [2]) I satisfies the following properties (called left and right boundary condition, respectively):
(LB) $I(0, y)=1$, for all $y \in[0,1]$,
(RB) $I(x, 1)=1$, for all $x \in[0,1]$.
Definition 2.5. (Baczyński et al. [2])
(i) A function $N:[0,1] \rightarrow[0,1]$ is called a fuzzy negation if $N(0)=1, N(1)=0$, and N is decreasing.
(ii) A fuzzy negation N is strong if it is an involution, i.e., $N(N(x))=x$ for all $x \in[0,1]$.
(iii) Let T be a t-norm. A function $N_{T}:[0,1] \rightarrow[0,1]$ defined as

$$
N_{T}(x)=\sup \{y \in[0,1] \mid T(x, y)=0\}, x \in[0,1]
$$

is called the natural negation of T or the negation induced by T.
(iv) Let $I \in F I$. A function $N_{I}:[0,1] \rightarrow[0,1]$ defined as $N_{I}(x)=I(x, 0), x \in[0,1]$, is called the natural negation of I.

Important fuzzy negations that will be used throughout this paper are given as follows:

- The classical fuzzy negation: $N_{C}(x)=1-x$ for all $x \in[0,1]$.
- The least fuzzy negation: $N_{D_{1}}(x)= \begin{cases}1, & \text { if } x=0, \\ 0, & \text { if } x \in(0,1] .\end{cases}$
- The greatest fuzzy negation: $N_{D_{2}}(x)= \begin{cases}1, & \text { if } x \in[0,1), \\ 0, & \text { if } x=1 .\end{cases}$

Definition 2.6. (Baczyński et al. 2], Fodor [9, Grzegorzewski [10], Pradera et al. [24]) An operator $I:[0,1]^{2} \rightarrow[0,1]$ is said to satisfy
(i) the left neutrality property, if $I(1, y)=y$ for all $y \in[0,1]$.
(ii) the identity principle, if $I(x, x)=1$ for all $x \in[0,1]$.
(iii) the ordering property, if $I(x, y)=1 \Leftrightarrow x \leq y$ for all $x, y \in[0,1]$.
(iv) the contrapositive symmetry with respect to a fuzzy negation N, if

$$
\begin{equation*}
I(x, y)=I(N(y), N(x)), \text { for all } x, y \in[0,1] . \tag{N}
\end{equation*}
$$

(v) the exchange principle, if $I(x, I(y, z))=I(y, I(x, z))$ for all $x, y, z \in[0,1]$. (EP)
(vi) the T-conditionality, if $T(x, I(x, y)) \leq y, x, y \in[0,1]$, where T is a t-norm. (TC)
(vii) the lowest truth property, $I(x, y)=1$ if and only if $x=0$ or $y=1$.
(viii) the lowest falsity property, $I(x, y)=0$ if and only if $x=1$ and $y=0$.
(ix) the boolean-like law, $I(x, I(y, x))=1$ for all $x, y \in[0,1]$.

Definition 2.7. (Baczyński et al. [2], Ouyang [21], Yager [26], Grzegorzewski [10])
(i) A function $I_{S, N}:[0,1]^{2} \rightarrow[0,1]$ is called an (S, N)-implication if there exist a t-conorm S and a fuzzy negation N such that $I_{S, N}(x, y)=S(N(x), y)$ for all $x, y \in[0,1]$.
(ii) A function $I_{T}:[0,1]^{2} \rightarrow[0,1]$ is called an R-implication if there exists a t-norm T such that $I_{T}(x, y)=\sup \{t \in[0,1] \mid T(x, t) \leq y\}$ for all $x, y \in[0,1]$.
(iii) Let $f:[0,1] \rightarrow[0, \infty]$ be a strictly decreasing and continuous function with $f(1)=$ 0 . The function $I_{f}:[0,1]^{2} \rightarrow[0,1]$ defined by $I_{f}(x, y)=f^{-1}(x \cdot f(y))$ for all x, $y \in[0,1]$, with the convention $0 \cdot \infty=0$, is called an f-generated implication.
(iv) Let $g:[0,1] \rightarrow[0, \infty]$ be a strictly increasing and continuous function with $g(0)=$ 0 . The function $I_{g}:[0,1]^{2} \rightarrow[0,1]$ defined by

$$
I_{g}(x, y)=g^{-1}\left(\min \left(\frac{1}{x} \cdot g(y), g(1)\right)\right) \text { for all } x, y \in[0,1]
$$

with the convention $\frac{1}{0}=\infty$ and $\infty \cdot 0=\infty$, is called a g-generated implication.
(v) Let C be a copula. A function $\widetilde{I}_{C}:[0,1]^{2} \rightarrow[0,1]$ given by

$$
\tilde{I}_{C}(x, y)=C(x, y)-x+1, \text { for all } x, y \in[0,1]
$$

is called a probabilistic S-implication.
(vi) Let C be a copula. A function $I_{C}:[0,1]^{2} \rightarrow[0,1]$ given by

$$
I_{C}(x, y)= \begin{cases}1, & \text { if } x=0 \\ \frac{C(x, y)}{x}, & \text { if } x>0\end{cases}
$$

is called a probabilistic implication.

Definition 2.8. (Baczyński et al. [6])
(i) A function $\varphi:[0,1] \rightarrow[0,1]$ is an automorphism if it is continuous and strictly increasing and satisfies the boundary conditions $\varphi(0)=0$ and $\varphi(1)=1$. By Φ we denote the family of all automorphism from $[0,1]$ to $[0,1]$.
(ii) The functions $f, g:[0,1]^{n} \rightarrow[0,1]$ are called Φ-conjugate, if there exists a $\varphi \in \Phi$ such that $g=f_{\varphi}$, where $f_{\varphi}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\varphi^{-1}\left(f\left(\varphi\left(x_{1}\right), \varphi\left(x_{2}\right), \cdots, \varphi\left(x_{n}\right)\right)\right)$, for all $x_{1}, x_{2}, \ldots, x_{n} \in[0,1]$.

Proposition 2.9. (Baczyński et al. [5]) For any fuzzy implication I and any semicopula B the following conditions hold:
(i) $J_{I B}$ is increasing with respect to the second variable.
(ii) $J_{I B}(1,0)=0, J_{I B}(0, y)=1$ for all $y \in[0,1]$.
(iii) $J_{I B}(1, y)=I(1, y)$ for all $y \in[0,1]$.
(iv) $J_{I B}(x, 0)=I(x, 0)$, i. e., $N_{J_{I B}}(x)=N_{I}(x)$ for all $x \in[0,1]$.
(v) $J_{I B}(x, 1)=I(x, x)$ for all $x \in[0,1]$.

3. RELATIONSHIP BETWEEN THE PROPERTIES OF $J_{I B}$ AND I

In this section, we discuss the relationship between the basic properties of $J_{I B}$ and I.
Proposition 3.1. Let I be a fuzzy implication and B a semicopula. Then, the implication $J_{I B}$ defined by (1) satisfies (NP) ((RB), respectively) if and only if I satisfies (NP) ((IP), respectively).

Proof. Straightforward from Proposition 2.9 (iii) and (v).
Proposition 3.2. Let I be a fuzzy implication and B a semicopula. If the implication $J_{I B}$ defined by (1) satisfies (IP) ((OP), respectively), then I satisfies (IP).

Proof. $J_{I B}$ satisfies (IP) $((\mathrm{OP})$, respectively $) \Rightarrow J_{I B}(x, x)=1 \Rightarrow I(x, B(x, x))=1$. Since $I(x, x) \geq I(x, B(x, x))$, then $I(x, x)=1$ for all $x \in[0,1]$.

The fact that the converse of Proposition 3.2 does not hold can be easily shown in the following example.

Example 3.3. Consider the Fodor implication $I_{F D}$:

$$
I_{F D}(x, y)= \begin{cases}1, & \text { if } x \leq y \\ \min (1-x, y), & \text { if } x>y\end{cases}
$$

It satisfies (IP). Taking a semicopula $B(x, y)=x y$. From (1) we get

$$
J_{I_{F D} B}(0.5,0.5)=I_{F D}(0.5, B(0.5,0.5))=I_{F D}(0.5,0.25)=0.25 \neq 1
$$

that is, $J_{I_{F D} B}$ does not satisfy (IP) ((OP), respectively).

Nevertheless, if I satisfies (OP), we have the following proposition.
Proposition 3.4. Let I be a fuzzy implication that satisfies (OP). Then $J_{I B}$ satisfies (IP) if and only if $B=T_{M}$.

Proof. (Necessity). $J_{I B}$ satisfies (IP) $\Rightarrow J_{I B}(x, x)=1$ for all $x \in[0,1] \Rightarrow I(x, B(x, x))$ $=1$ for all $x \in[0,1]$. Since I satisfies (OP), then $x=B(x, x)$ for all $x \in[0,1]$. Hence $B(x, y)=\min (x, y)$, i. e., $B=T_{M}$.
(Sufficiency). Obvious.
Remark 3.5. (i) Let I be a fuzzy implication that satisfies (IP). If $B=T_{M}$, then $J_{I B}$ satisfies (IP).
(ii) Let I be a fuzzy implication that satisfies (OP). Then $J_{I B}$ satisfies (OP) if and only if $B=T_{M}$.
(iii) Let I_{T} be an R-implication of a left-continuous t-norm T. Then $J_{I_{T} B}$ satisfies $(\mathrm{IP})((\mathrm{OP})$, respectively $)$ if and only if $B=T_{M}$.

From Remark 3.5, we have the following problem.
Problem 3.6. Let I be a fuzzy implication that satisfies (IP) but not (OP), what conditions does B satisfy such that $J_{I B}$ satisfies (IP)?

Proposition 3.7. Let $I \in F I$ and B be a semicopula, let S, \widehat{S} be sets defined as

$$
\begin{aligned}
& S=\{(x, y) \mid I(x, y)=1, x, y \in[0,1]\} \\
& \widehat{S}=\{(x, y) \mid y \geq B(x, x), x, y \in[0,1]\}
\end{aligned}
$$

Then $J_{I B}$ satisfies (IP) if and only if $\widehat{S} \subseteq S$.
Proof. (Sufficiency) Let $x \in[0,1]$ and $(x, B(x, x)) \in \widehat{S}$. Since $\widehat{S} \subseteq S$, then $(x, B(x, x))$ $\in S$. Hence $J_{I B}(x, x)=I(x, B(x, x))=1$, i. e., $J_{I B}$ satisfies (IP).
(Necessity) Let $(x, y) \in \widehat{S}$, then $y \geq B(x, x)$. Since $J_{I B}$ satisfies (IP), then $I(x, y) \geq$ $I(x, B(x, x))=1$, i. e., $(x, y) \in S$. Hence $\widehat{S} \subseteq S$.

Remark 3.8. From Proposition 3.7, for a given semicopula B, there always exists a $I \in F I$ such that $J_{I B}$ satisfies (IP). Moreover, I may not be unique.

Example 3.9. Let $B=T_{P}$. Note that $\widehat{S}=\{(x, y) \mid y \geq B(x, x), x, y \in[0,1]\}$, then

$$
\hat{S}=\left\{(x, y) \mid y \geq x^{2}, x, y \in[0,1]\right\}
$$

Consider the following fuzzy implication

$$
I_{1}(x, y)= \begin{cases}1, & \text { if } y \geq x^{2} \\ 1-x+y, & \text { if } y<x^{2}\end{cases}
$$

Since $S_{1}=\left\{(x, y) \mid I_{1}(x, y)=1, x, y \in[0,1]\right\}$, then $S_{1}=\left\{(x, y) \mid y \geq x^{2}, x, y \in[0,1]\right\}$. Thus $\widehat{S} \subseteq S_{1}$. Hence $J_{I_{1} B}$ satisfies (IP) by Proposition 3.7 .

Consider the following fuzzy implication

$$
I_{2}(x, y)= \begin{cases}1, & \text { if } y \geq x^{3} \\ 1-x+y, & \text { if } y<x^{3}\end{cases}
$$

It is easy to see that $S_{2}=\left\{(x, y) \mid y \geq x^{3}, x, y \in[0,1]\right\}$, then $\widehat{S} \subseteq S_{2}$. Hence $J_{I_{2} B}$ satisfies (IP) by Proposition 3.7 .

Proposition 3.10. Let $I \in F I$ and B be a semicopula that is strictly increasing in second variable, and let S, \widehat{S} be sets defined as

$$
\begin{aligned}
& S=\{(x, y) \mid I(x, y)=1, x, y \in[0,1]\} \\
& \widehat{S}=\{(x, y) \mid y \geq B(x, x), x, y \in[0,1]\}
\end{aligned}
$$

Then $J_{I B}$ satisfies (OP) if and only if $\widehat{S}=S$.
Proof. (Sufficiency) Let $x, y \in[0,1]$. If $x=0$, then $J_{I B}(x, y)=1 \Rightarrow x \leq y$.
If $x>0$, then $J_{I B}(x, y)=1 \Rightarrow I(x, B(x, y))=1$

$$
\begin{aligned}
& \Rightarrow(x, B(x, y)) \in S \\
& \Rightarrow(x, B(x, y)) \in \widehat{S} \\
& \Rightarrow B(x, y) \geq B(x, x)
\end{aligned}
$$

Note that B is strictly increasing in second variable, thus $x \leq y$.
On the other hand, if $x \leq y$, then $J_{I B}(x, y)=I(x, B(x, y)) \geq I(x, B(x, x))$. Since $B(x, x) \geq B(x, x)$, then $(x, B(x, x)) \in \widehat{S}$. By $\widehat{S}=S$, we have $(x, B(x, x)) \in S$, i. e., $I(x, B(x, x))=1$. Hence $J_{I B}(x, y)=1$.
(Necessity) Let $J_{I B}$ satisfy (OP), follows that $J_{I B}$ satisfies (IP), then $\widehat{S} \subseteq S$ by Proposition 3.7. If $(x, y) \in S$, then $I(x, y)=1$. Assume that $(x, y) \in \overline{\widehat{S}}$, where $\overline{\widehat{S}}$ is the complement of \widehat{S} in $[0,1]^{2}$, then $y<B(x, x) \leq x$. Hence

$$
I(x, y) \leq I(x, B(x, x)) \leq I(x, B(x, y))=J_{I B}(x, y)
$$

Note that $I(x, y)=1$, then $J_{I B}(x, y)=1$. Since $J_{I B}$ satisfies (OP), then $x \leq y$, this contradicts the fact that $y<B(x, x) \leq x$. Hence $S \subseteq \widehat{S}$, thus $S=\widehat{S}$.

Lemma 3.11. (Baczyński et al. [2]) Let $I \in F I$ and N be a fuzzy negation. If I satisfies (NP) and $(\mathrm{CP}(\mathrm{N}))$, then $N=N_{I}$ is a strong fuzzy negation.

Proposition 3.12. Let I be a fuzzy implication and B a semicopula. If the implication $J_{I B}$ satisfies $(\mathrm{CP}(\mathrm{N}))$, then
(i) I satisfies (IP).
(ii) $J_{I B}$ is a fuzzy implication.
(iii) If I satisfies (NP), then $N=N_{I}$ is a strong negation.
(iv) If I satisfies (OP), then $x=B(x, y) \Leftrightarrow N(y)=B(N(y), N(x)), x, y \in[0,1]$.

Proof.
(i) Assume that $J_{I B}$ satisfies $(\mathrm{CP}(\mathrm{N}))$, then

$$
I(x, B(x, y))=I(N(y), B(N(y), N(x))) \text { for all } x, y \in[0,1]
$$

Taking $y=1$, then $I(x, x)=I(0, B(0, N(x)))=1$ for all $x \in[0,1]$, i. e., I satisfies (IP).
(ii) From [2] Lemma 1.5.4 (ii) and Proposition 2.9 (i), we have, $J_{I B}$ satisfies (I1), then $J_{I B}$ is a fuzzy implication.
(iii) Straightforward from Lemma 3.11 Proposition 2.9 (iii) and (iv).
(iv) Suppose that there exists some $\left(x_{0}, y_{0}\right) \in[0,1]^{2}$ such that $x_{0}=B\left(x_{0}, y_{0}\right)$ and $N\left(y_{0}\right)>B\left(N\left(y_{0}\right), N\left(x_{0}\right)\right)$, then

$$
\begin{aligned}
& J_{I B}\left(x_{0}, y_{0}\right)=I\left(x_{0}, B\left(x_{0}, y_{0}\right)\right)=1 \\
& J_{I B}\left(N\left(y_{0}\right), N\left(x_{0}\right)\right)=I\left(N\left(y_{0}\right), B\left(N\left(y_{0}\right), N\left(x_{0}\right)\right)\right)<1
\end{aligned}
$$

Hence $J_{I B}\left(x_{0}, y_{0}\right)>J_{I B}\left(N\left(y_{0}\right), N\left(x_{0}\right)\right)$. This contradicts the fact that $J_{I B}$ satisfies $(\mathrm{CP}(\mathrm{N}))$. Thus completes the proof.

Remark 3.13. (i) Let I be a fuzzy implication that satisfies (NP). If N_{I}, the natural negation of I, is not strong, by Proposition 3.12 (iii), then $J_{I B}$ does not satisfy (CP) with respect to any fuzzy negation N and any semicopula B. Therefore,

- for the (S, N)-implication $I_{S, N}$: if N is not strong, then $J_{I_{S, N} B}$ does not satisfy (CP) with respect to any fuzzy negation N and any semicopula B.
- for the R-implication I_{T} : if N_{T}, the natural negation of T, is not strong (strict, continuous, strictly decreasing, respectively), then $J_{I_{T} B}$ does not satisfy (CP) with respect to any fuzzy negation N and any semicopula B.
- for the g-implication I_{g} : since I_{g} satisfies (NP) and $N_{I_{g}}=N_{D_{1}}$, then $J_{I_{g} B}$ does not satisfy (CP) with respect to any fuzzy negation N and any semicopula B.
- for the probabilistic implication I_{C} : since I_{C} satisfies (NP) and $N_{I_{C}}=N_{D_{1}}$, then $J_{I_{C} B}$ does not satisfy (CP) with respect to any fuzzy negation N and any semicopula B.
(ii) For the f-implication I_{f} : note that I_{f} does not satisfy (IP), then $J_{I_{f} B}$ does not satisfy (CP) with respect to any fuzzy negation N and any semicopula B.
(iii) Let $I \in F I$. Even if I satisfies (IP) and (CP), $J_{I B}$ may not satisfy (CP).

Example 3.14. Consider the Lukasiewicz implication $I_{L K}$. It satisfies (IP) and (CP). Let $B=T_{D}$.

From (1) we get

$$
J_{I_{L K} B}(x, y)= \begin{cases}y, & \text { if } x=1 \\ 1, & \text { if } y=1 \\ 1-x, & \text { otherwise }\end{cases}
$$

Note that $J_{I_{L K} B}(0.9,0.9)=0.1<0.9=J_{I_{L K} B}(1,0.9)$, i. e., $J_{I_{L K} B}$ does not satisfy (I1), then $J_{I_{L K} B}$ does not satisfy (CP) with respect to any fuzzy negation N by Lemma 1.5.4 in [2].

Problem 3.15. Let I be a fuzzy implication that satisfies (IP) and (NP), but not (CP), and its natural negation N_{I} is strong. Does $J_{I B}$ not satisfy (CP)?

Unfortunately, the answer is negative.
Example 3.16. Consider the following fuzzy implication

$$
I(x, y)= \begin{cases}1, & \text { if } x \leq y \\ \max \left(\frac{y}{x}, 1-x\right), & \text { if } x>y\end{cases}
$$

It satisfies (IP) and (NP), but not (CP).
Taking $B=T_{P}$, from (1) we get

$$
J_{I B}(x, y)= \begin{cases}1, & \text { if } x=0 \text { or } y=1 \\ \max (y, 1-x), & \text { otherwise }\end{cases}
$$

Obviously, $J_{I B}(x, y)=J_{I B}\left(N_{I}(y), N_{I}(x)\right)$, i. e., $J_{I B}$ satisfies (CP) with respect to N_{I}.
Proposition 3.17. Let I be a fuzzy implication that satisfies (IP) and (CP), then there exists a semicopula B such that $J_{I B}$ satisfies (CP).

Proof. Consider $B=T_{M}$. Let $x, y \in[0,1]$. If $x \leq y$, then $I(x, y)=1=I(x, x)=$ $I\left(x, T_{M}(x, y)\right)=J_{I B}(x, y)$ by I satisfies (IP). If $x>y$, then $I(x, y)=I\left(x, T_{M}(x, y)\right)=$ $J_{I B}(x, y)$. Hence $J_{I B}=I$. Note that I satisfies (CP), then $J_{I B}$ satisfies (CP).

Proposition 3.18. Let $f:[0,1] \rightarrow[0, \infty]$ be a continuous, strictly decreasing function with $f(1)=0$, let T be a continuous Archimedean t-norm with additive generator f and I_{T} its R-implication. Then the following statements are equivalent:
(i) $J_{I_{T} B}$ satisfies (CP) with respect to a fuzzy negation N.
(ii) $N=N_{I_{T}}$, and the triple (f, B, N) satisfies the following equation:

$$
f(B(x, y))-f(B(N(y), N(x)))=f(x)-f(N(y))
$$

Proof. From [2] Theorem 2.1.5 and Definition 2.7(ii), we get

$$
I_{T}(x, y)=f^{-1}(\max (f(y)-f(x), 0)) \text { for all } x, y \in[0,1]
$$

then the rest of the proof comes directly from calculation.
Proposition 3.19. Let I be a continuous fuzzy implication that satisfies (OP) and (EP). Then the following statements are equivalent:
(i) $J_{I B}$ satisfies (CP) with respect to a fuzzy negation N.
(ii) There exists a $\varphi \in \Phi$, such that $N(x)=\varphi^{-1}(1-\varphi(x))$ and

$$
\varphi(B(x, y))-\varphi(B(N(y), N(x)))=\varphi(x)-\varphi(N(y)) \text { for all } x, y \in[0,1]
$$

Proof. The proof comes directly from calculation.
Proposition 3.20. Let B be a semicopula and N a fuzzy negation, let C be a copula and \widetilde{I}_{C} a probabilistic S-implication, let $J_{\widetilde{I}_{C} B}$ be an implication defined by (1). Then the following statements are equivalent:
(i) $J_{\widetilde{I}_{C} B}$ satisfies (CP) with respect to N.
(ii) $\widetilde{I}_{C}=I_{L K}, N=N_{C}$ and $B(x, y)-B(N(y), N(x))=x-N(y)$ for all $x, y \in[0,1]$.

Proof. The proof comes directly from calculation.
Proposition 3.21. Let $I \in F I$ and B be a semicopula. If the implication $J_{I B}$ satisfies (EP), then I satisfies (IP).

Proof. $J_{I B}$ satisfies $(\mathrm{EP}) \Rightarrow J_{I B}\left(x, J_{I B}(y, z)\right)=J_{I B}\left(y, J_{I B}(x, z)\right)$ for all $x, y, z \in$ [0, 1].

Taking $x=0$, then $J_{I B}\left(0, J_{I B}(y, z)\right)=J_{I B}\left(y, J_{I B}(0, z)\right)$

$$
\begin{aligned}
& \Rightarrow I\left(0, B\left(0, J_{I B}(y, z)\right)\right)=J_{I B}(y, I(0, B(0, z)) \\
& \Rightarrow 1=J_{I B}(y, 1) \\
& \Rightarrow I(y, B(y, 1))=1 \\
& \Rightarrow I(y, y)=1 \text { for all } y \in[0,1] .
\end{aligned}
$$

That is, I satisfies (IP).
Remark 3.22. (i) Let N_{I}, the natural negation of I, be a continuous negation. If I does not satisfy (NP), then $J_{I B}$ does not satisfy (EP).
In fact, suppose that $J_{I B}$ satisfies (EP), then for all $x, y, z \in[0,1]$, we get

$$
J_{I B}\left(x, J_{I B}(y, z)\right)=J_{I B}\left(y, J_{I B}(x, z)\right) .
$$

Taking $z=0, x=1$, then $I\left(1, N_{I}(y)\right)=I(y, 0)=N_{I}(y)$. A contradiction to the fact that I does not satisfy (NP).
(ii) Let I be a fuzzy implication that satisfies (IP). Even if I does not satisfy (EP), $J_{I B}$ may satisfy (EP).
(iii) Let I be a fuzzy implication that satisfies (IP). Even if I satisfies (EP), $J_{I B}$ may not satisfy (EP).

Example 3.23. Consider the Rescher implication $I_{R S}$. It satisfies (IP) but not (EP).
Let $B=T_{P}$. From (1) we get

$$
J_{I_{R S} B}(x, y)= \begin{cases}1, & \text { if } x=0 \text { or } y=1 \\ 0, & \text { otherwise }\end{cases}
$$

Let $x, y, z \in[0,1]$. By calculations, we have

$$
\begin{aligned}
& J_{I_{R S} B}\left(x, J_{I_{R S} B}(y, z)\right)= \begin{cases}1, & \text { if } x=0 \text { or } y=0 \text { or } z=1, \\
0, & \text { otherwise, }\end{cases} \\
& J_{I_{R S} B}\left(y, J_{I_{R S} B}(x, z)\right)= \begin{cases}1, & \text { if } x=0 \text { or } y=0 \text { or } z=1, \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Then $J_{I_{R S} B}\left(x, J_{I_{R S} B}(y, z)\right)=J_{I_{R S} B}\left(y, J_{I_{R S} B}(x, z)\right)$, i. e., $J_{I_{R S} B}$ satisfies (EP).
On the other hand, consider the Lukasiewicz implication $I_{L K}$. It satisfies (IP) and (EP).

Let $B=T_{D}$. Taking $x=0.9, y=0.5$ and $z=0.3$, we have

$$
\begin{aligned}
& J_{I_{L K} B}(0.5,0.3)=I_{L K}\left(0.5, T_{D}(0.5,0.3)\right)=I_{L K}(0.5,0)=0.5 \\
& J_{I_{L K} B}(0.9,0.3)=I_{L K}\left(0.9, T_{D}(0.9,0.3)\right)=I_{L K}(0.9,0)=0.1 .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& J_{I_{L K} B}\left(0.9, J_{I_{L K} B}(0.5,0.3)\right)=J_{I_{L K} B}(0.9,0.5)=I_{L K}\left(0.9, T_{D}(0.9,0.5)\right)=0.1, \\
& J_{I_{L K} B}\left(0.5, J_{I_{L K} B}(0.9,0.3)\right)=J_{I_{L K} B}(0.5,0.1)=I_{L K}\left(0.5, T_{D}(0.5,0.1)\right)=0.5 .
\end{aligned}
$$

This fact shows that $J_{I_{L K} B}$ does not satisfy (EP).
Proposition 3.24. Let $I \in F I$ and N_{I}, the natural negation of I, be a continuous negation. Then $J_{I B}$ satisfies (EP) if and only if $J_{I B}$ is an (S, N_{I})-implication.

Proof. The proof comes directly from Theorem 2.4.10, Remark 2.4.13 (ii) in [2] and Proposition 2.9 (i).

Corollary 3.25. Let $I \in F I$ and N_{I}, the natural negation of I, be a strong negation. If the implication $J_{I B}$ satisfies (EP), then $J_{I B}$ satisfies (CP) with respect to N_{I}.

Proposition 3.26. Let I be a fuzzy implication and B a semicopula, and let T, T^{\prime} be t-norms such that $T^{\prime} \leq T$. If I satisfies (TC) with T, then $J_{I B}$ satisfies (TC) with T^{\prime}.

Proof. $T^{\prime}\left(x, J_{I B}(x, y)\right) \leq T\left(x, J_{I B}(x, y)\right)=T(x, I(x, B(x, y))) \leq T(x, I(x, y)) \leq y$ for all $x, y \in[0,1]$.

Remark 3.27. (i) Note that $N_{J_{I B}}=N_{I}$, if $N_{I}>N_{T}$, the nature negation of T, then, for any semicopula $B, J_{I B}$ does not satisfy (TC) with t-norm T by Proposition 7.4.3 in 2.
(ii) Let $N_{I} \leq N_{T}$, and let A, \bar{A} be sets defined as

$$
\begin{aligned}
& A=\{(x, y) \mid T(x, I(x, y)) \leq y \text { for all } x, y \in[0,1]\} \\
& \bar{A}=\{(x, y) \mid T(x, I(x, y))>y \text { for all } x, y \in[0,1]\}
\end{aligned}
$$

If $\bar{A}=\emptyset, J_{I B}$ satisfies (TC) with T. If $\bar{A} \neq \emptyset$, then $J_{I B}$ satisfies (TC) with T if only if $(x, B(x, y)) \in A$ for all $(x, y) \in \bar{A}$.
(iii) Even if I does not satisfy (TC) with a t-norm $T, J_{I B}$ may satisfy (TC) with T.

Example 3.28. Let $I=I_{L K}$ and $T=T_{n M}$. Since $T_{n M}(0.6, I(0.6,0.3))=0.6>0.3$, then $I_{L K}$ does not satisfy (TC) with $T_{n M}$. However, taking $B=T_{D}$, we get

$$
J_{I B}(x, y)=J_{I_{L K} T_{D}}(x, y)= \begin{cases}1-x, & \text { if } x, y \in[0,1) \\ y, & \text { if } x=1 \\ 1, & \text { if } y=1\end{cases}
$$

For $x, y \in[0,1), T_{n M}\left(x, J_{I B}(x, y)\right)=0 \leq y$. For $x=1$ and $y \in[0,1], T_{n M}\left(x, J_{I B}(x, y)\right)=$ $y \leq y$. For $x \in[0,1]$ and $y=1, T_{n M}\left(x, J_{I B}(x, y)\right)=x \leq 1=y$. Hence $T_{n M}\left(x, J_{I B}(x, y)\right) \leq$ y for all $x, y \in[0,1]$, i. e., $J_{I B}$ satisfies (TC) with $T_{n M}$.

Proposition 3.29. Let $I \in F I$ and B be a semicopula. Then the implication $J_{I B}$ satisfies (LF) if and only if I satisfies (LF).

Proof. Let $J_{I B}$ satisfy (LF), i. e., $J_{I B}(x, y)=0 \Leftrightarrow x=1$ and $y=0$. Assume that $I(x, y)=0$. Note that $J_{I B} \leq I$, then $J_{I B}(x, y)=0$, thus $x=1$ and $y=0$. Reversely, assume that $x=1$ and $y=0$, then $I(x, y)=0$. Thus $I(x, y)=0 \Leftrightarrow x=1$ and $y=0$, i. e., I satisfies (LF).

On the other hand, let I satisfy (LF), i. e., $I(x, y)=0 \Leftrightarrow x=1$ and $y=0$. Assume that $J_{I B}(x, y)=0$, i. e., $I(x, B(x, y))=0$, then $x=1$ and $B(x, y)=0$. Hence $x=1$ and $y=0$. Reversely, assume that $x=1$ and $y=0$, then $J_{I B}(x, y)=0$. Thus $J_{I B}(x, y)=0 \Leftrightarrow x=1$ and $y=0$, i. e., $J_{I B}$ satisfies (LF).

Proposition 3.30. Let $I \in F I$ and B be a semicopula. If $J_{I B}$ satisfies (LT), then I satisfies (IP).

Proof. Let $J_{I B}$ satisfy (LT), then $J_{I B}(x, 1)=1$ for all $x \in[0,1]$, i. e., $I(x, B(x, 1))=1$. Thus $I(x, x)=1$ for all $x \in[0,1]$. Hence I satisfies (IP).

Let $F I_{(\mathrm{IP})}$ be the set of all fuzzy implications that satisfies (IP).

Remark 3.31. (i) Let I be a fuzzy implication that satisfies (LT). Then $J_{I B}$ does not satisfy (LT) for any semicopula B. Actually, if I satisfies (LT), then $I(x, x) \neq 1$ for $x \in(0,1)$. Hence, I does not satisfy (IP). Thus $J_{I B}$ does not satisfy (LT) by Proposition 3.30.
(ii) There exists some $I \in F I_{(\mathrm{IP})}$ such that $J_{I B}$ satisfy (LT). See Example 3.32 (i).
(iii) There exists some $I \in F I_{(\mathrm{IP})}$ such that $J_{I B}$ does not satisfy (LT) for any semicopula B. See Example 3.32 (ii).

Example 3.32. (i) Consider the Lukasiewicz implication $I_{L K}$. It satisfies (IP) but not (LT). Taking $B=T_{P}$, then the implication $J_{I_{L K} B}$ has the following form:

$$
J_{I_{L K} B}(x, y)=1-x+x y, \text { for all } x, y \in[0,1] .
$$

Since $J_{I_{L K} B}(x, y)=1 \Leftrightarrow 1-x+x y=1 \Leftrightarrow x=0$ or $y=1$, then $J_{I_{L K} B}$ satisfies (LT).
(ii) Consider the Weber implication $I_{W B}$. It satisfies (IP) but not (LT). For any semicopula B, by calculations, we get $J_{I_{W B} B}=I_{W B}$. This shows that there exists some $I \in F I_{(\mathrm{IP})}$ such that $J_{I B}$ does not satisfy (LT) for any semicopula B.

Problem 3.33. Let I be a fuzzy implication that satisfies (IP), what conditions does semicopula B have to ensure that $J_{I B}$ satisfy (LT)?

In the following, we give a partial answer.
Proposition 3.34. Let I be a fuzzy implication that satisfies (OP), and let B be a semicopula. If $x=B(x, y) \Leftrightarrow x=0$ or $y=1$, then $J_{I B}$ satisfies (LT).

Proof. Let I satisfy (OP), then $J_{I B}(x, y)=1 \Leftrightarrow I(x, B(x, y))=1 \Leftrightarrow x=B(x, y) \Leftrightarrow$ $x=0$ or $y=1$.

Proposition 3.35. Let $I \in F I$ and B be a semicopula. If $J_{I B}$ satisfies (BL), then I satisfies (IP) and (BL).

Proof. Let $J_{I B}$ satisfy (BL), then $J_{I B}\left(x, J_{I B}(y, x)\right)=1$ for all $x, y \in[0,1]$, i. e.,

$$
I(x, B(x, I(y, B(y, x))))=1 \text { for all } x, y \in[0,1] .
$$

Taking $y=0$, then $I(x, x)=1$ for all $x \in[0,1]$. That is, I satisfies (IP).
Since $I(x, I(y, x)) \geq I(x, I(y, B(y, x))) \geq I(x, B(x, I(y, B(y, x))))$, then I satisfies (BL).

Remark 3.36. Let $I \in F I$. Even if I satisfies (IP) and (BL), $J_{I B}$ may not satisfy (BL).

Example 3.37. Consider the following fuzzy implication

$$
I(x, y)= \begin{cases}1, & \text { if } x^{2} \leq y \\ y, & \text { if } x^{2}>y\end{cases}
$$

Obviously, it satisfies (IP). Let $x, y \in[0,1]$. If $y^{2} \leq x$, then $I(x, I(y, x))=I(x, 1)=1$. If $y^{2}>x$, then $I(x, I(y, x))=I(x, x)=1$. Hence $I(x, I(y, x))=1$ for all $x, y \in[0,1]$. That is, I satisfies (BL).

Let semicopula $B=T_{D}$. From (1) we get

$$
J_{I B}(x, y)= \begin{cases}1, & \text { if } x=0 \text { or } y=1 \\ y, & \text { if } x=1 \\ 0, & \text { otherwise }\end{cases}
$$

Since $J_{I B}\left(0.5, J_{I B}(0.5,0.5)\right)=J_{I B}(0.5,0)=0 \neq 1$, i. e., $J_{I B}$ does not satisfy (BL).
Lemma 3.38. Let $I \in F I$. If I satisfies (IP) and (NP), then I satisfies (BL).

Proof. Let $x, y \in[0,1]$. If $x \geq y$, then $I(y, x)=1$ by (IP). Hence $I(x, I(y, x))=1$. If $x<y$, since I satisfies (NP), then $I(y, x) \geq I(1, x)=x$. Hence $I(x, I(y, x)) \geq I(x, x)=$ 1. Thus $I(x, I(y, x))=1$ for all $x, y \in[0,1]$, i. e., I satisfies (BL).

Proposition 3.39. Let B be a semicopula and I a fuzzy implication that satisfies (NP). Let S, \widehat{S} be sets defined by

$$
\begin{aligned}
& S=\{(x, y) \mid I(x, y)=1, x, y \in[0,1]\} \\
& \widehat{S}=\{(x, y) \mid y \geq B(x, x), x, y \in[0,1]\}
\end{aligned}
$$

If $\widehat{S} \subseteq S$, then $J_{I B}$ satisfies (BL).

Proof. Let I satisfy (NP), then $J_{I B}$ satisfies (NP) by Proposition 3.1. Let $\widehat{S} \subseteq S$, then $J_{I B}$ satisfies (IP) by Proposition 3.7. Thus $J_{I B}$ satisfies (BL) by Lemma 3.38.

Proposition 3.40. Let I be a fuzzy implication that satisfies (OP) and (NP), and let B be a semicopula. Then $J_{I B}$ satisfies (BL) if and only if $B=T_{M}$.

Proof. (Necessity) Let $J_{I B}$ satisfy (BL), then $J_{I B}\left(x, J_{I B}(y, x)\right)=1$ for all $x, y \in[0,1]$, i.e.,

$$
I(x, B(x, I(y, B(y, x))))=1, \text { for all } x, y \in[0,1] .
$$

Since I satisfies (OP), then $x=B(x, I(y, B(y, x)))$ for all $x, y \in[0,1]$. Taking $y=1$, then $x=B(x, I(1, x))$. Note that I satisfies (NP), hence $x=B(x, x)$ for all $x \in[0,1]$, i. e., $B=T_{M}$.
(Sufficiency) Obvious.

4. CONDITIONS FOR $J_{I B}$ BEING A FUZZY IMPLICATION

4.1. Sufficient conditions

In this section, the sufficient conditions such that $J_{I B}$ is a fuzzy implication are studied.
Definition 4.1. (Nelsen [19]) A function $I:[0,1]^{2} \rightarrow[0,1]$ is 2-increasing if it satisfies, for all $x_{1}, x_{2}, y_{1}, y_{2} \in[0,1]$ with $x_{1}<x_{2}$ and $y_{1}<y_{2}$, the following inequation:

$$
I\left(x_{1}, y_{1}\right)+I\left(x_{2}, y_{2}\right) \geq I\left(x_{1}, y_{2}\right)+I\left(x_{2}, y_{1}\right)
$$

Lemma 4.2. Let $I:[0,1]^{2} \rightarrow[0,1]$ be a function. If I satisfies the following conditions:
(i) I is 2-increasing,
(ii) $I(0, x)=1, I(x, 1)=1, I(1,0)=0$.
then I is a fuzzy implication.
Proof. It suffices to prove that I satisfies (I1) and (I2). Let $x_{1}, x_{2}, y_{1}, y_{2} \in[0,1]$ such that $x_{1}<x_{2}, y_{1}<y_{2}$. Since I is 2 -increasing, then

$$
I\left(x_{1}, y_{1}\right)+I\left(x_{2}, y_{2}\right) \geq I\left(x_{1}, y_{2}\right)+I\left(x_{2}, y_{1}\right)
$$

Taking $y_{2}=1$, then $I\left(x_{1}, y_{1}\right) \geq I\left(x_{2}, y_{1}\right)$ for $x_{1}<x_{2}$ and $x_{1}, x_{2}, y_{1} \in[0,1]$. Therefore, I satisfies (I1). Taking $x_{1}=0$, then $I\left(x_{2}, y_{2}\right) \geq I\left(x_{2}, y_{1}\right)$ for $y_{1}<y_{2}$ and $x_{2}, y_{1}, y_{2} \in[0,1]$, thus I satisfies (I2).

Remark 4.3. (i) A fuzzy implication I may not be 2-increasing. See Example 4.4
(ii) A fuzzy implication I is 2-increasing, which may or not satisfy (IP). See Example 4.5

Example 4.4. Consider the Rescher implication $I_{R S}$. Since $I_{R S}(0.7,0.6)+I_{R S}(0.8,0.75)$ $=0, I_{R S}(0.7,0.75)+I_{R S}(0.8,0.6)=1$, then $I_{R S}(0.7,0.6)+I_{R S}(0.8,0.75)<I_{R S}(0.7,0.75)$ $+I_{R S}(0.8,0.6)$. That is, $I_{R S}$ is not 2-increasing.

Example 4.5. Let $x_{1}, x_{2}, y_{1}, y_{2} \in[0,1]$ and $x_{1}<x_{2}, y_{1}<y_{2}$. Consider the Reichenbach implication $I_{R C}$:

$$
I_{R C}(x, y)=1-x+x y \text { for all } x, y \in[0,1]
$$

Since $I_{R C}\left(x_{1}, y_{1}\right)+I_{R C}\left(x_{2}, y_{2}\right)-\left(I_{R C}\left(x_{1}, y_{2}\right)+I_{R C}\left(x_{2}, y_{1}\right)\right)=\left(x_{1}-x_{2}\right)\left(y_{1}-y_{2}\right) \geq 0$, then $I_{R C}$ is 2-increasing.

Consider the Weber implication $I_{W B}$. If $x_{2}<1$, then $I_{W B}\left(x_{1}, y_{1}\right)+I_{W B}\left(x_{2}, y_{2}\right)=$ $1=I_{W B}\left(x_{1}, y_{2}\right)+I_{W B}\left(x_{2}, y_{1}\right)$. If $x_{2}=1$, then $I_{W B}\left(x_{1}, y_{1}\right)+I_{W B}\left(x_{2}, y_{2}\right)=1+y_{2}>$ $1+y_{1}=I_{W B}\left(x_{1}, y_{2}\right)+I_{W B}\left(x_{2}, y_{1}\right)$. Hence

$$
I_{W B}\left(x_{1}, y_{1}\right)+I_{W B}\left(x_{2}, y_{2}\right) \geq I_{W B}\left(x_{1}, y_{2}\right)+I_{W B}\left(x_{2}, y_{1}\right)
$$

that is, $I_{W B}$ is 2-increasing. However, $I_{R C}$ does not satisfy (IP), $I_{W B}$ satisfies (IP).

Theorem 4.6. Let I be a fuzzy implication that satisfies (IP). If $J_{I B}$ is 2-increasing, then $J_{I B}$ is a fuzzy implication.

Proof. Straightforward from Proposition 2.9 (ii), (v), and Lemma 4.2.
Corollary 4.7. Let I be a fuzzy implication that satisfies both (IP) and (NP), and let $N_{I}=N_{C}$. If $J_{I B}$ is 2-increasing, then $J_{I B}$ is a probabilistic S-implication.

Proof. Let $C:[0,1]^{2} \rightarrow[0,1]$ be a function defined by

$$
C(x, y)=J_{I B}(x, y)+x-1, \text { for all } x, y \in[0,1]
$$

It suffices to show that C is a copula.
Assume that $J_{I B}$ is 2-increasing. Since I satisfies (IP), then $J_{I B}$ is a fuzzy implication by Theorem 4.6. Thus, for all $x \in[0,1]$, we get

$$
\begin{aligned}
& C(x, 1)=J_{I B}(x, 1)+x-1=1+x-1=x \\
& C(0, x)=J_{I B}(0, x)+0-1=1+0-1=0
\end{aligned}
$$

Note that I satisfies (NP) and $N_{I}=N_{C}$, by Proposition 2.9 (iii), (iv), for all $x \in[0,1]$, we get

$$
\begin{aligned}
& C(1, x)=J_{I B}(1, x)+1-1=x \\
& C(x, 0)=J_{I B}(x, 0)=N_{I}(x)+x-1=1-x+x-1=0
\end{aligned}
$$

On the other hand, let $x_{1}, x_{2}, y_{1}, y_{2} \in[0,1]$ and $x_{1}<x_{2}, y_{1}<y_{2}$. Note that $J_{I B}$ is 2-increasing, i. e.,

$$
J_{I B}\left(x_{1}, y_{1}\right)+J_{I B}\left(x_{2}, y_{2}\right) \geq J_{I B}\left(x_{1}, y_{2}\right)+J_{I B}\left(x_{2}, y_{1}\right)
$$

then $C\left(x_{1}, y_{1}\right)+C\left(x_{2}, y_{2}\right) \geq C\left(x_{1}, y_{2}\right)+C\left(x_{2}, y_{1}\right)$, i. e., C is 2 -increasing.
Taking $y_{1}=0$, then $C\left(x_{2}, y_{2}\right) \geq C\left(x_{1}, y_{2}\right)$, i. e., C is increasing in the first variable. Taking $x_{1}=0$, then $C\left(x_{2}, y_{2}\right) \geq C\left(x_{2}, y_{1}\right)$, i. e., C is increasing in the second variable.

Hence C is a copula.
Remark 4.8. Let I be a fuzzy implication that satisfies (IP). Even if I is 2-increasing, $J_{I B}$ may not be 2-increasing.

Example 4.9. Consider the Lukasiewicz implication $I_{L K}$. It satisfies (IP), and it is 2 -increasing. Let $B=T_{D}$. From (1) we get

$$
J_{I_{L K} B}(x, y)= \begin{cases}1-x, & \text { if } x, y \in[0,1) \\ y, & \text { if } x=1 \\ 1, & \text { if } y=1\end{cases}
$$

Since $J_{I_{L K} B}(0.9,0.3)+J_{I_{L K} B}(1,1)=1.1<1.3=J_{I_{L K} B}(0.9,1)+J_{I_{L K} B}(1,0.3)$, then $J_{I_{L K} B}$ is not 2-increasing.

An open problem: Let I be a fuzzy implication that satisfies (IP). If I is 2-increasing, what conditions does the semicopula B have to ensure that $J_{I B}$ be 2-increasing?

Definition 4.10. (Bustince et al. (7) Let $\left(r_{1}, r_{2}\right)$ be a real 2-dimensional vector, $\left(r_{1}, r_{2}\right) \neq(0,0)$. A function $I:[0,1]^{2} \rightarrow[0,1]$ is $\left(r_{1}, r_{2}\right)$-decreasing if it satisfies, for every point $\left(x_{1}, x_{2}\right) \in[0,1]^{2}$ and every real number $c \in R^{+}$such that $\left(x_{1}+c r_{1}, x_{2}+c r_{2}\right) \in$ $[0,1]^{2}$, the following inequation:

$$
I\left(x_{1}, x_{2}\right) \geq I\left(x_{1}+c r_{1}, x_{2}+c r_{2}\right)
$$

Theorem 4.11. Let I be a fuzzy implication that satisfies (IP), and let B be a semicopula. If there exist $r_{1}, r_{2} \in R^{+}$, such that $J_{I B}$ is $\left(r_{1}, r_{2}\right)$-decreasing, then $J_{I B}$ is a fuzzy implication.

Proof. Let $J_{I B}$ be a $\left(r_{1}, r_{2}\right)$-decreasing function, and let $x, y \in[0,1]$. Then, for all $c \in R^{+}$, such that $\left(x+c r_{1}, y+c r_{2}\right) \in[0,1]^{2}$, we get $J_{I B}(x, y) \geq J_{I B}\left(x+c r_{1}, y+c r_{2}\right)$, i. e.,

$$
I(x, B(x, y)) \geq I\left(x+c r_{1}, B\left(x+c r_{1}, y+c r_{2}\right)\right)
$$

Since $B\left(x+c r_{1}, y+c r_{2}\right) \geq B\left(x+c r_{1}, y\right)$, then $I(x, B(x, y)) \geq I\left(x+c r_{1}, B\left(x+c r_{1}, y\right)\right)$, i. e., $J_{I B}(x, y) \geq J_{I B}\left(x+c r_{1}, y\right)$. Hence $J_{I B}$ is a fuzzy implication.

In the following, we study the necessary and sufficient conditions such that $J_{I B}$ is a fuzzy implication when $I=I_{R S}\left(I_{L K}, I_{W B}, I_{G}\right.$, respectively).

Proposition 4.12. Let $I=I_{R S}$ and B be a semicopula. If $\left|B\left(x_{2}, y\right)-B\left(x_{1}, y\right)\right| \leq$ $\left|x_{2}-x_{1}\right|$ for all $x_{1}, x_{2}, y \in[0,1]$, then $J_{I B}$ is a fuzzy implication.

Proof. Let $x_{1}, x_{2}, y \in[0,1]$ and $x_{1}<x_{2}$. It suffices to prove that $J_{I B}\left(x_{1}, y\right) \geq$ $J_{I B}\left(x_{2}, y\right)$.

Since $I=I_{R S}$, then

$$
J_{I B}(x, y)= \begin{cases}1, & \text { if } x=B(x, y) \\ 0, & \text { if } x>B(x, y)\end{cases}
$$

If $x_{1}=0$ or $y=1$, then $J_{I B}\left(x_{1}, y\right)=1 \geq J_{I B}\left(x_{2}, y\right)$.
If $x_{1}>0, y<1$ and $x_{1}=B\left(x_{1}, y\right)$, then $J_{I B}\left(x_{1}, y\right)=1 \geq J_{I B}\left(x_{2}, y\right)$.
If $x_{1}>0, y<1$ and $x_{1}>B\left(x_{1}, y\right)$, then $J_{I B}\left(x_{1}, y\right)=0$. Since $\left|B\left(x_{2}, y\right)-B\left(x_{1}, y\right)\right| \leq$ $\left|x_{2}-x_{1}\right|$, then $B\left(x_{2}, y\right)-B\left(x_{1}, y\right) \leq x_{2}-x_{1}$. Thus

$$
x_{2} \geq\left(B\left(x_{2}, y\right)-B\left(x_{1}, y\right)\right)+x_{1}=B\left(x_{2}, y\right)+\left(x_{1}-B\left(x_{1}, y\right)\right)>B\left(x_{2}, y\right)
$$

Hence $J_{I B}\left(x_{2}, y\right)=0$. Therefore $J_{I B}\left(x_{1}, y\right) \geq J_{I B}\left(x_{2}, y\right)$.
Proposition 4.13. Let $I=I_{L K}$ and B be a semicopula. Then $J_{I B}$ is a fuzzy implication if and only if $\left|B\left(x_{2}, y\right)-B\left(x_{1}, y\right)\right| \leq\left|x_{2}-x_{1}\right|$ for all $x_{1}, x_{2}, y \in[0,1]$.

Proof. Straightforward from calculation.
Proposition 4.14. If $I=I_{W B}$ (I_{G}, respectively), then $J_{I B}$ is a fuzzy implication for any semicopula B.

Proof. Assume that $I=I_{W B}$. From (1) we get

$$
\begin{aligned}
J_{I B}(x, y) & = \begin{cases}1, & \text { if } x \in[0,1) \\
B(x, y), & \text { if } x=1\end{cases} \\
& = \begin{cases}1, & \text { if } x \in[0,1) \\
y, & \text { if } x=1\end{cases} \\
& =I_{W B}(x, y)
\end{aligned}
$$

Similarly, assume that $I=I_{G}$, then $J_{I B}=I_{G}$. Hence $J_{I B}$ is a fuzzy implication for any semicopula B.

Remark 4.15. (i) From Proposition 4.14, there exists some $I \in F I$ such that $J_{I B}$ is a fuzzy implication for any semicopula B. Hence the conclusion in 5 (Line 18, page 146) is incorrect.
(ii) $J_{I B}$ may not be 2-increasing even if I is 2-increasing and satisfies (IP) by Propositions 4.13, 4.14 and Theorem 4.6

Inspired by Proposition 4.14 for any semicopula B, it is interesting to find which fuzzy implication I satisfies the equation $I=J_{I B}$.

Proposition 4.16. Let I be a fuzzy implication that satisfies (IP), then $I=J_{I B}$ for any semicopula B if, and only if there exists an increasing function $f:[0,1] \rightarrow[0,1]$ with $f(0)=0$ and $f(1)=1$, such that

$$
I(x, y)= \begin{cases}1, & \text { if } x<1 \\ f(y), & \text { if } x=1\end{cases}
$$

Proof. (Necessity) Firstly, consider the following semicopula B :

$$
B(x, y)= \begin{cases}0, & \text { if } x, y \in[0,1) \\ \min (x, y), & \text { otherwise }\end{cases}
$$

Let $I=J_{I B}$, then

$$
I(x, y)= \begin{cases}I(x, 0), & \text { if } x, y \in[0,1) \tag{2}\\ I(1, y), & \text { if } x=1 \\ 1, & \text { if } y=1\end{cases}
$$

Secondly, let us consider the semicopula $B(x, y)=\min (x, y)$. By $I=J_{I B}$, we obtain

$$
I(x, y)= \begin{cases}1, & \text { if } x \leq y \tag{3}\\ I(x, y), & \text { if } x>y\end{cases}
$$

From (2) and (3), we obtain $I(x, 0)=1$ for all $x \in[0,1)$. Hence

$$
I(x, y)= \begin{cases}1, & \text { if } x<1 \\ I(1, y), & \text { if } x=1\end{cases}
$$

Let $f(y)=I(1, y)$. Obviously, $f:[0,1] \rightarrow[0,1]$ is an increasing function with $f(0)=0$ and $f(1)=1$. Thus

$$
I(x, y)= \begin{cases}1, & \text { if } x<1 \\ f(y), & \text { if } x=1\end{cases}
$$

(Sufficiency) The proof comes directly from calculation.
Remark 4.17. (i) Let $f:[0,1] \rightarrow[0,1]$ be an increasing function with $f(0)=0$ and $f(1)=1$, and let I be a fuzzy implication defined by

$$
I(x, y)= \begin{cases}1, & \text { if } x<1 \tag{4}\\ f(y), & \text { if } x=1\end{cases}
$$

Then $J_{I B}$ is a fuzzy implication for any semicopula B, and $J_{I B}$ is 2-increasing.
(ii) Let I be a fuzzy implication that satisfies (NP) and (IP). If $I=J_{I B}$ for any semicopula B, then $I=I_{W B}$.
(iii) An open problem: Does there exist some $I \in F I$, which is not an implication defined as (4), such that $J_{I B}$ is a fuzzy implication for any semicopula B ?

Proposition 4.18. Let I be a continuous fuzzy implication that satisfies (OP) and (EP). Then $J_{I B}$ is a fuzzy implication if and only if there exists a $\varphi \in \Phi$, such that the semicopula $B_{\varphi^{-1}}$ is 1-Lipschitz.

Proof. Let I be a continuous fuzzy implication that satisfies (OP) and (EP), then I is Φ-conjugate with $I_{L K}$, i. e., there exists a $\varphi \in \Phi$, such that

$$
I(x, y)=\varphi^{-1}\left(I_{L K}(\varphi(x), \varphi(y))\right)=\varphi^{-1}(\min (1-\varphi(x)+\varphi(y), 1)), \text { for all } x, y \in[0,1] .
$$

Let $x_{1}, x_{2}, y \in[0,1]$ and $x_{1} \leq x_{2}$. $J_{I B}$ is a fuzzy implication implies the following equivalences:

$$
\begin{aligned}
& J_{I B}\left(x_{1}, y\right) \geq J_{I B}\left(x_{2}, y\right) \\
& \Leftrightarrow 1-\varphi\left(x_{1}\right)+\varphi\left(B\left(x_{1}, y\right)\right) \geq 1-\varphi\left(x_{2}\right)+\varphi\left(B\left(x_{2}, y\right)\right) \\
& \Leftrightarrow \varphi\left(B\left(x_{2}, y\right)\right)-\varphi\left(B\left(x_{1}, y\right)\right) \leq \varphi\left(x_{2}\right)-\varphi\left(x_{1}\right) \\
& \Leftrightarrow \varphi\left(B\left(\varphi^{-1}\left(\varphi\left(x_{2}\right)\right), \varphi^{-1}(\varphi(y))\right)\right)-\varphi\left(B\left(\varphi^{-1}\left(\varphi\left(x_{1}\right)\right), \varphi^{-1}(\varphi(y))\right)\right) \leq \varphi\left(x_{2}\right)-\varphi\left(x_{1}\right) \\
& \Leftrightarrow B_{\varphi^{-1}} \text { is 1-Lipschitz, }
\end{aligned}
$$

i.e., $J_{I B}$ is a fuzzy implication if and only if there exists a $\varphi \in \Phi$, such that the semicopula $B_{\varphi^{-1}}$ is 1-Lipschitz.

4.2. Conditions for $J_{I B}$ being a fuzzy implication with a special kind of semicopula

In this section, we study the sufficient conditions such that $J_{I B}$ is a fuzzy implication with B defined by

$$
B(x, y)= \begin{cases}\min (x, y), & \text { if } y>N(x) \tag{5}\\ 0, & \text { if } y \leq N(x)\end{cases}
$$

where N is a continuous fuzzy negation. A semicopula of form (5) is denoted by $B_{\min }^{N}$.
Definition 4.19. (Baczyński et al. [2]) Let N be a fuzzy negation, the range of N is given by $\operatorname{Ran}(N)=\{N(x) \mid x \in[0,1]\}$, the pseudo-inverse of N is given by $N^{(-1)}(y)=$ $\sup \{x \in[0,1] \mid N(x) \geq y\}, y \in[0,1]$.

Proposition 4.20. Let I be a fuzzy implication that satisfies (IP), and $B=B_{\min }^{N}$. Let $s \in(0,1)$ be a fixed point of N, and $n=\min \{x \in[0,1] \mid N(x)=s\}$. Then $J_{I B}$ is a fuzzy implication if and only if
(i) $N_{I}(x)=1$ for all $x \in[0, n)$, and
(ii) for each $y \in(0, s], I(x, y) \leq N_{I}\left(N^{(-1)}(y)\right)$ for all $x \in\left(N^{(-1)}(y), 1\right]$.

Proof. (Necessity) (i) Suppose that there exists an $x_{0} \in(0, n)$ such that $N_{I}\left(x_{0}\right)<1$. Let $N\left(x_{0}\right)=y_{0}$, then $J_{I B}\left(x_{0}, y_{0}\right)=I\left(x_{0}, B\left(x_{0}, y_{0}\right)\right)=I\left(x_{0}, 0\right)=N_{I}\left(x_{0}\right)<1$.

Let $\varepsilon>0$ such that $x_{0}+\varepsilon<s$, then $N\left(x_{0}+\varepsilon\right)<N\left(x_{0}\right)=y_{0}$. Note that $y_{0}=$ $N\left(x_{0}\right)>N(n)=s$, thus $J_{I B}\left(x_{0}+\varepsilon, y_{0}\right)=I\left(x_{0}+\varepsilon, B\left(x_{0}+\varepsilon, y_{0}\right)\right)=I\left(x_{0}+\varepsilon, x_{0}+\varepsilon\right)=$ $1>J_{I B}\left(x_{0}, y_{0}\right)$, this contradicts the fact that $J_{I B}$ is a fuzzy implication.
(ii) Suppose that there exist an $y_{0} \in(0, s]$ and an $x_{0} \in\left(N^{(-1)}\left(y_{0}\right), 1\right]$ such that

$$
\begin{equation*}
I\left(x_{0}, y_{0}\right)>N_{I}\left(N^{(-1)}\left(y_{0}\right)\right) \tag{6}
\end{equation*}
$$

Let $x^{\prime}=N^{(-1)}\left(y_{0}\right)$, then $x^{\prime} \geq s$ and $N\left(x^{\prime}\right)=y_{0}$. Hence

$$
\begin{equation*}
J_{I B}\left(x^{\prime}, y_{0}\right)=I\left(x^{\prime}, B\left(x^{\prime}, y_{0}\right)\right)=I\left(x^{\prime}, 0\right)=N_{I}\left(N^{(-1)}\left(y_{0}\right)\right) . \tag{7}
\end{equation*}
$$

Let $\varepsilon>0$ such that $x^{\prime}+\varepsilon=x_{0}$, then $N\left(x_{0}\right)<N\left(x^{\prime}\right)=y_{0}$. Note that $y_{0} \leq s<x_{0}$, then

$$
\begin{equation*}
J_{I B}\left(x^{\prime}+\varepsilon, y_{0}\right)=I\left(x_{0}, B\left(x_{0}, y_{0}\right)\right)=I\left(x_{0}, y_{0}\right) . \tag{8}
\end{equation*}
$$

From (6), (7) and (8), we obtain $J_{I B}\left(x^{\prime}, y_{0}\right)<J_{I B}\left(x^{\prime}+\varepsilon, y_{0}\right)$, this contradicts the fact that $J_{I B}$ is a fuzzy implication.
(Sufficiency). Let $x_{1}, x_{2}, y \in[0,1]$ with $x_{1}<x_{2}$. Note that $J_{I B}(x, y)=1$ for all $x \leq y$ and $y \geq s$, hence it suffices to prove that

$$
J_{I B}\left(x_{1}, y\right) \geq J_{I B}\left(x_{2}, y\right) \text { for all } y \in(0, s)
$$

Actually, let $y \in(0, s)$ and $x^{\prime \prime}=N^{(-1)}(y)$. If $x_{1}<x_{2} \leq x^{\prime \prime}$, then

$$
J_{I B}\left(x_{1}, y\right)=I\left(x_{1}, 0\right)=N_{I}\left(x_{1}\right), \quad J_{I B}\left(x_{2}, y\right)=I\left(x_{2}, 0\right)=N_{I}\left(x_{2}\right),
$$

thus $J_{I B}\left(x_{1}, y\right) \geq J_{I B}\left(x_{2}, y\right)$.
If $x_{1} \leq x^{\prime \prime}<x_{2}$, then $J_{I B}\left(x_{1}, y\right)=N_{I}\left(x_{1}\right) \geq N_{I}\left(x^{\prime \prime}\right)=N_{I}\left(N^{(-1)}(y)\right), J_{I B}\left(x_{2}, y\right)=$ $I\left(x_{2}, y\right)$. Thus $J_{I B}\left(x_{1}, y\right) \geq J_{I B}\left(x_{2}, y\right)$.

If $x^{\prime \prime}<x_{1}<x_{2}$, then $J_{I B}\left(x_{1}, y\right)=I\left(x_{1}, y\right), J_{I B}\left(x_{2}, y\right)=I\left(x_{2}, y\right)$. Thus $J_{I B}\left(x_{1}, y\right) \geq$ $J_{I B}\left(x_{2}, y\right)$.

From above discussion, we get $J_{I B}\left(x_{1}, y\right) \geq J_{I B}\left(x_{2}, y\right)$ for all $x_{1}, x_{2}, y \in[0,1]$ with $x_{1}<x_{2}$. Hence $J_{I B}$ is a fuzzy implication, see also Figure 1.

Fig. 1. The fuzzy implication $J_{I B}$ in Proposition 4.20.

Corollary 4.21. Let I be a fuzzy implication that satisfies (IP), let $B=B_{\min }^{N}$ and N be a strict fuzzy negation with a fixed point $s \in(0,1)$. Then $J_{I B}$ is a fuzzy implication if and only if
(i) $N_{I}(x)=1$ for all $x \in[0, s)$, and
(ii) for each $y \in(0, s], I(x, y) \leq N_{I}\left(N^{-1}(y)\right)$ for all $x \in\left(N^{-1}(y), 1\right]$.

Proof. Let $s \in(0,1)$ be the fixed point of N, and let $n=\min \{x \in[0,1] \mid N(x)=s\}$. Since N is strict, then $n=s$. Therefore, the proof comes directly from Proposition 4.20 .

Corollary 4.22. Let I be a fuzzy implication that satisfies (IP), let $B=B_{\min }^{N}$ and N be a continuous negation with a fixed point $s \in(0,1)$. Then $J_{I B}$ satisfies (IP) if and only if $N_{I}(s)=1$.

Proof. (Sufficiency). Since s is a fixed point of N, then $s=N(s)$. If $x \leq N(x)$, then $x \leq s$. Hence $N_{I}(x) \geq N_{I}(s)=1$, i. e., $I(x, 0)=1$ for all $x \leq N(x)$. Note that

$$
J_{I B}(x, x)=I(x, B(x, x))= \begin{cases}I(x, 0), & \text { if } x \leq N(x) \\ 1, & \text { if } x>N(x)\end{cases}
$$

then $J_{I B}(x, x)=1$ for all $x \in[0,1]$. Hence $J_{I B}$ satisfies (IP).
(Necessity). Obvious.

4.3. Conditions for $J_{I B}$ being a fuzzy implication with $I=I_{U N}$

In this section, we discuss the conditions such that $J_{I B}$ is a fuzzy implication when I is a (U, N)-implication.

Definition 4.23. (Baczyński et al. [2]) An associative, commutative and increasing operator $U:[0,1]^{2} \rightarrow[0,1]$ is called a uninorm if it has a neutral element $e \in[0,1]$, i. e., $U(e, x)=x$, for all $x \in[0,1]$.

Obviously, if $e=0$, then U is a t-conorm and if $e=1$, then U is a t-norm.
Definition 4.24. (Baczyński et al. [2]) A uninorm U is called conjunctive if $U(0,1)=0$. A uninorm U is called disjunctive if $U(0,1)=1$.

Theorem 4.25. (Baczyński et al. 2]) Let U be a uninorm with neutral element $e \in$ $(0,1)$, such that the functions $U(x, 1)$ and $U(x, 0)$ are continuous except at the point $x=e$. If U is disjunctive, then there exist a t-norm T and a t-conorm S such that

$$
U(x, y)= \begin{cases}e \cdot T\left(\frac{x}{e}, \frac{y}{e}\right), & \text { if } x, y \in[0, e] \tag{9}\\ e+(1-e) \cdot S\left(\frac{x-e}{1-e}, \frac{y-e}{1-e}\right), & \text { if } x, y \in[e, 1] \\ \max (x, y), & \text { otherwise }\end{cases}
$$

A uninorm of form (9) will be denoted by $U_{T, S, e}^{\max }$.
Definition 4.26. (Baczyński et al. [2]) A function $I:[0,1]^{2} \rightarrow[0,1]$ is called a (U, N) implication, if there exist a disjunctive uninorm U and a fuzzy negation N such that

$$
I(x, y)=U(N(x), y), x, y \in[0,1] .
$$

If I is a (U, N)-implication generated from a disjunctive uninorm U and a negation N, then we will denote it by $I_{U N}$.

Lemma 4.27. Let U be a uninorm with a neutral element $e \in(0,1)$. If $I_{U N}$ satisfies (IP), then $N(x)=1$ for all $x \in[0, e]$.

Proof. Assume that $I_{U N}$ satisfy (IP), then $I_{U N}(x, x)=1$ for all $x \in[0,1]$, i.e, $U(N(x), x)=1$ for all $x \in[0,1]$. Let $x=e$, then $U(N(e), e)=1$, thus $N(e)=1$. Since $N(x)$ is decreasing, then $N(x) \geq N(e)=1$ for $x \in[0, e]$. Hence $N(x)=1$ for all $x \in[0, e]$.

Lemma 4.28. Let $U=U_{T, S, e}^{\max }$. If $I_{U N}$ satisfies (IP), then
(i) $N^{(-1)}(e)=1$.
(ii) $S\left(\frac{N(x)-e}{1-e}, \frac{x-e}{1-e}\right)=1$ for all $x \in\left(e, N^{(-1)}(e)\right)$.
(iii) If S is positive, i.e., $S(x, y)=1 \Rightarrow$ either $x=1$ or $y=1$, then $N=N_{D_{2}}$.

Proof. Let $x \in[0, e]$, then $N(x)=1$ by Lemma 4.27. Thus

$$
U(N(x), x)=\max (N(x), x)=N(x)=1 .
$$

Let $x \in(e, 1]$, then $0 \leq N(x) \leq N(e)=1$.
If $e \leq N(x) \leq 1$, namely, $e<x<N^{(-1)}(e)$, then

$$
U(N(x), x)=e+(1-e) \cdot S\left(\frac{N(x)-e}{1-e}, \frac{x-e}{1-e}\right) .
$$

If $0 \leq N(x) \leq e$, namely, $N^{(-1)}(e) \leq x \leq 1$, then

$$
U(N(x), x)=\max (N(x), x)=x
$$

From above discussion, we get

$$
I_{U N}(x, x)= \begin{cases}1, & \text { if } x \in[0, e] \\ e+(1-e) \cdot S\left(\frac{N(x)-e}{1-e}, \frac{x-e}{1-e}\right), & \text { if } x \in\left(e, N^{(-1)}(e)\right) \\ x, & \text { if } x \in\left[N^{(-1)}(e), 1\right]\end{cases}
$$

Assume that $I_{U N}$ satisfies (IP), then

$$
N^{(-1)}(e)=1, \text { and } S\left(\frac{N(x)-e}{1-e}, \frac{x-e}{1-e}\right)=1 \text { for all } x \in\left(e, N^{(-1)}(e)\right)
$$

Assume that S is positive, then we get

$$
\frac{N(x)-e}{1-e}=1 \text { or } \frac{x-e}{1-e}=1
$$

Note that $e<x<1$, then $\frac{N(x)-e}{1-e}=1$, thus $N(x)=1$ for all $x \in(e, 1)$. Hence $N=N_{D_{2}}$.

Proposition 4.29. (Baczyński et al. [5) Let $I \in F I$ and B be a semicopula. If $J_{I B}$ is a fuzzy implication, then I satisfies (IP).

Proposition 4.30. Let $I=I_{U N}$. If $J_{I B}$ is a fuzzy implication, then
(i) $N(x)=1$ for all $x \in[0, e]$.
(ii) If $U=U_{T, S, e}^{\max }$, then $N^{(-1)}(e)=1$, and $S\left(\frac{N(x)-e}{1-e}, \frac{x-e}{1-e}\right)=1$ for all $x \in(e, 1)$.
(iii) If s is a fixed point of N, then $s>e$.

Proof. Straightforward from Lemmas 4.27, 4.28 and Proposition 4.29.

Remark 4.31. Let $I=I_{U N}$. If N is strict, then there is no semicopula B such that $J_{I B}$ is a fuzzy implication. Actually, suppose that $J_{I B}$ is a fuzzy implication, then $N(x)=1$ for all $x \in[0, e]$ by Proposition 4.30 (i), a contradiction to the hypothesis that N is strict.

Proposition 4.32. Let $U=U_{T, S, e}^{\max }$ and $I=I_{U N}$. If the t-conorm S is positive, then $J_{I B}$ is a fuzzy implication if and only if $N=N_{D_{2}}$.

Proof. (Sufficiency) Since $J_{I B}(1,1)=U(N(1), B(1,1))=U(0,1)=1$, then it suffices to prove that $J_{I B}$ satisfies (I1).

Let $x_{1}, x_{2}, y \in[0,1]$ with $x_{1}<x_{2}$. Since $N_{D_{2}}(x)=1$ for all $x \in[0,1)$ and $U(1, x)=1$ for all $x \in[0,1]$, then

$$
\begin{aligned}
J_{I B}\left(x_{1}, y\right)-J_{I B}\left(x_{2}, y\right) & =U\left(N_{D_{2}}\left(x_{1}\right), B\left(x_{1}, y\right)\right)-U\left(N_{D_{2}}\left(x_{2}\right), B\left(x_{2}, y\right)\right) \\
& =1-U\left(N_{D_{2}}\left(x_{2}\right), B\left(x_{2}, y\right)\right) \\
& \geq 0
\end{aligned}
$$

that is, $J_{I B}$ satisfies (I1).
(Necessity) Straightforward from Lemma 4.28 (iii).
Theorem 4.33. Let $I=I_{U N}, U=U_{T, S, e}^{\max }$, and N be a fuzzy negation that satisfies $N(x)=1$ for all $x \in[0, e]$, and $N^{(-1)}(e)=1$. Let B be a semicopula that satisfies $B(x, y) \geq e$ for all $x, y \in[e, 1]$. Then $J_{I B}$ is a fuzzy implication if and only if the triple (S, N, B) satisfies the following conditions:
(a) $S\left(\frac{N(x)-e}{1-e}, \frac{B(x, y)-e}{1-e}\right) \geq \frac{y-e}{1-e}$ for all $x \in(e, 1)$ and $y \in(e, 1]$,
(b) $S\left(\frac{N(x)-e}{1-e}, \frac{B(x, y)-e}{1-e}\right)$ is decreasing with respect to $x \in(e, 1)$ for every $y \in(e, 1]$.

Proof. Since $J_{I B}(1,1)=U(N(1), B(1,1))=U(0,1)=1$, then it suffices to prove that $J_{I B}$ satisfies (I1) if and only if the conditions (a) and (b) hold.

Let $x, y \in[0,1]$. Note that $U_{\max }(1, a)=1$ for all $a \in[0,1]$, then, for $x \in[0, e]$ and $y \in[0,1], J_{I B}(x, y)=U(N(x), B(x, y))=U(1, B(x, y))=1$.

Since $N^{(-1)}(e)=1$, then $N(x) \geq e$ for all $x \in[e, 1)$. Actually, suppose that there exists an $x_{0} \in(e, 1)$ such that $N\left(x_{0}\right)<e$, then $N(x)<e$ for all $x \in\left[x_{0}, 1\right]$. Thus

$$
\begin{aligned}
N^{(-1)}(e) & =\sup \{x \in[0,1] \mid N(x) \geq e\} \\
& =\sup \left\{\left\{x \in\left[0, x_{0}\right) \mid N(x) \geq e\right\} \cup\left\{x \in\left[x_{0}, 1\right] \mid N(x) \geq e\right\}\right\} \\
& =\sup \left\{x \in\left[0, x_{0}\right) \mid N(x) \geq e\right\}
\end{aligned}
$$

Note that $\left\{x \in\left[e, x_{0}\right) \mid N(x) \geq e\right\} \subseteq\left[e, x_{0}\right)$, then $\sup \left\{x \in\left[e, x_{0}\right) \mid N(x) \geq e\right\} \leq \sup \left[e, x_{0}\right)$. Since $\sup \left[e, x_{0}\right) \leq x_{0}$, then

$$
\sup \left\{x \in\left[e, x_{0}\right) \mid N(x) \geq e\right\} \leq x_{0}<1, \text { i. e., } N^{(-1)}(e) \leq x_{0}<1
$$

this contradicts the fact that $N^{(-1)}(e)=1$. That is, $N(x) \geq e$ for all $x \in[e, 1)$.

For $x \in(e, 1)$ and $y \in[0, e]$. Note that $B(x, y) \leq \min (x, y)$, then $B(x, y) \leq e$. Hence

$$
J_{I B}(x, y)=U(N(x), B(x, y))=\max (N(x), B(x, y))=N(x)
$$

For $x \in(e, 1)$ and $y \in(e, 1]$. Since $B(x, y) \geq e$ for all $x, y \in[e, 1]$, then

$$
J_{I B}(x, y)=U(N(x), B(x, y))=e+(1-e) \cdot S\left(\frac{N(x)-e}{1-e}, \frac{B(x, y)-e}{1-e}\right)
$$

For $x=1$ and $y \in[0, e]$. Note that $B(1, y)=y \leq e$, then

$$
J_{I B}(x, y)=U(N(x), B(x, y))=U(0, y)=e \cdot T\left(\frac{0}{e}, \frac{y}{e}\right)=0
$$

For $x=1$ and $y \in(e, 1]$. Note that $B(1, y)=y>e$, then

$$
J_{I B}(x, y)=U(N(x), B(x, y))=U(0, y)=\max (0, y)=y
$$

From above discussion, we get

$$
J_{I B}(x, y)= \begin{cases}1, & \text { if } x \in[0, e] \text { and } y \in[0,1] \\ N(x), & \text { if } x \in(e, 1) \text { and } y \in[0, e] \\ e+(1-e) \cdot S\left(\frac{N(x)-e}{1-e}, \frac{B(x, y)-e}{1-e}\right), & \text { if } x \in(e, 1) \text { and } y \in(e, 1] \\ 0, & \text { if } x=1 \text { and } y \in[0, e], \\ y, & \text { if } x=1 \text { and } y \in(e, 1]\end{cases}
$$

Let $x_{1}, x_{2}, y \in[0,1]$ with $x_{1}<x_{2}$. Consider the following cases:
Case 1. If $x_{1} \leq e$, then $J_{I B}\left(x_{1}, y\right)=1 \geq J_{I B}\left(x_{2}, y\right)$ for all $y \in[0,1]$.
Case 2. If $e<x_{1}<x_{2}<1$ and $y \in[0, e]$, then

$$
J_{I B}\left(x_{1}, y\right)=N\left(x_{1}\right) \geq N\left(x_{2}\right)=J_{I B}\left(x_{2}, y\right)
$$

Case 3. If $e<x_{1}<x_{2}<1$ and $y \in(e, 1]$, then

$$
J_{I B}\left(x_{1}, y\right) \geq J_{I B}\left(x_{2}, y\right) \Leftrightarrow S\left(\frac{N\left(x_{1}\right)-e}{1-e}, \frac{B\left(x_{1}, y\right)-e}{1-e}\right) \geq S\left(\frac{N\left(x_{2}\right)-e}{1-e}, \frac{B\left(x_{2}, y\right)-e}{1-e}\right)
$$

i. e., $S\left(\frac{N(x)-e}{1-e}, \frac{B(x, y)-e}{1-e}\right)$ is decreasing with respect to $x \in[e, 1]$ for every $y \in(e, 1]$.

Case 4. If $e<x_{1}<x_{2}=1$ and $y \in[0, e]$, then $J_{I B}\left(x_{1}, y\right)=N\left(x_{1}\right) \geq e, J_{I B}\left(x_{2}, y\right)=0$. Hence $J_{I B}\left(x_{1}, y\right) \geq J_{I B}\left(x_{2}, y\right)$.

Case 5. If $e<x_{1}<x_{2}=1$ and $y \in(e, 1]$, then $J_{I B}\left(x_{1}, y\right)=S\left(\frac{N\left(x_{1}\right)-e}{1-e}, \frac{B\left(x_{1}, y\right)-e}{1-e}\right)$, $J_{I B}\left(x_{2}, y\right)=y$. Hence $J_{I B}\left(x_{1}, y\right) \geq J_{I B}\left(x_{2}, y\right) \Leftrightarrow S\left(\frac{N(x)-e}{1-e}, \frac{B(x, y)-e}{1-e}\right) \geq \frac{y-e}{1-e}$ for all $x \in(e, 1), y \in(e, 1]$.

From above cases, $J_{I B}$ satisfies (I1) if only if the triple (S, N, B) satisfies the following conditions:
(a) $S\left(\frac{N(x)-e}{1-e}, \frac{B(x, y)-e}{1-e}\right) \geq \frac{y-e}{1-e}$ for all $x \in(e, 1)$ and $y \in(e, 1]$,
(b) $S\left(\frac{N(x)-e}{1-e}, \frac{B(x, y)-e}{1-e}\right)$ is decreasing with respect to $x \in(e, 1)$ for every $y \in(e, 1]$. Thus we complete the proof.

To illustrate there exists a triple (S, N, B) such that the conditions (a) and (b) of Theorem 4.33 hold, an example is given.

Example 4.34. Let N be a fuzzy negation defined as

$$
N(x)= \begin{cases}1, & \text { if } x \in[0, e] \\ -x+e+1, & \text { if } x \in\left(e, \frac{1+e}{2}\right] \\ \frac{1+e}{2}, & \text { if } x \in\left(\frac{1+e}{2}, 1\right) \\ 0, & \text { if } x=1\end{cases}
$$

where $e \in(0.5,1)$. Obviously, N satisfies $N(x)=1$ for all $x \in[0, e]$, and $N^{(-1)}(e)=1$.
Let $B=T_{n M}$. It is easy to see that $T_{n M}(x, y) \geq e$ for all $x, y \in[e, 1]$.
Let $S=S_{n M}^{N_{1}}$, that is

$$
S(x, y)=S_{n M}^{N_{1}}(x, y)= \begin{cases}1, & \text { if } x \geq N_{1}(y) \\ \max (x, y), & \text { if } x<N_{1}(y)\end{cases}
$$

where $N_{1}(y)=1-y$. Note that $\frac{N(x)-e}{1-e} \geq N_{1}\left(\frac{x-e}{1-e}\right)$ for all $x \in(e, 1)$, then, for $x \in(e, 1)$, $y \in(e, 1]$ with $x \leq y$, we get

$$
\begin{aligned}
S_{n M}^{N_{1}}\left(\frac{N(x)-e}{1-e}, \frac{B(x, y)-e}{1-e}\right) & =S_{n M}^{N_{1}}\left(\frac{N(x)-e}{1-e}, \frac{T_{n M}(x, y)-e}{1-e}\right) \\
& =S_{n M}^{N_{1}}\left(\frac{N(x)-e}{1-e}, \frac{x-e}{1-e}\right) \\
& =1
\end{aligned}
$$

Similarly, for $x \in(e, 1), y \in(e, 1]$ with $x>y$, we get

$$
S_{n M}^{N_{1}}\left(\frac{N(x)-e}{1-e}, \frac{B(x, y)-e}{1-e}\right)=S_{n M}^{N_{1}}\left(\frac{N(x)-e}{1-e}, \frac{y-e}{1-e}\right) .
$$

Hence

$$
S_{n M}^{N_{1}}\left(\frac{N(x)-e}{1-e}, \frac{B(x, y)-e}{1-e}\right)= \begin{cases}1, & \text { if } x \leq y, x \in(e, 1), y \in(e, 1] \\ S_{n M}^{N_{1}}\left(\frac{N(x)-e}{1-e}, \frac{y-e}{1-e}\right), & \text { if } x>y, x \in(e, 1), y \in(e, 1]\end{cases}
$$

It easy to see that $S_{n M}^{N_{1}}\left(\frac{N(x)-e}{1-e}, \frac{B(x, y)-e}{1-e}\right)$ is decreasing with respect to $x \in(e, 1)$ for every $y \in(e, 1]$, and $S_{n M}^{N_{1}}\left(\frac{N(x)-e}{1-e}, \frac{B(x, y)-e}{1-e}\right) \geq \frac{y-e}{1-e}$, i. e., conditions (a) and (b) of Theorem 4.33 hold.

If the conditions on B are weakened, we obtain Theorem 4.38 .
Definition 4.35. (Klement et al. [12]) Let $e \in(0,1)$ be a constant. A semicopula B is $G(e)$-continuous if for every $y \in[e, 1]$, there exists $x \in[e, 1]$ such that $B(x, y)=e$.

Remark 4.36. (i) If a semicopula B is continuous, then B is $G(e)$-continuous.
(ii) A semicopula B may not be continuous even is $G(e)$-continuous.

Example 4.37. (i) Let $e \in[0,1]$ and $B=T_{P}$. Obviously, B is continuous. For each $y \in[e, 1]$, there exists $x=\frac{e}{y} \in[e, 1]$ such that $B(x, y)=e$, hence B is $G(e)$-continuous.
(ii) Consider $B=T_{n M}$, which is not continuous. However, let $e=0.7$, for each $y \in$ $[0.7,1]$, there exists $x=0.7$ such that $B(x, y)=0.7$, i. e., B is $G(0.7)$-continuous.

Theorem 4.38. Let $I=I_{U N}, U=U_{T, S, e}^{\max }$ and N be a fuzzy negation that satisfies $N(x)=1$ for all $x \in[0, e]$, and $N^{(-1)}(e)=1$. Let B be a semicopula that is $G(e)-$ continuous. Then $J_{I B}$ is a fuzzy implication if and only if the triple (S, N, B) satisfies following conditions:
(a) $S\left(\frac{N(x)-e}{1-e}, \frac{B(x, y)-e}{1-e}\right) \geq \frac{y-e}{1-e}$ for $y \in(e, 1]$ and $x \in\{t \in[e, 1) \mid B(t, y) \geq e\}$,
(b) $S\left(\frac{N(x)-e}{1-e}, \frac{B(x, y)-e}{1-e}\right)$ is decreasing with respect to $x \in\{t \in[e, 1) \mid B(t, y) \geq e\}$ for every $y \in(e, 1]$.

Proof. Similar to the proof of Theorem 4.33, it suffices to prove that $J_{I B}$ satisfies (I1) if and only if the conditions (a) and (b) hold.

Let $x, y \in[0,1]$. Note that $U_{\max }(1, a)=1$ for all $a \in[0,1]$, then, for $x \in[0, e]$, we get

$$
J_{I B}(x, y)=U(N(x), B(x, y))=U(1, B(x, y))=1 \text { for all } y \in[0,1]
$$

Note that $N^{(-1)}(e)=1$, then $N(x) \geq e$ for all $x \in[e, 1)$.
(1) For $x \in(e, 1)$ and $y \in[0, e]$, since $B(x, y) \leq \min (x, y)=y \leq e$, then

$$
J_{I B}(x, y)=U(N(x), B(x, y))=\max (N(x), B(x, y))=N(x)
$$

(2) For $x \in(e, 1)$ and $y \in(e, 1]$ such that $B(x, y) \leq e$, then

$$
J_{I B}(x, y)=U(N(x), B(x, y))=\max (N(x), B(x, y))=N(x)
$$

(3) For $x \in(e, 1)$ and $y \in(e, 1]$ such that $B(x, y)>e$, then

$$
J_{I B}(x, y)=U(N(x), B(x, y))=e+(1-e) \cdot S\left(\frac{N(x)-e}{1-e}, \frac{B(x, y)-e}{1-e}\right) .
$$

(4) For $x=1$ and $y \in[0, e]$, since $B(x, y)=y \leq e$, then

$$
J_{I B}(x, y)=U(N(x), B(x, y))=U(0, y)=0 .
$$

(5) For $x=1$ and $y \in(e, 1]$, since $B(x, y)=y>e$, then

$$
J_{I B}(x, y)=U(N(x), B(x, y))=U(0, y)=\max (0, y)=y
$$

From above discussion, we get
$J_{I B}(x, y)= \begin{cases}1, & \text { if } x \in[0, e] \text { and } y \in[0,1], \\ N(x), & \text { if } x \in(e, 1), y \in[0,1] \text { and } B(x, y) \leq e, \\ e+(1-e) \cdot S\left(\frac{N(x)-e}{1-e}, \frac{B(x, y)-e}{1-e}\right), & \text { if } x \in(e, 1), y \in(e, 1] \text { and } B(x, y)>e, \\ 0, & \text { if } x=1 \text { and } y \in[0, e], \\ y, & \text { if } x=1 \text { and } y \in(e, 1] .\end{cases}$
Let $x_{1}, x_{2}, y \in[0,1]$ and $x_{1}<x_{2}$. Consider the following cases:
Case 1. If $x_{1} \leq e$, then $J_{I B}\left(x_{1}, y\right)=1 \geq J_{I B}\left(x_{2}, y\right)$ for all $y \in[0,1]$.
Case 2. If $e<x_{1}<x_{2}<1$ and $y \in[0, e]$, note that $B(x, y) \leq \min (x, y) \leq y \leq e$, then $J_{I B}\left(x_{1}, y\right)=N\left(x_{1}\right) \geq N\left(x_{2}\right)=J_{I B}\left(x_{2}, y\right)$.

Case 3. If $e<x_{1}<x_{2}<1$ and $y \in(e, 1]$. Given $y_{0} \in(e, 1]$, since B is $G(e)$-continuous, then there exists an $x_{0} \in[e, 1]$ such that $B\left(x_{0}, y_{0}\right)=e$.

Let $A(y)=\{t \in[e, 1) \mid B(t, y) \geq e\}, y \in(e, 1]$. Obviously, $A \neq \emptyset$.
Case 3.1. $x_{2} \leq x_{0}$. Note that $B\left(x_{1}, y_{0}\right) \leq B\left(x_{2}, y_{0}\right) \leq B\left(x_{0}, y_{0}\right)=e$, then

$$
J_{I B}\left(x_{1}, y_{0}\right)=N\left(x_{1}\right) \geq N\left(x_{2}\right)=J_{I B}\left(x_{2}, y_{0}\right) .
$$

Case 3.2. $x_{1} \leq x_{0}<x_{2}<1$. Note that $B\left(x_{1}, y_{0}\right) \leq e$ and $B\left(x_{2}, y_{0}\right) \geq e$, then $x_{2} \in A\left(y_{0}\right)$, and

$$
\begin{aligned}
& J_{I B}\left(x_{1}, y_{0}\right)=N\left(x_{1}\right) \\
& J_{I B}\left(x_{0}, y_{0}\right)=N\left(x_{0}\right)=e+(1-e) \cdot S\left(\frac{N\left(x_{0}\right)-e}{1-e}, \frac{B\left(x_{0}, y_{0}\right)-e}{1-e}\right), \\
& J_{I B}\left(x_{2}, y_{0}\right)=e+(1-e) \cdot S\left(\frac{N\left(x_{2}\right)-e}{1-e}, \frac{B\left(x_{2}, y_{0}\right)-e}{1-e}\right) .
\end{aligned}
$$

Hence, for all $x_{2} \in A\left(y_{0}\right)$, we have

$$
J_{I B}\left(x_{1}, y_{0}\right) \geq J_{I B}\left(x_{2}, y_{0}\right) \Leftrightarrow S\left(\frac{N\left(x_{0}\right)-e}{1-e}, \frac{B\left(x_{0}, y_{0}\right)-e}{1-e}\right) \geq S\left(\frac{N\left(x_{2}\right)-e}{1-e}, \frac{B\left(x_{2}, y_{0}\right)-e}{1-e}\right)
$$

Case 3.3. $x_{0} \leq x_{1}<x_{2}<1$. Note that $e=B\left(x_{0}, y_{0}\right) \leq B\left(x_{1}, y_{0}\right) \leq B\left(x_{2}, y_{0}\right)$, then $x_{1} \in A\left(y_{0}\right), x_{2} \in A\left(y_{0}\right)$, and

$$
\begin{aligned}
& J_{I B}\left(x_{1}, y_{0}\right)=e+(1-e) \cdot S\left(\frac{N\left(x_{1}\right)-e}{1-e}, \frac{B\left(x_{1}, y_{0}\right)-e}{1-e}\right) \\
& J_{I B}\left(x_{2}, y_{0}\right)=e+(1-e) \cdot S\left(\frac{N\left(x_{2}\right)-e}{1-e}, \frac{B\left(x_{2}, y_{0}\right)-e}{1-e}\right) .
\end{aligned}
$$

Thus $J_{I B}\left(x_{1}, y_{0}\right) \geq J_{I B}\left(x_{2}, y_{0}\right) \Leftrightarrow S\left(\frac{N\left(x_{1}\right)-e}{1-e}, \frac{B\left(x_{1}, y_{0}\right)-e}{1-e}\right) \geq S\left(\frac{N\left(x_{2}\right)-e}{1-e}, \frac{B\left(x_{2}, y_{0}\right)-e}{1-e}\right)$, i. e., $S\left(\frac{N(x)-e}{1-e}, \frac{B\left(x, y_{0}\right)-e}{1-e}\right)$ is decreasing with respect to $x \in A\left(y_{0}\right)$.

From Cases 3.2 and 3.3, and the arbitrary of y_{0}, we get $J_{I B}\left(x_{1}, y\right) \geq J_{I B}\left(x_{2}, y\right) \Leftrightarrow$ $S\left(\frac{N(x)-e}{1-e}, \frac{B(x, y)-e}{1-e}\right)$ is decreasing with respect to $x \in\{t \in[e, 1) \mid B(t, y) \geq e\}$ for every $y \in(e, 1]$.

Case 4. If $e \leq x_{1}<x_{2}=1$ and $y \in[0, e]$, then $J_{I B}\left(x_{1}, y\right) \geq 0=J_{I B}\left(x_{2}, y\right)$.
Case 5. If $e \leq x_{1}<x_{2}=1$ and $y \in(e, 1]$. Similarly, let $y_{0} \in(e, 1]$, since B is $G(e)$ continuous, then there exists an $x_{0} \in(e, 1)$ such that $B\left(x_{0}, y_{0}\right)=e$.

Let $A(y)=\{t \in[e, 1) \mid B(t, y) \geq e\}, y \in(e, 1]$.
Case 5.1. $x_{0} \leq x_{1}$. Note that $B\left(x_{1}, y_{0}\right) \geq B\left(x_{0}, y_{0}\right)=e$, i. e., $x_{1} \in A\left(y_{0}\right)$, then

$$
J_{I B}\left(x_{1}, y_{0}\right)=e+(1-e) \cdot S\left(\frac{N\left(x_{1}\right)-e}{1-e}, \frac{B\left(x_{1}, y_{0}\right)-e}{1-e}\right) .
$$

Hence $J_{I B}\left(x_{1}, y_{0}\right) \geq J_{I B}\left(x_{2}, y_{0}\right) \Leftrightarrow S\left(\frac{N\left(x_{1}\right)-e}{1-e}, \frac{B\left(x_{1}, y_{0}\right)-e}{1-e}\right) \geq \frac{y_{0}-e}{1-e}$.
Case 5.2. $e \leq x_{1}<x_{0}$. Note that $B\left(x_{1}, y\right) \leq B\left(x_{0}, y\right)=e$, then

$$
\begin{aligned}
& J_{I B}\left(x_{1}, y_{0}\right)=N\left(x_{1}\right) \geq N\left(x_{0}\right)=e+(1-e) \cdot S\left(\frac{N\left(x_{0}\right)-e}{1-e}, \frac{B\left(x_{0}, y_{0}\right)-e}{1-e}\right), \\
& J_{I B}\left(x_{2}, y_{0}\right)=y_{0} .
\end{aligned}
$$

Hence $J_{I B}\left(x_{1}, y_{0}\right) \geq J_{I B}\left(x_{2}, y_{0}\right) \Leftrightarrow S\left(\frac{N\left(x_{0}\right)-e}{1-e}, \frac{B\left(x_{0}, y_{0}\right)-e}{1-e}\right) \geq \frac{y_{0}-e}{1-e}$.
From Cases 5.1 and 5.2, and the arbitrary of y_{0}, we get

$$
J_{I B}\left(x_{1}, y\right) \geq J_{I B}\left(x_{2}, y\right) \Leftrightarrow S\left(\frac{N\left(x_{1}\right)-e}{1-e}, \frac{B\left(x_{1}, y\right)-e}{1-e}\right) \geq \frac{y-e}{1-e} \text { for all } x_{1} \in A(y)
$$

i. e.,

$$
S\left(\frac{N(x)-e}{1-e}, \frac{B(x, y)-e}{1-e}\right) \geq \frac{y-e}{1-e} \text { for } y \in(e, 1] \text { and } x \in\{t \in[e, 1) \mid B(t, y) \geq e\}
$$

From above discussion, $J_{I B}$ satisfies (I1) if and only if the conditions (a) and (b) hold.
To show the application of Theorem 4.38, an example is given.
Example 4.39. Let $e \in(0,1)$ and N be a fuzzy negation defined as

$$
N(x)= \begin{cases}1, & \text { if } x \in[0, e] \\ -x+e+1, & \text { if } x \in[e, 1) \\ 0, & \text { if } x=1\end{cases}
$$

Obviously, N satisfies $N(x)=1$ for all $x \in[0, e]$, and $N^{(-1)}(e)=1$.
Let $S=S_{L K}$, the Lukasiewicz t-conorm, i.e., $S(x, y)=\min (x+y, 1)$. Consider $B=T_{P}$. Obviously, B is $G(e)$-continuous.

For $e \leq x<1, e<y \leq 1$, we have

$$
S\left(\frac{N(x)-e}{1-e}, \frac{x y-e}{1-e}\right)=1+x \cdot \frac{y-1}{1-e} .
$$

Then, given $y \in(e, 1]$, the function $S\left(\frac{N(x)-e}{1-e}, \frac{x y-e}{1-e}\right)$ is decreasing with respect to x. Thus

$$
S\left(\frac{N(x)-e}{1-e}, \frac{x y-e}{1-e}\right)>1+\frac{y-1}{1-e}=\frac{y-e}{1-e},
$$

for all $x \in\left[\frac{e}{y}, 1\right)$. This fact shows that there exists a triple (S, N, B) such that the conditions (a) and (b) hold.

From (1) we get

$$
J_{I B}(x, y)= \begin{cases}1, & \text { if } x \in[0, e] \text { and } y \in[0,1] \\ 1+e-x, & \text { if } x \in(e, 1), y \in[0,1] \text { and } x y \leq e \\ 1-x+x y, & \text { if } x \in(e, 1), y \in[e, 1] \text { and } x y \geq e \\ 0, & \text { if } x=1 \text { and } y \in[0, e] \\ y, & \text { if } x=1 \text { and } y \in(e, 1]\end{cases}
$$

Hence $J_{I B}$ is a fuzzy implication by Theorem 4.38, see also Figure 2.

Fig. 2. The fuzzy implication $J_{I B}$ in Example 4.39.

5. PROPERTIES OF Φ-CONJUGATE WITH $J_{I B}$

In this section, some trivial properties of Φ-conjugate with $J_{I B}$ are presented.
Proposition 5.1. Let $\varphi \in \Phi, I \in F I$ and B be a semicopula, then $\left(J_{I B}\right)_{\varphi}=J_{I_{\varphi} B_{\varphi}}$.
Proof. Let $x, y \in[0,1]$, then $\left(J_{I B}\right)_{\varphi}(x, y)=\varphi^{-1}\left(J_{I B}(\varphi(x), \varphi(y))\right)$

$$
\begin{aligned}
& =\varphi^{-1}(I(\varphi(x), B(\varphi(x), \varphi(y)))) \\
& =\varphi^{-1}\left(I\left(\varphi(x), \varphi \circ \varphi^{-1} B(\varphi(x), \varphi(y))\right)\right) \\
& =I_{\varphi}\left(x, \varphi^{-1}(B(\varphi(x), \varphi(y)))\right) \\
& =I_{\varphi}\left(x, B_{\varphi}(x, y)\right) \\
& =J_{I_{\varphi} B_{\varphi}}(x, y) .
\end{aligned}
$$

Proposition 5.2. Let $\varphi \in \Phi$. If I satisfies (NP), then $\left(J_{I B}\right)_{\varphi}$ satisfies (NP).

Proof. Straightforward from Proposition 2.9 (iii) and Proposition 1.3.6 in [2].
Proposition 5.3. Let $\varphi \in \Phi$ and $N_{\left(J_{I B}\right)_{\varphi}}$ be the natural negation of $\left(J_{I B}\right)_{\varphi}$. If $I \in F I$, then $N_{\left(J_{I B}\right)_{\varphi}}$ is a fuzzy negation, and $N_{\left(J_{I B}\right)_{\varphi}}=\left(N_{I}\right)_{\varphi}$.

Proof. Note that $\left(J_{I B}\right)_{\varphi}(x, y)=\varphi^{-1}(I(\varphi(x), B(\varphi(x), \varphi(y))))$, then

$$
\begin{aligned}
N_{\left(J_{I B}\right)_{\varphi}} & =\left(J_{I B}\right)_{\varphi}(x, 0) \\
& =\varphi^{-1}(I(\varphi(x), B(\varphi(x), \varphi(0)))) \\
& =\varphi^{-1}(I(\varphi(x), 0)) \\
& =\varphi^{-1}\left(N_{I}(\varphi(x))\right) \\
& =\left(N_{I}\right)_{\varphi} .
\end{aligned}
$$

Since I is a fuzzy implication, then N_{I} is a fuzzy negation by Lemma 1.4.14 in [2]. Note that $\varphi \in \Phi$, thus $\left(N_{I}\right)_{\varphi}$ is a fuzzy negation by Proposition 1.4.8 in [2]. Hence $N_{\left(J_{I B}\right)_{\varphi}}$ is a fuzzy negation.

Proposition 5.4. Let $\varphi \in \Phi$ and I be a fuzzy implication that satisfies (IP). If $J_{I B}$ is 2-increasing, then $J_{I_{\varphi} B_{\varphi}}$ is a fuzzy implication.

Proof. Let I satisfy (IP) and $J_{I B}$ is 2-increasing, then $J_{I B}$ is a fuzzy implication by Theorem 4.6. Note that $\varphi \in \Phi$, then $\left(J_{I B}\right)_{\varphi}$ is a fuzzy implication by Proposition 1.1.8 in [2]. Thus $J_{I_{\varphi} B_{\varphi}}$ is a fuzzy implication by Proposition 5.1 .

6. CONCLUSION

In this paper, the research on the implication $J_{I B}$ is mainly carried out in two ways, one is studying the relationship between the properties of $J_{I B}$ and I, another is studying the conditions such that $J_{I B}$ is a fuzzy implication. The main results and research contents are as follows:

- Implication $J_{I B}$ satisfies (NP) if and only if I satisfies (NP), so is (LF), but not (IP), (OP), (CP), (EP), (LT) and (BL).
- Sufficient conditions under which $J_{I B}$ satisfies (IP) ((OP), (CP), (EP), (LT), (BL), respectively) are studied and introduced.
- If the implication $J_{I B}$ is 2-increasing $\left(\left(r_{1}, r_{2}\right)\right.$-decreasing, respectively $)$), then $J_{I B}$ is a fuzzy implication.
- Conditions under which $J_{I B}$ is a fuzzy implication when B is a special semicopula (I is an (U, N)-implication, respectively)) are studied/introduced.

In our future work, we want to study the following problems:

* The open problems proposed in Section 4.1.
\star The conditions under which $J_{I B}$ is a fuzzy implication when I is a $Q L$-implication.
\star The distributivity of $J_{I B}$.

ACKNOWLEDGEMENT

The author is deeply grateful to the Associate Editor and to the referee for their careful reading, useful remarks and constructive suggestions that substantially improved the quality of the paper. This work was partially supported by NSF of Chongqing (cstc2018jcyjAX0540).
(Received October 29, 2018)

REFERENCES

[1] M. Baczyński and B. Jayaram: On the characterization of (S, N)-implications. Fuzzy Sets Systems. 158 (2007), 1713-1727. DOI:10.1016/j.fss.2007.02.010
[2] M. Baczyński and B. Jayaram: Fuzzy Implications. Studies in Fuzziness and Soft Computing 231, Springer, Berlin Heidelberg 2008.
[3] M. Baczyński and B. Jayaram: (S, N)-and R-implications: a state-of-the-artsurvey. Fuzzy Sets Systems 159 (2008), 1836-1859. DOI:10.1016/j.fss.2007.11.015
[4] M. Baczyński and B. Jayaram: QL-implications: some properties and intersections. Fuzzy Sets Systems 161 (2010), 158-188. DOI:10.1016/j.fss.2008.09.021
[5] M. Baczyński, P. Grzegorzewski, R. Mesiar, P. Helbin, and W. Niemyska: Fuzzy implications based on semicopulas. Fuzzy Sets Systems 323 (2017), 138-151. DOI:10.1016/j.fss.2016.09.009
[6] M. Baczyński, G. Beliakov, H. B. Sola, and A. Pradera: Advances in Fuzzy Implication Functions. Springer-Verlag, Berlin 2013. DOI:10.1007/978-3-642-35677-3
[7] H. Bustince, J. Fernandez, A. Kolesárová, and R. Mesiar: Directional monotonicity of fusion functions. Europ. J. Oper. Res. 244 (2015), 300-308. DOI:10.1016/j.ejor.2015.01.018
[8] F. Durante and C. Sempi: Semicopulæ. Kybernetika 41 (2005), 315-328.
[9] J. C. Fodor: Contrapositive symmetry of fuzzy implications. Fuzzy Sets Systems 69 (1995), 141-156. DOI:10.1016/0165-0114(94)00210-x
[10] P. Grzegorzewski: Probabilistic implications. Fuzzy Sets Systems 226 (2013), 53-66. DOI:10.1016/j.fss.2013.01.003
[11] S. Jenei: A new approach for interpolation and extrapolation of compact fuzzy quantities. In: Proc. 21th Linz Seminar on Fuzzy Set Theory 2000, pp. 13-18.
[12] E. P. Klement, R. Mesiar, and E. Pap: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.
[13] H. Liu: On a new class of implications: (g, min)-implications and several classical tautologies. Int. J. Uncert. Fuzziness Knowl. Based Systems 20 (2012), 1-20. DOI:10.1142/s0218488512500018
[14] H. Liu: Fuzzy implications derived from generalized additive generators of representable uninorms. IEEE Trans. Fuzzy Systems 21 (2013), 555-566. DOI:10.1109/tfuzz.2012.2222892
[15] M. Mas, M. Monserrat, J. Torrens, and E. Trillas: A survey on fuzzy implication functions. IEEE Trans. Fuzzy Systems 15 (2007), 1107-1121. DOI:10.1109/tfuzz.2007.896304
[16] S. Massanet and J. Torrens: On a new class of fuzzy implication: h-implication and generalization. Inform. Sci. 181 (2011), 2111-2127. DOI:10.1016/j.ins.2011.01.030
[17] S. Massanet and J. Torrens: Threshold generation method of construction of a new implication from two given ones. Fuzzy Sets Systems 205 (2012), 50-75. DOI:10.1016/j.fss.2012.01.013
[18] S. Massanet and J. Torrens: On some properties of threshold generated implications. Fuzzy Sets Systems 205 (2012), 30-49. DOI:10.1016/j.fss.2012.01.018
[19] S. Massanet and J. Torrens: On the vertical threshold generation method of fuzzy implication and its properties. Fuzzy Sets Systems 226 (2013), 32-52. DOI:10.1016/j.fss.2013.03.003
[20] R. B. Nelsen: An Introduction to Copulas (Second edition). Springer, New York 2006. DOI:10.1007/0-387-28678-0
[21] Y. Ouyang: On fuzzy implications determined by aggregation operators. Inform. Sci. 193 (2012), 153-162. DOI:10.1016/j.ins.2012.01.001
[22] Z. Peng: A new family of (A, N)-implications: construction and properties. Iran. J. Fuzzy Systems 17 (2020), 129-145. DOI:10.1016/0165-0114(94)90082-5
[23] A. Pradera: A review of the relationships between aggregation, implication and negation functions. Adv. Intell. Systems Comput. 228 (2013), 31-36. DOI:10.1007/978-3-642-39165-1_6
[24] A. Pradera, G. Beliakov, H. Bustince, and B. De Baets: A review of the relationships between implication, negation and aggregation functions from the point of view of material implication. Inform. Sci. 329 (2016), 357-380. DOI:10.1016/j.ins.2015.09.033
[25] Y. Su, A. Xie, and H. Liu: On ordinal sum implications. Inform. Sci. 293 (2015), 251-262. DOI:10.1016/j.ins.2014.09.021
[26] R. R. Yager: On some new classes of implication operators and their role in approximate reasoning. Inform. Sci. 16^{7} (2004), 193-216. DOI:10.1016/j.ins.2003.04.001

Zuming Peng, College of Mathematics and Statistics, Yangtze Normal University, Fuling 408100, Chongqing. P. R. China.
e-mail: 364886982@qq.com

