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Abstract. Let ε be an algebraic unit of the degree n > 3. Assume that the extension
Q(ε)/Q is Galois. We would like to determine when the order Z[ε] of Q(ε) is Gal(Q(ε)/Q)-
invariant, i.e. when the n complex conjugates ε1, . . . , εn of ε are in Z[ε], which amounts
to asking that Z[ε1, . . . , εn] = Z[ε], i.e., that these two orders of Q(ε) have the same dis-
criminant. This problem has been solved only for n = 3 by using an explicit formula for
the discriminant of the order Z[ε1, ε2, ε3]. However, there is no known similar formula for
n > 3. In the present paper, we put forward and motivate three conjectures for the solution
to this determination for n = 4 (two possible Galois groups) and n = 5 (one possible Galois
group). In particular, we conjecture that there are only finitely many cyclic quartic and
quintic Galois-invariant orders generated by an algebraic unit. As a consequence of our
work, we found a parametrized family of monic quartic polynomials in Z[X] whose roots ε
generate bicyclic biquadratic extensions Q(ε)/Q for which the order Z[ε] is Gal(Q(ε)/Q)-
invariant and for which a system of fundamental units of Z[ε] is known. According to the
present work it should be difficult to find other similar families than this one and the family
of the simplest cubic fields.
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1. Introduction

Let G be a given finite group of the order n. We would like to find monic

Q-irreducible polynomials ΠG(X) ∈ Z[X ] of the degree n with constant terms

ΠG(0) ∈ {±1} such that (i) KG := Q(εG) is a normal number field with Galois

group G and (ii) the order Z[εG] is G-invariant, where εG is any complex root

of ΠG(X). The idea is that εG and its complex conjugates, which are algebraic

units, might in this situation generate a subgroup of finite index in the group of
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units Z[εG]
× of the order Z[εG], see Proposition 3.1 and Theorem 4.2. They might

even form a system of fundamental units of this order, see Theorems 4.2 and 4.3,

and Conjecture 4.2.

For example, the primitive nth root of unity ζn = exp(2πi/n), n > 2, is a to-

tally complex algebraic unit such that the order Z[ζn] is Gal(Q(ζn)/Q)-invariant

with Gal(Q(ζn)/Q) isomorphic to (Z/nZ)∗. More interestingly, consider the ring of

algebraic integers Z[2 cos(2π/n)] of Q(ζn)
+ = Q(cos(2π/n)) (see [7] and [14]). In

Proposition 2.1 we prove that there exists an algebraic unit εn ∈ Z[2 cos(2π/n)] such

that Z[εn] = Z[2 cos(2π/n)]. In particular, the order Z[εn] is Gal(Q(εn)/Q)-invariant

with Gal(Q(εn)/Q) isomorphic to (Z/nZ)∗/{±1}.
In Section 4, we consider a slightly different problem. For a given small degree

n > 3 we would like to characterize and determine the minimal polynomials of

algebraic units ε of the degree n for which Q(ε)/Q is Galois and Z[ε] is Gal(Q(ε)/Q)-

invariant (the problem is trivial for n = 2). In Theorem 4.2, we recall the only

presently known situation in which this problem has been solved: the cyclic cubic

units. Then, having performed some extended numerical computation, we conjecture

the solution to this problem for the quartic and quintic units. In particular, we

conjecture that there are only finitely many cyclic quartic and cyclic quintic Galois-

invariant orders generated by an algebraic unit. We refer the reader to [12] for

another problem of the same nature.

In Section 6, we try to generalize to the bicyclic biquadratic case the already known

necessary and sufficient condition for the order generated by a cyclic cubic algebraic

integer to be Galois-invariant (see Theorem 4.1). We have only found a necessary

condition (see Proposition 6.1). However, having performed some numerical com-

putation, we conjecture that it is in fact a necessary and sufficient condition (see

Conjecture 6.1).

2. The case of real cyclotomic fields

Proposition 2.1. Set αn = 2 cos(2π/n), n > 4 and n 6= 6. Then

εn :=

{
−1 + αn if n is a prime power,

−2 + αn otherwise,

is a totally real algebraic unit and the order Z[εn] = Z[αn] is Gal(Q(εn)/Q)-invariant

with Gal(Q(εn)/Q) isomorphic to (Z/nZ)∗/{±1}.

P r o o f. The first assertion follows from more precise Lemma 2.1. As for the

second assertion, notice that for any m ∈ Z, the order Z[αn] = Z[m+αn] is the ring

of algebraic integers of Q(αn) = Q(ζn)
+ by [7] or [14]. �
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Lemma 2.1. Set αn = 2 cos(2π/n), n > 4 and n 6= 6. Then αn 6∈ Q and m+ αn,

m ∈ Z, is an algebraic unit if and only if we have one of the following cases:

(1) m = 0 and n is not of the form n = 4pk for any prime power pk > 1.

(2) m = 1 and n is not of the form n = 3pk for any prime power pk > 2.

(3) m = −1 and n is not of the form n = 6pk for any prime power pk > 1.

(4) m = 2 and n is not of the form n = 2pk for any prime power pk > 3.

(5) m = −2 and n is not of the form n = pk for any prime power pk > 4.

P r o o f. Since 2 cos((k + 1)t) = (2 cos t)(2 cos(kt)) − 2 cos((k − 1)t), k > 1, we

have 2 cos(kt) = Pk(2 cos t) for some monic polynomial Pk(t) ∈ Z[X ] and the order

Z[αn] is Gal(Q(αn)/Q)-invariant.

Now, the algebraic integer m+αn = m+ ζn+ ζ−1
n is a unit if and only if the norm

0 6 Gm(n) := NQ(ζn)/Q(m+ ζn + ζ−1
n ) =

n∏

k=1
gcd(k,n)=1

(m+ ζkn + ζ−k
n ) ∈ Z

is equal to 1. Since ζkn 6= ±1 and |m+ ζkn + ζ−k
n | > |m| − 2 for gcd(k, n) = 1, we have

Gm(n) > 1 for |m| > 3. It remains to look at the five cases m ∈ {0, 1,−1, 2,−2}.
Recall that the cyclotomic polynomials satisfy

Xn − 1 =
∏

d|n

Φd(X) = (X − 1)
∏

16=d|n

Φd(X),

which implies Φn(X) ∈ Z[X ] for n > 1 and

Xn − 1 = (X2 − 1)
∏

1,26=d|n

Φd(X) (n even).

It follows that n =
∏

16=d|n

Φd(1) for n > 1, 1 =
∏

16=d|n

Φd(−1) for n > 1 odd and

n/2 =
∏

1,26=d|n

Φd(−1) if n > 2 is even. We deduce that

Φn(1) =

{
1 if n > 1 is not of the form n = pk for any prime p > 2,

p if n > 1 is of the form n = pk for some prime p > 2,

Φn(−1) = 1 if n > 1 is odd, m =
∏

16=d|m

Φ2d(−1) if n = 2m > 2 is even,

Φn(−1) =

{
1 if n > 2 is not of the form n = 2pk for any prime p > 2,

p if n > 2 is of the form n = 2pk for some prime p > 2.

Case 1 : m = −2. Since −2 + ζn + ζ−1
n = −(1 − ζn)(1 − ζ−1

n ) we have

G−2(n) = Φn(1)
2 and the case m = −2 follows.
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Case 2 : m = 1. If 3 ∤ n, then 1 + ζn + ζ−1
n = ζ−1

n (1 − ζ3n)/(1 − ζn) is the ratio of

two conjugated elements of Q(ζn). Therefore, G1(n) = 1. Now, assume that 3 | n.
Then [Q(ζn) : Q(ζn/3)] = ϕ(n)/ϕ(n/3) ∈ {2, 3} and

G1(n) =
NQ(ζn/3)/Q(NQ(ζn)/Q(ζn/3)(1 − ζn/3))

NQ(ζn)/Q(1− ζn)
= Φn/3(1)

ϕ(n)/ϕ(n/3)/Φn(1).

The case m = 1 follows.

Case 3 : m = −1. If n is odd, then −1+ζn+ζ−1
n = (1+ζ2n+ζ−2

n )/(1+ζn+ζ−1
n ) is

the ratio of two conjugated elements of Q(ζn). Therefore G−1(n) = 1. Now, assume

that n is even. Then [Q(ζn) : Q(ζn/2)] = ϕ(n)/ϕ(n/2) ∈ {1, 2},

G−1(n) =
NQ(ζn/2)/Q(NQ(ζn)/Q(ζn/2)(1 + ζn/2 + ζ−1

n/2))

NQ(ζn)/Q(1 + ζn + ζ−1
n )

= G1(n/2)
ϕ(n)/ϕ(n/2)/G1(n)

and the case m = −1 follows from the case m = 1, where we proved that for n > 3

we have G1(n) = p2 if n = 3pk with pk > 2 and G1(n) = 1 otherwise.

Case 4 : m = 0. If n is odd then ζn(ζn+ζ−1
n ) = (1−ζ4n)/(1−ζ2n) is the ratio of two

conjugated elements of Q(ζn) and we have G0(n) = 1. If n = 2m > 2 is even, then

ζn(ζn + ζ−1
n ) = 1 + ζn/2 and hence G0(n) = Φn/2(−1)ϕ(n)/ϕ(n/2). The case m = 0

follows.

Case 5 : m = 2. We have

2 + ζn + ζ−1
n = (ζ2n + ζ−1

2n )2, [Q(ζ2n) : Q(ζn)] = ϕ(2n)/ϕ(n) ∈ {1, 2},

and

G2(n)
ϕ(2n)/ϕ(n) = NQ(ζ2n)/Q(ζ2n + ζ−1

2n )2 = G0(2n)
4.

The case m = 2 follows. �

3. Multiplicatively independent units

We would like to thank Radan Kučera who in June 2018 commented our first

version of the present proof of the following result:

Proposition 3.1. Let ε be an algebraic unit of the degree n > 3. Assume that

Q(ε)/Q is Galois. Let µ∞(Q(ε)) denote the finite group of complex roots of unity

in Q(ε). Let rε denote the rank of the multiplicative group Uε of units generated

by µ∞(Q(ε)) and the n complex conjugates of ε.

(1) If n is an odd prime, then µ∞(Q(ε)) = {±1} and rε = n− 1.
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(2) Assume that n = 4 and µ∞(Q(ε)) = {±1}. Letting Πε(X) = X4−aX3+bX2−
cX + d ∈ Z[X ] be the Q-irreducible minimal polynomial of ε (with d ∈ {±1}),
then rε = n− 1 = 3, unless d = 1 and c = δa for some δ ∈ {±1}, in which case
rε = 2 if a 6= 0 and rε = 1 if a = 0.

P r o o f. Set K = Q(ε). Throughout the proof we assume that µ∞(K) = {±1},
which is the case if n > 3 is prime. (The third point of Conjecture 4.2 shows

that Proposition 3.1 may not hold true if n = 4 but µ∞(Q(ε)) 6= {±1}.) Since
NK/Q(ε) = ±1, the group Uε is generated by −1 and any n− 1 of the n conjugates

of ε. Hence, rε 6 n− 1. Moreover, if G = Gal(K/Q) is abelian, the group ring Z[G]

acts on Uε by
( k∑
i=1

aigi

)
· η =

k∏
i=1

(gi(η))
ai , where g1, . . . , gk ∈ G, a1, . . . , ak ∈ Z and

η ∈ Uε.

(1) Assume that G = Gal(K/Q) is cyclic of the order n. Let σ be a generator.

Then, rε < n− 1 if and only if {ε, σ(ε), . . . , σn−2(ε)} are multiplicatively dependent,
hence if and only if P (σ) ·ε ∈ {±1} for some 0 6= P (X) ∈ Z[X ] of the degree 6 n−2.

Set N(X) = 1+X+ . . .+Xn−1 and D(X) = gcd(N(X), P (X)) ∈ Z[X ]. There exist

U(X), V (X) ∈ Z[X ] and k ∈ Z>1 such that U(X)N(X) + V (X)P (X) = kD(X)

by Bézout’s identity in Q[X ]. Since N(σ) · ε = NK/Q(ε) ∈ {±1}, it follows that
D(σ) · ε ∈ {±1}. Notice that N(X) =

∏
16=d|n

Φd(X) in Z[X ], a factorization into

irreducible polynomials.

Therefore, rε < n− 1 if and only if there exist I with ∅ ( I ( {d > 1: d | n} and
δ ∈ {±1} such that DI(σ) · ε = δ, where DI(X) =

∏
d∈I

Φd(X).

If n is prime, there does not exist such a nonempty proper subset I.

If n = 4, then (i) I = {2} and DI(X) = Φ2(X) = X + 1, or (ii) I = {4}
and DI(X) = Φ4(X) = X2 + 1. In case (i), σ(ε) = δ/ε, hence σ2(ε) = ε and ε

is a quadratic unit, a contradiction. In case (ii), σ2(ε) = δ/ε. Hence, rε 6 2,

σ3(ε) = δ/σ(ε), d =
3∏

k=0

σk(ε) = +1 and Πε(X) = X4 − aX3 + bX2 − δaX + 1. If

we had rε = 1, we would have σ(ε)k = δ′εl for some δ′ ∈ {±1} and nonzero k, l ∈ Z,

which would give (δ/ε)k
2

= (σ2(ε))k
2

= σ(σ(ε)k)k = σ(δ′εl)k = δ′kσ(εk)l = δ′k(δ′εl)l

and the contradiction εk
2+l2 ∈ {±1}.

(2) Assume that Gal(K/Q) = {Id, σ, τ, στ} of order 4 is not cyclic and that rε < 3.

Then ε, σ(ε) and τ(ε) are multiplicatively dependent and (u + vσ + wτ) · ε ∈ {±1}
for some (0, 0, 0) 6= (u, v, w) ∈ Z3. Set S = u + vσ + wτ and N = Id + σ + τ + στ .

We have S · ε ∈ {±1} and N · ε = NK/Q(ε) ∈ {±1}. Hence, ((Id + σ)S − wN) · ε =

(u+v−w)(Id+σ)·ε, ((Id+τ)S−vN)·ε = (u−v+w)(Id+τ)·ε, and ((σ+τ)S−uN)·ε =

(−u + v + w)(Id + στ) · ε are in {±1}. Since u + v − w 6= 0, or u − v + w 6= 0, or

−u+v+w 6= 0, one of the conjugates σ(ε), τ(ε) or στ(ε) of ε, say σ(ε), is equal to δ/ε

with δ ∈ {±1}. The other two conjugates being τ(ε) and τσ(ε) = τ(δ/ε) = δ/τ(ε),
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we have rε 6 2, d = (εδ/ε)τ(ε)δ/τ(ε) = +1 and Πε(X) = X4−aX3+bX2−δaX+1.

Now, assume that rε = 1. Take f ∈ Gal(Q(ε)/Q). Then f(ε)k = δ′εl for some δ′ ∈
{±1} and nonzero k, l ∈ Z. If l = −k, then (f(ε)ε)k ∈ {±1}. Hence, f(ε) ∈ {±1/ε}.
If l 6= −k, then εk = f(f(ε)k) = f(δ′εl) = δ′f(ε)l, using f ◦ f = Id. Hence,

(f(ε)
ε

)k+l

=
f(ε)k

εk
f(ε)l

εl
=

δ′εl

δ′f(ε)l
f(ε)l

εl
= 1

and f(ε) ∈ {±ε}. Therefore, ±ε and ±1/ε are the four conjugates of ε and Πε(X) =

X4 + bX2 + 1. �

4. When is Z[ε] Galois invariant?

Let ε be an algebraic unit of the degree n > 2. Let Πε(X) = Xn−an−1X
n−1+. . .+

(−1)na0 ∈ Z[X ] of the discriminant 0 6= Dε ∈ Z be its minimal polynomial. Assume

that Q(ε)/Q is Galois. We consider the following problem: can the order Z[ε] be

Gal(Q(ε)/Q)-invariant? If n = 2 then Q(ε)/Q is Galois and Z[ε] is Gal(Q(ε)/Q)-

invariant. Hence, we assume that n > 3. Since Z[ε] = Z[−ε] = Z[1/ε] = Z[−1/ε]

and Dε = D−ε = D1/ε = D−1/ε, we may assume that |an−1| 6 a1, in which case we

say that ε and Πε(X) are reduced.

4.1. The cyclic cubic case. In the cubic case, we know of a simple and useful

necessary condition for the order Z[ε] to be Galois invariant and the problem is

already solved:

Theorem 4.1 ([6], Theorem 2). Let α be a cubic algebraic integer α of the mini-

mal polynomial Πα(X) = X3−aX2+bX−c ∈ Z[X ] of the discriminantDα. Assume

that Q(α)/Q is Galois, i.e. that Dα = ∆2
α is a square. Then Z[α] is Gal(Q(α)/Q)-

invariant if and only if ∆α divides 3b− a2 and 3ac− b2.

Conjecture 6.1 below is an analog of Theorem 4.1 for bicyclic biquadratic algebraic

integers. Using Theorem 4.1 we have performed some numerical computation which

makes the following Conjecture 4.1 very reasonable:

Conjecture 4.1. Under the assumptions of Theorem 4.1, if Z[α] is Gal(Q(α)/Q)-

invariant then a+ b and c are odd (notice that this necessary condition is invariant

under the change α 7→ α+ n with n ∈ Z).

Theorem 4.2 ([5], Theorem 1, Corollary 2, [6], Corollary 3). Let ε be a reduced

cubic algebraic unit. Then Q(ε)/Q is Galois and Z[ε] is Gal(Q(ε)/Q)-invariant if

and only if one of the following cases takes place:
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(1) Πε(X) = X3 − 4X2 + 3X + 1, X3 − 6X2 + 5X − 1 or X3 − 20X2 − 9X − 1, in

which cases Dε = 72 and (Z[ε]× : Uε) = 3, 4, and 13, respectively.

(2) Πε(X) = X3 − 9X2 + 6X − 1, in which case Dε = 92 and (Z[ε]× : Uε) = 4.

(3) Πε(X) = X3 − aX2 + (a − 3)X + 1, a > 2, i.e. Q(ε) is the simplest cubic

field, in which case Dε = (a2 − 3a + 9)2, rε = 2 and the pair of conjugates

{ε, ε′ = ε2 − aε + a − 2} is the system of fundamental units of the order Z[ε]
by [4], Theorem 1 or [13], Theorem 3.10.

4.2. The bicyclic biquadratic quartic case. (See [2], Chapter 13 and [3].)

Let α1 = α, α2, α3, α4 be the roots of a Q-irreducible quartic polynomial Πα(X) =

X4 − aX3 + bX2 − cX + d ∈ Q[X ]. Set u2 = α1α2 + α3α4, u3 = α1α3 + α2α4,

u4 = α1α4 + α2α3 and let

Rα(X) := (X − u2)(X − u3)(X − u4) = X3 − bX2 + (ac− 4d)X − (a2d− 4bd+ c2)

be its cubic resolvent. The extension Q(α)/Q is Galois with the Galois group iso-

morphic to C2 × C2 if and only if Rα(X) splits completely over Q. In that case,

βk = α1 + αk and β′
k = αi + αj are the roots of X

2 − aX + (b − uk) ∈ Q[X ] for

k = 2, 3, 4, where {1, k, i, j} = {1, 2, 3, 4}. Therefore, Q(βk) = Q(
√
a2 − 4b+ 4uk) ⊆

Q(α) for k = 2, 3, 4. Finally, since β2 + β3 + β4 = 2α + a we have Q(α) =

Q(
√
a2 − 4b+ 4u2,

√
a2 − 4b+ 4u3,

√
a2 − 4b+ 4u4).

Lemma 4.1. Let α be a quartic algebraic integer. If Q(α)/Q is bicyclic bi-

quadratic, then Dα = ∆2
α is the square of an even integer ∆α.

P r o o f. Here Rα(X) ∈ Z[X ]. Hence, u2, u3, u4 ∈ Z and Dα = DΠα(X) =

DRα(X) = ∆2
α, where ∆α = (u2 − u3)(u3 − u4)(u4 − u2) ∈ Z is even (notice that

(u2 − u3) + (u3 − u4) + (u4 − u2) = 0). �

Theorem 4.3. For A > 2, consider the Q-irreducible polynomial Πε(X) = X4 −
2A3X3 + 5A2X2 − 4AX + 1 ∈ Z[X ] of the discriminant Dε = 16(A4 − 4)2. Set

η = ε3−2A3ε2+5A2ε−3A with Πη(X) = X4−A2X2+1, Dη = Dε and Z[ε] = Z[η].

Then, Q(ε) = Q(
√
A2 − 2,

√
A2 + 2) is totally real, rε = 3 and the four roots of

Πε(X) are ε = η3 +Aη2, ε′ = −η3 +Aη2, ε′′ = −A2η3 −Aη2 + (A4 − 1)η +A3, and

ε′′′ = A2η3−Aη2− (A4− 1)η+A3. Hence, Z[ε] is Gal(Q(ε)/Q)-invariant. Moreover,

εε′ = η2 and {ε, η, ε′′} is a system of fundamental units of the totally real quartic
order Z[ε] for A > 2.

P r o o f. Only the last assertion needs a proof. First, η′1 := εε′ = −η6+A2η4 = η2,

η′2 := εε′′ and η′3 := εε′′′ are roots of X2 − A2X + 1, X2 − 2(A2 + 1)X + 1 and
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X2−2(A2−1)X+1, respectively. Hence, setting d1 = A4−4, η1 = 1
2 (A

2+
√
A4 − 4),

d2 = A2 +2, η2 = A2 +1+A
√
A2 + 2 and d3 = A2 − 2, η3 = A2 − 1+A

√
A2 − 2, we

have η′k ∈ {ηk, η−1
k } for 1 6 k 6 3. We claim that if ξ ∈ Z[ε] then ξξ′ ∈ O1 := Z[η′1],

ξξ′′ ∈ O2 := Z[
√
d2] and ξξ′′′ ∈ O3 := Z[

√
d3]. Indeed, in the first case, it suffices to

show that εkε′l+εkε′l ∈ Z[η′1] for k, l > 0, hence that s′k := εk+ε′k ∈ Z[η′1] for k > 0,

which follows from s′1 = 2Aη2 = 2Aη′1 and s′k+1 = s′1s
′
k − εε′sk−1 = s′1s

′
k − η′1sk−1

for k > 1. In the second and third cases, s′′1 = ε+ ε′′ and s′′′1 = ε+ ε′′′, being roots of

X2−2A3X+3A2−2 and X2−2A3X+3A2+2 of the discriminants 4(A2−1)2(A2+2)

and 4(A2 + 1)2(A2 − 2), are in Z[
√
d2] and Z[

√
d3], respectively. Moreover, ηi is the

fundamental unit of Oi for 1 6 i 6 3. (Use continued fractions or look at the size

of the coefficients of
√
di of the powers of any 1 < ξ ∈ Z[ηi]

×.) It follows that for

ξ ∈ Vε := Z[ε]× we have ξ2 = ±NQ(ε)/Q(ξ)ξ
2 = ±(ξξ′)(ξξ′′)(ξξ′′′) ∈ 〈−1, η1, η2, η3〉.

Hence, V2
ε ⊆ 〈−1, η1, η2, η3〉 ⊆ Vε. It remains to determine which of the units η1, η2,

η3, η1η2, η1η3, η2η3 they are and η1η2η3 are squares in Z[ε]. By [8], Corollary 3.2,

items 2 and 3 for A > 2 we see that only η1, η2η3 and hence η1η2η3 are squares

in Q(ε). In fact, there are squares in Z[ε], by noticing that η′1 = η2 and η′2η
′
3 =

(εε′′)(εε′′′) = ε/ε′ = (ε/η)2. Therefore, V2
ε ⊆ 〈−1, η1, η2, η3〉 = 〈−1, η′1, η

′
2, η

′
3〉 =

〈−1, η′1, η
′
2, η

′
1η

′
2η

′
3〉 = 〈−1, η2, η′2, ε

2〉, where η′2 ∈ {η2, η−1
2 } is not a square (we used

η′1η
′
2η

′
3 = ε2NQ(ε)/Q(ε) = ε2). Hence, Vε = 〈−1, η, η′2, ε〉 = 〈−1, η, εε′′, ε〉 and the

desired result follows. �

We used Lemma 4.1 to speed up our algorithm that checked Conjecture 4.2 up

to the bound H(ε) := max(|a|, |b|, |c|, |d|) 6 160, where Πε(X) = X4 − aX3 +

bX2 − cX + d ∈ Z[X ], d ∈ {±1}. The computation took 4 hours with Maple on

a MacBook Air laptop computer. It gave 1291 reduced bicyclic biquadratic poly-

nomials. Observe that d = +1 is positive in all cases in Conjecture 4.2. If proved

to hold true beforehand, it would speed up our algorithm. Notice however that

Πα(X) = X4 − 4X3 + 2X2 + 4X − 2 with a negative constant coefficient is associ-

ated with a bicyclic biquadratic number field Q(α) for which Z[α] is Gal(Q(α)/Q)-

invariant. The occurrences A = 2, 3, 4 in this range made us come by with the family

considered in Theorem 4.3.

Conjecture 4.2. Let ε be a reduced quartic algebraic unit. ThenQ(ε) is a bicyclic

biquadratic number field and Z[ε] is Gal(Q(ε)/Q)-invariant if and only if one of the

following cases takes place:

(1) Πε(X) = X4−4X3+5X2−2X+1, in which caseDε = 144, Q(ε) = Q(
√
−1,

√
3)

and rε = 1.

(2) Πε(X) = X4 + bX2 + 1, where neither −b− 2 nor −b+ 2 is a square, in which

case Dε = 16(b2 − 4)2, Q(ε) = Q(
√
−b− 2,

√
−b+ 2) and rε = 1. If b > 3,

then ε is a fundamental unit of the totally imaginary quartic order Z[ε] (by [9],
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Theorem 18). If b < −2, we know of a system of fundamental units of Z[ε] only

for b = −A2 < −4 by Theorem 4.3.

(3) Πε(X) = X4 − 2A3X3 + 5A2X2 − 4AX + 1 for some A > 2, in which case

Dε = 16(A4−4)2, Q(ε) = Q(
√
A2 − 2,

√
A2 + 2), rε = 3, and for A > 2 any 3 of

the 4 conjugates of ε form a system of fundamental units of the totally real

quartic order Z[ε] (see Theorem 4.3).

4.3. The cyclic quartic case.

Conjecture 4.3. Set αn = 2 cos(2π/n), an algebraic integer. LetQ(ζn)
+ =Q(αn)

denote the maximal real subfield of the cyclotomic number field Q(ζn). Let ZK denote

the ring of algebraic integers of a number field K. Let ε be a reduced quartic algebraic

unit. Then Q(ε) is a cyclic quartic number field and Z[ε] is Gal(Q(ε)/Q)-invariant

if and only if one of the following 14 cases takes place:

(1) In these two cases we have Dε = 125 and Z[ε] = Z[ζ5] = ZQ(ζ5) with Πζ5(X) =

X4 +X3 +X2 +X + 1 of discriminant 125.

(a) Πε(X) = X4 −X3 +X2 −X + 1 = Π−ζ5(X).

(b) Πε(X) = X4 − 3X3 + 4X2 − 2X + 1 = Π1+ζ5(X).

(2) In these four cases we have Dε = 1125 and Z[ε] = Z[α15] = ZQ(ζ15)+ with

Πα15
(X) = X4 −X3 − 4X2 + 4X + 1 of discriminant 1125.

(a) Πε(X) = X4 − 3X3 −X2 + 3X + 1 = Π−α15+1(X).

(b) Πε(X) = X4− 4X3− 4X2+X+1 = Π−1/α15
(X) = Π(α15−1)/(−α15+2)(X).

(c) Πε(X) = X4 − 24X3 + 26X2 − 9X + 1 = Π1/(α15+2)(X).

(d) Πε(X) = X4−8X3+14X2−7X+1 = Π1/(−α15+2)(X) = Π(α15−1)/α15
(X).

(3) In these three cases we have Dε = 2000 and Z[ε] = Z[α20] = ZQ(ζ20)+ with

Πα20
(X) = X4 − 5X2 + 5 of discriminant 2000.

(a) Πε(X) = X4 − 6X3 +X2 + 4X + 1 = Π−1/(α20+1)(X) = Π1/(α20−1)(X).

(b) Πε(X) = X4 − 8X3 − 11X2 − 2X + 1 = Π(−α20+1)/(α20+2)(X).

(c) Πε(X) = X4−12X3+19X2−8X+1 = Π1/(α20+2)(X) = Π−1/(α20−2)(X).

(4) In these two cases we have Dε = 2048 and Z[ε] = Z[α16] = ZQ(ζ16)+ with

Πα16
(X) = X4 − 4X2 + 2 of discriminant 2048.

(a) Πε(X) = X4 − 4X3 − 2X2 + 4X − 1 = Πα2
16

+α16−1(X).

(b) Πε(X) = X4 − 4X3 + 2X2 + 4X − 1 = Πα16+1(X) = Π−α16+1(X).

(5) Πε(X) = X4 − 7X3 + 9X2 + 7X + 1 and Dε = 6125.

(6) Πε(X) = X4 − 11X3 + 31X2 − 11X + 1 and Dε = 15125.

(7) Πε(X) = X4 − 9X3 + 19X2 − 9X + 1 and Dε = 19773.

We checked Conjecture 4.3 up to the bound H(ε) := max(|a|, |b|, |c|, |d|) 6 150

on the coefficients of Πε(X) = X4 − aX3 + bX2 − cX + d ∈ Z[X ], d ∈ {±1}. The
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computation took 52660 seconds on a Mac mini desk computer. It gave 401 reduced

cyclic quartic polynomials.

4.4. The Galois quintic case.

Conjecture 4.4. Set α = α11 = 2 cos(2π/11), of the minimal polynomial Πα(X)

= X5 + X4 − 4X3 − 3X2 + 3X + 1. Let ε be a reduced quintic algebraic unit.

Then Q(ε) is a cyclic quintic number field and Z[ε] is Gal(Q(ε)/Q)-invariant if and

only if one of the following 8 cases takes place:

(1) Πε(X) = X5 − 3X4 − 3X3 + 4X2 +X − 1 = Π−1/α(X).

(2) Πε(X) = X5 − 4X4 + 2X3 + 5X2 − 2X − 1 = Π1+α(X).

(3) Πε(X) = X5 − 6X4 −X3 + 10X2 − 6X + 1 = Π1/(1−α)(X).

(4) Πε(X) = X5 − 6X4 + 10X3 −X2 − 6X + 1 = Π1−α(X).

(5) Πε(X) = X5 − 7X4 + 13X3 − 5X2 − 2X + 1 = Πα/(α+1)(X).

(6) Πε(X) = X5 − 8X4 + 19X3 − 15X2 +X + 1 = Π(α−1)/α(X).

(7) Πε(X) = X5 − 10X4 − 15X3 − 3X2 + 3X + 1 = Π(−α−1)/(α+2)(X).

(8) Πε(X) = X5 − 15X4 + 35X3 − 28X2 + 9X − 1 = Π1/(α+2)(X).

In these eight cases we have Dε = 14641 = 114 and Z[ε] = Z[α] = ZQ(ζ11)+ .

If Q(ε) is a cyclic quintic number field, then Dε is a square (see Theorem 5.1). This

has sped up our algorithm used to check Conjecture 4.4 up to the bound H(ε) :=

max(|a|, |b|, |c|, |d|, |e|) 6 200, where Πε(X) = X5−aX4+bX3−cX2+dX−e ∈ Z[X ],

e ∈ {±1}. The computation took 132365 seconds on a Mac mini desk computer. It
gave 174 reduced cyclic quintic polynomials.

5. Remarks on discriminants

Let σk, . . . , σn be complex imbeddings of a number field K of the degree n. If

Ω = {ωk; 1 6 k 6 n} is a Z-basis of a free Z-module M of the rank n of K, the

discriminant DM ∈ Q \ {0} of M is defined by DM = D(ω1, . . . , ωn)
2, which does not

depend on the Z-basis Ω of M, where

(5.1) D(ω1, . . . , ωn) := det ([σi(ωj)]16i,j6n) ∈ C \ {0}

(see e.g. [1], Chapter 4 or [10], Chapter II). The discriminant of the ring of the

algebraic integers ZK of K is called the discriminant of K and denoted by DK.

Notice (i) that the determinant D(ω1, . . . , ωn) defined in (5.1) is not necessarily

a rational number and (ii) that its sign depends on the choices of the labelings of

the σ’s and of the ω’s. Indeed, if τ ∈ Sn is any permutation of {1, . . . , n}, then
D(ωτ(1), . . . , ωτ(n)) = ε(τ)D(ω1, . . . , ωn), where ε(τ) ∈ {±1} is the signature of τ .
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Let G = {g1, . . . , gn} be a given indexing of the elements of a finite group of the
order n. For g ∈ G we define a permutation g̃ of G by ggi = gg̃(i), 1 6 i 6 n. If

{gτ(1), . . . , gτ(n)} is another indexing of the elements of G, where τ ∈ Sn is a permu-

tation of {1, . . . , n}, then ggτ(i) = gg̃τ(i) = gττ−1g̃τ(i), 1 6 i 6 n. Since g̃ and τ−1g̃τ

have the same signature, the signature ε(g̃) ∈ {±1} of g̃ does not depend on the
choice of the indexing of the elements of G.

Now, if K/Q is normal number field of the Galois group G, then for any g ∈ G we

have

(5.2) g(D(ω1, . . . , ωn)) = ε(g̃)D(ω1, . . . , ωn).

Hence, D(ω1, . . . , ωn) ∈ Z if and only if ε(g̃) = +1 for all g ∈ Gal(K/Q).

Theorem 5.1. If G is a finite group, then ε(g̃) = +1 for all g ∈ G if and only if

either G is of odd order or its 2-Sylow subgroups are not cyclic. Consequently, the

discriminant of a normal number field is a square if and only if its degree is odd or

the 2-Sylow subgroups of its Galois group are not cyclic.

P r o o f. Let 〈g〉 = {gk : 0 6 k 6 d − 1} be the cyclic subgroup generated by
a given g ∈ G, which is of order d dividing the order n of G. Let

G =
⋃

16i6n/d

〈g〉gi = {g1, gg1, . . . , gd−1g1, . . . , gn/d, ggn/d, . . . , g
d−1gn/d}

be a partition of G into n/d right cosets of 〈g〉. Clearly, g̃ is a product of n/d
cycles with disjoint supports (g̃ permutes cyclically each block gk, ggkg, . . . , g

d−1gk).

Hence, ε(g̃) =
(
(−1)d−1

)n/d
= (−1)n−n/d. It follows that ε(g̃) = +1 if and only if

n = (n/d)d ≡ n/d (mod 2), hence if and only if either n is odd or n/d is even. The

desired result follows.

Notice that since g 7→ ε(g̃) is a morphism, we readily recover that ε(g̃) = +1 for

all g ∈ G whenever the order of G is odd. �

If K/Q is not a normal number field, we have only a partial answer to the problem.

Let G = Gal(N/Q) be the Galois group of the normal closure N of K. Set H =

Gal(N/K). Let gi, 1 6 i 6 n, be n elements of G such that their restrictions to K are

the n complex imbeddings σi, 1 6 i 6 n. Let X = G/gH be the set of n left cosets

of H in G, i.e. X = {giH : 1 6 i 6 n}. Then any g ∈ G acts on X and gives rise

to a permutation g̃ of the elements in X . Since g 7→ ε(g̃) is a morphism, we obtain

that ε(g̃) = +1 for all g ∈ G whenever the order of G is odd. Hence, we have:

Theorem 5.2. If the degree of the normal closure of a number field K is odd,

then the discriminant of K is a square.
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Remark 5.1. Lenstra wrote us on May 17, 2016 that the conclusion of Theo-

rem 5.1 is certainly known, in fact he has known it since he was a student, but he

was not sure that he ever saw an explicit reference. He also pointed out that we can

rephrase Theorem 5.1 by saying that the image of the Cayley embedding of a finite

group G in Sym(G) contains an odd permutation if and only if G has even order

and contains an element of the order of the largest 2-power dividing #G. It implies

an interesting group-theoretic fact that the elements of odd order in a group with

a cyclic Sylow-2 subgroup form a subgroup (obviously characteristic hence normal),

see [11].

6. Necessary conditions for the order generated by an algebraic

bicyclic biquadratic integer to be Galois invariant

Lemma 6.1. Let α be a complex root of a Q-irreducible quartic monic polynomial

Πα(X) = X4 − aX3 + bX2 − cX + d ∈ Z[X ] of the discriminant Dα. Assume

that Q(α) is a bicyclic biquadratic number field. Then Dα = ∆2
α is the square of

an even integer ∆α. Moreover, if the quartic order Z[α] is Gal(Q(α)/Q)-invariant,

then ∆α divides T := a2d− c2 and U := a3 − 4ab+ 8c.

P r o o f. For the first assertion, see Lemma 4.1 and Theorem 5.1. Set K = Q(α)

and let σ1 = Id, σ2 = σ, σ3 = τ and σ4 = στ be the four elements of Gal(K/Q) with

σ2 = τ2 = Id. If the ωi’s are in K, it is easy to check that

D(ω1, ω2, ω3, ω4) = det([σi(ωj)]16i,j64) ∈ Q(α)

is Gal(K/Q)-invariant by (5.2), hence is in Q and in Z if the ωi’s are in ZK. Therefore,

the discriminant DM of a submodule M of rank 4 of ZK is the square of an integer,

say DM = ∆2
M. In particular, Dα = ∆2

α is a square and if M ⊆ Z[α], then ∆2
M =

DM = (Z[α] : M)2Dα = (Z[α] : M)2∆2
α and ∆α divides ∆M. Now, assume that Z[α]

is Gal(Q(α)/Q)-invariant. Taking ωj = Pj(α1, α2, α3, α4), where αk = σk(α) and

Pj(X1, X2, X3, X4) ∈ Z[X1, X2, X3, X4], we haveM := Zω1+Zω2+Zω3+Zω4 ⊆ Z[α],

hence Dα divides D(ω1, ω2, ω3, ω4) = P (α1, α2, α3, α4) with

(6.1) P (X1, X2, X3, X4) = det




L(X1, X2, X3, X4)

L(X2, X1, X4, X3)

L(X3, X4, X1, X2)

L(X4, X3, X2, X1)


 ∈ Z[X1, X2, X3, X4],

where the jth coefficient of the first line L(X1, X2, X3, X4) of this square matrix is

Pj(X1, X2, X3, X4). The point is that if P (X1, X2, X3, X4) is a symmetric polyno-

mial, then D(ω1, ω2, ω3, ω4) will be an explicit polynomial (with integral coefficients)

in the coefficients a, b, c and d of Πα(X).
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Taking L(X1, X2, X3, X4) = [1, X1, X1X2, X1X2X3], we obtain a symmetric poly-

nomial P (X1, X2, X3, X4) = −(X1X2 − X3X4)(X1X3 − X2X4)(X1X4 − X2X3) =

σ2
3 − σ2

1σ4 and

(6.2) D(1, α, ασ(α), ασ(α)τ(α)) = c2 − a2d.

Taking L(X1, X2, X3, X4) = [1, X1, X2, X3], we obtain a symmetric polynomial

P (X1, X2, X3, X4) = −(X1+X2−X3−X4)(X1−X2+X3−X4)(X1−X2−X3+X4)

= −σ3
1 + 4σ1σ2 − 8σ3 and

(6.3) D(1, α, σ(α), τ(α)) = −a3 + 4ab− 8c.

The desired result follows. �

Remark 6.1. Let b ∈ Z, D > 1 be such that b2 − 4D2, −b − 2D and −b + 2D

are not squares in Z. Then Πα(X) = X4 + bX2 + D2 is Q-irreducible of the dis-

criminant Dα = ∆2
α being a square, where ∆α = 4D(b2 − 4D2), and Q(εb) =

Q(
√
−b− 2D,

√
−b+ 2D) is a bicyclic biquadratic field. Since −D/α = (α3+bα)/D

is a root of Πα(X), the order Z[α] is not Gal(Q(α)/Q)-invariant. Since T = U = 0,

the necessary condition in Lemma 6.1 is not sufficient. In the notation of Propo-

sition 6.1, notice that ∆α always divides T = U = W = 0 but does not divide

V +W = V −W = V = −4(b2 − 4D2).

Notice also that Lemma 6.1 and Proposition 6.1 could be used to improve the

speed of the algorithm used to check Conjecture 4.2.

Since the necessary condition obtained in Lemma 6.1 is not sufficient, we prove

a more stringent one (by the end of Remark 6.1):

Proposition 6.1. Let α be a complex root of a Q-irreducible quartic monic poly-

nomial Πα(X) = X4− aX3+ bX2− cX + d ∈ Z[X ] of the discriminant Dα. Assume

that Q(α) is a bicyclic biquadratic number field. Then Dα = ∆2
α is the square of

an even integer ∆α. Moreover, if the quartic order Z[α] is Gal(Q(α)/Q)-invariant,

then ∆α divides T := a2d − c2, U := a3 − 4ab + 8c, V + W and V − W , where

V := a2b+ 2ac− 4b2 + 16d and W := a2c+ 8ad− 4bc.

P r o o f. Since Z[α + n] = Z[α] is Gal(Q(α)/Q)-invariant for any n ∈ Z by

Lemma 6.1, we have that ∆α divides P (n) := a′2d′ − c′2 = Un3 + V n2 + Wn + T

and Q(n) := a′3 − 4a′b′ + 8c′ = a3 − 4ab + 8c = U , where Πα+n(X) = Πα(X − n)

= X4 − a′X3 + b′X2 − c′X + d′. Now, P (X) = UX3 + V X2 +WX + T ∈ Z[X ] is

such that some ∆ ∈ Z dividing T and U divides all the P (n)’s for n ∈ Z, if and only

if ∆ divides all the numbers V n2 +Wn = (V +W )12 (n
2 + n) + (V −W )12 (n

2 − n)

for n ∈ Z, which amounts to asking that ∆ divides V +W and V −W . �
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In the range H(α) := max(|a|, |b|, |c|, |d|) 6 80, where Πα(X) = X4−aX3+bX2−
cX + d ∈ Z[X ], a > 0, we have found no example where this necessary condition

is not sufficient. The computation took 31662 seconds on a MacBook Air laptop

computer. It gave 7841 reduced bicyclic biquadratic polynomials. Now, 1413 out of

them comply with the necessary condition in Lemma 6.1 and 293 out of them comply

with the necessary condition in Proposition 6.1. Moreover, in these 293 cases we have

found that Z[α] is Gal(Q(α)/Q)-invariant. So we might have hit upon a necessary

and sufficient condition (similar to the one obtained in Theorem 4.1 for cyclic cubic

algebraic integers) for the order generated by a bicyclic biquadratic algebraic integer

to be Galois-invariant. In fact, we have checked that these 293 occurrences comply

with the slightly simpler and stronger following equivalence:

Conjecture 6.1. Let α be a complex root of a Q-irreducible quartic monic poly-

nomial Πα(X) = X4− aX3+ bX2− cX + d ∈ Z[X ] of the discriminant Dα. Assume

that Q(α) is a bicyclic biquadratic number field. Then Dα = ∆2
α is the square of an

even integer ∆α. Moreover, the quartic order Z[α] is Gal(Q(α)/Q)-invariant, if and

only if ∆α divides T := a2d− c2, U := a3 − 4ab+8c, V := a2b+2ac− 4b2 +16d and

W := a2c+ 8ad− 4bc.

Question. Let the hypotheses and notation be as in Proposition 6.1. Assume

that Z[α] is Gal(Q(α)/Q)-invariant. By (6.2) and (6.3), both T and U are deter-

minants of free Z-submodules of rank 4 of Z[α], which explains why ∆α divides T

and U . A nice way to prove that ∆α also divides V +W and V −W would be to

show that they are determinants of free Z-submodules of rank 4 of Z[α]. In fact,

a nice way to prove the necessity in Conjecture 6.1 would be to show that V and W

are determinants of free Z-submodules of rank 4 of Z[α].
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