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Abstract. Let V be a unitary space. For an arbitrary subgroup G of the full symmetric
group Sm and an arbitrary irreducible unitary representation Λ of G, we study the general-
ized symmetry class of tensors over V associated with G and Λ. Some important properties
of this vector space are investigated.
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1. Introduction

Let Sm be the full symmetric group of degreem and G a subgroup of Sm. Let U be

a unitary space and End(U) the set of all linear operators on U . Denote by Cm×m the

set of allm×m complex matrices. Suppose Λ is an irreducible unitary representation

of G over U . The generalized Schur function DΛ : Cm×m → End(U) is defined by

DΛ(A) =
∑

σ∈G

Λ(σ)
m∏

i=1

aiσ(i)

for A = (aij)m×m ∈ Cm×m.

Let V be a unitary space of dimension n and denote by V ⊗m the mth tensor power

of V . Then U ⊗ V ⊗m is a unitary space with induced inner product that satisfies

(u⊗ x⊗, v ⊗ y⊗) = (u, v)

m∏

i=1

(xi, yi),

where u, v ∈ U and x⊗ = x1 ⊗ . . .⊗ xm, y
⊗ = y1 ⊗ . . .⊗ ym ∈ V ⊗m.
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For any σ ∈ G there is a unique permutation operator

P (σ) : V ⊗m → V ⊗m

satisfying P (σ−1)(v⊗) = v⊗σ , where v
⊗
σ = vσ(1)⊗vσ(2)⊗ . . .⊗vσ(m). The permutation

operator yields a representation of G, i.e. P : G → GL(V ⊗m). It is well known

that if dimV > 2, then P is a faithful unitary reducible representation of G and

Tr P (σ) = nc(σ), where c(σ) is the number of factors in the disjoint cycle factorization

of σ, see [9].

The generalized symmetrizer associated with G and Λ is defined by

SΛ =
1

|G|

∑

σ∈G

Λ(σ)⊗ P (σ) ∈ End(U ⊗ V ⊗m).

In the following theorem we show that SΛ is an orthogonal projection on U ⊗ V ⊗m.

Theorem 1.1. Suppose Λ is an irreducible unitary representation of G over uni-

tary space U . Then SΛ is an orthogonal projection on U ⊗ V ⊗m.

P r o o f. We first prove that SΛ is Hermitian. We have

S∗

Λ =

(
1

|G|

∑

σ∈G

Λ(σ)⊗ P (σ)

)∗

=
1

|G|

∑

σ∈G

Λ(σ)∗ ⊗ P (σ)∗

=
1

|G|

∑

σ∈G

Λ(σ−1)⊗ P (σ−1) = SΛ.

Now we show that SΛ is idempotent. We have

S2
Λ =

(
1

|G|

∑

σ∈G

Λ(σ) ⊗ P (σ)

)(
1

|G|

∑

π∈G

Λ(π)⊗ P (π)

)

=
1

|G|2

∑

σ∈G

∑

π∈G

Λ(σ)Λ(π)⊗ P (σ)P (π)

=
1

|G|2

∑

σ∈G

∑

π∈G

Λ(σπ)⊗ P (σπ) (σπ = τ)

=
1

|G|2

∑

σ∈G

∑

τ∈G

Λ(τ) ⊗ P (τ) =
1

|G|

∑

σ∈G

SΛ = SΛ.

�

Definition 1.1. The range of SΛ,

VΛ(G) := SΛ(U ⊗ V ⊗m),

is called the generalized symmetry class of tensors over V associated with G and Λ.
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If dimU = 1, then VΛ(G) reduces to Vλ(G), the symmetry class of tensors asso-

ciated with G and the irreducible character λ of G corresponding to the representa-

tion Λ (see [4], [5], [9], [10], [12], [13], [14]). Recently, the other types of symmetry

classes have been studied by several authors (see [1], [2], [3], [7], [11], [15], [16]).

The elements in VΛ(G) of the form

u⊛ v⊛ := SΛ(u⊗ v⊗)

are called the generalized decomposable symmetrized tensors. The equality of two

generalized decomposable symmetrized tensors has been studied in [6], [8].

In this paper, we study some important properties of the vector space VΛ(G).

Lemma 1.1. For any σ ∈ G, u ∈ U and x⊗ ∈ V ⊗m we have

u⊛ x⊛

σ = Λ(σ)u⊛ x⊛.

P r o o f. The proof is straightforward. �

Theorem 1.2. Suppose Λ is an irreducible unitary representation of G over uni-

tary space U . If Λ affords the irreducible character λ of G, then

dim VΛ(G) =
1

|G|

∑

σ∈G

λ(σ)nc(σ).

P r o o f. According to Theorem 1.1, SΛ is an orthogonal projection, so we have

dim VΛ(G) = rankSΛ = TrSΛ =
1

|G|

∑

σ∈G

Tr(Λ(σ) ⊗ P (σ))

=
1

|G|

∑

σ∈G

TrΛ(σ)TrP (σ) =
1

|G|

∑

σ∈G

λ(σ)nc(σ).

�

Notice that λ(1) dim VΛ(G) = dim Vλ(G).

Let Γm,n be the set of all sequences α = (α(1), . . . , α(m)) with 1 6 α(i) 6 n,

1 6 i 6 m. The group G acts on Γm,n as

ασ = (α(σ(1)), . . . , α(σ(m))).

Two sequences α and β in Γm,n are said to be equivalent modulo G, denoted by

α ∼ β modG, if there exists σ ∈ G such that β = ασ. For each α ∈ Γm,n, the

equivalence class Γα = {ασ : σ ∈ G} is called the orbit containing α. So we have the

following disjoint union Γm,n =
⋃

α∈∆

Γα. We know that |Γα| = [G : Gα], in which Gα

is the stabilizer subgroup of α. Let ∆ be a system of representatives for the orbits

such that each sequence in ∆ is first in its orbit relative to the lexicographic order.
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Definition 1.2. Suppose α ∈ Γm,n. The linear map Tα : U → U defined by

Tα =
1

|Gα|

∑

σ∈Gα

Λ(σ)

is called the linear map corresponding to α. If α ∼ β modG, then we can easily see

that Tα and Tβ are similar.

Theorem 1.3. For any α ∈ Γm,n the linear map Tα is an orthogonal projection

on U .

P r o o f. It is easy to see that Tα is Hermitian. Now we prove that Tα is idem-

potent. We have

T 2
α =

(
1

|Gα|

∑

σ∈Gα

Λ(σ)

)(
1

|Gα|

∑

π∈Gα

Λ(π)

)
=

1

|Gα|2

∑

σ∈Gα

∑

π∈Gα

Λ(σ)Λ(π)

=
1

|Gα|2

∑

σ∈Gα

∑

π∈Gα

Λ(σπ) =
1

|Gα|2

∑

σ∈Gα

∑

τ∈Gα

Λ(τ) (σπ = τ)

=
1

|Gα|2

∑

σ∈Gα

|Gα|Tα = Tα.

�

According to Theorem 1.3, the linear map Tα is an orthogonal projection. So

rankTα = TrTα. Thus, we have the following result.

Corollary 1.1. Let Λ be an irreducible unitary representation of G over unitary

space U . If Λ affords the irreducible character λ of G, then for each α ∈ Γm,n we

have

rankTα =
1

|Gα|

∑

σ∈Gα

λ(σ).

In particular, Tα 6= 0 if and only if
∑

σ∈Gα

λ(σ) 6= 0.

In the following theorem we state the intimate relationship between generalized

Schur functions and generalized decomposable symmetrized tensors.

Theorem 1.4. For each u, v ∈ U and x⊗, y⊗ ∈ V ⊗m we have

(u⊛ x⊛, v ⊛ y⊛) =
1

|G|
(DΛ(A)u, v),

where A = ((xi, yj))m×m.
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P r o o f. According to Theorem 1.1 we have

(u⊛ x⊛, v ⊛ y⊛) = (SΛ(u ⊗ x⊗), SΛ(v ⊗ y⊗)) = (SΛ(u⊗ x⊗), v ⊗ y⊗)

=

(
1

|G|

∑

σ∈G

Λ(σ)u⊗ P (σ)x⊗, v ⊗ y⊗
)

=
1

|G|

∑

σ∈G

(Λ(σ)u, v)

m∏

i=1

(xσ−1(i), yi)

=
1

|G|

∑

σ∈G

( m∏

i=1

(xσ−1(i), yi)Λ(σ)u, v

)

=
1

|G|

(∑

σ∈G

Λ(σ)

m∏

i=1

(xi, yσ(i))u, v

)
=

1

|G|
(DΛ(A)u, v).

�

2. Bases of generalized symmetry classes of tensors

Suppose F = {u1, . . . , ur} and E = {e1, . . . , en} are orthonormal bases for unitary

spaces U and V , respectively. Then

E⊗ = {ui ⊗ e⊗α : 1 6 i 6 r, α ∈ Γm,n}

is an orthonormal basis of U ⊗ V ⊗m. Hence

VΛ(G) = 〈ui ⊛ e⊛α : 1 6 i 6 r, α ∈ Γm,n〉.

For each α ∈ Γm,n the subspace

V ⊛

α = 〈ui ⊛ e⊛α : 1 6 i 6 r〉

is called the generalized orbital subspace corresponding to α. By using Lemma 1.1,

we deduce that

VΛ(G) =
∑

α∈∆

V ⊛

α .

Since Λ is an irreducible representation of G over U ,

U = 〈Λ(σ)u1 : σ ∈ G〉.

Thus

V ⊛

α = 〈Λ(σ)u1 ⊛ e⊛α : σ ∈ G〉.
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Again by Lemma 1.1 we have

V ⊛

α = 〈u1 ⊛ e⊛ασ : σ ∈ G〉.

For each 1 6 i 6 r we define

V i
Λ(G) = 〈ui ⊛ e⊛α : α ∈ Γm,n〉.

Then VΛ(G) =
r∑

i=1

V i
Λ(G), but it is not necessary a direct sum. (This will be described

more with an example.)

Theorem 2.1. For each 1 6 i, j 6 r and α, β ∈ Γm,n we have

(ui ⊛ e⊛α , uj ⊛ e⊛β ) =





0, α ≁ β modG,

1

[G : Gα]
(Tαui, uj), α = β.

In particular,

‖ui ⊛ e⊛α ‖
2 =

1

[G : Gα]
‖Tαui‖

2.

P r o o f. Let

A = (aij)m×m, aij = (eα(i), eβ(j)) = δα(i),β(j).

Then by Theorem 1.4 we have

(ui ⊛ e⊛α , uj ⊛ e⊛β ) =
1

|G|
(DΛ(A)ui, uj) =

1

|G|

(∑

σ∈G

Λ(σ)
m∏

k=1

akσ(k)ui, uj

)

=
1

|G|

(∑

σ∈G

Λ(σ)

m∏

k=1

δα(k),βσ(k)ui, uj

)

=
1

|G|

(∑

σ∈G

Λ(σ)δα,βσui, uj

)

=





0, α ≁ β modG,

1

|G|

( ∑
σ∈Gα

Λ(σ)ui, uj

)
, α = β,

=





0, α ≁ β modG,

1

[G : Gα]
(Tαui, uj), α = β.
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In particular,

‖ui ⊛ e⊛α ‖
2 = (ui ⊛ e⊛α , ui ⊛ e⊛α ) =

1

[G : Gα]
(Tαui, ui)

=
1

[G : Gα]
(Tαui, Tαui) (by Theorem 1.3)

=
1

[G : Gα]
‖Tαui‖

2.

�

Corollary 2.1. For each 1 6 i 6 r and α, β ∈ Γm,n we have ui ⊛ e⊛α = 0 if and

only if Tαui = 0.

For any 1 6 i 6 r let Ωi = {α ∈ Γm,n : Tαui 6= 0}. If we set ∆̄i = ∆∩Ωi, then we

can easily see that the set {ui ⊛ e⊛α : α ∈ ∆̄i} is an orthogonal basis of V
i
Λ(G). Let

Ω =
r⋃

i=1

Ωi and ∆̄ = ∆ ∩ Ω. Then by Corollary 1.1,

∆̄ = {α ∈ ∆: Tα 6= 0} =

{
α ∈ ∆:

∑

σ∈Gα

λ(σ) 6= 0

}
.

Now we conclude the following corollary.

Corollary 2.2. The generalized symmetry class of tensors VΛ(G) is the orthogo-

nal direct sum of the generalized orbital subspaces V ⊛
α , as α ranges over ∆̄.

Example 2.1. Let G = S3. Consider the matrix representation Λ: G →

GL(2,C) such that

Λ(1) =

(
1 0

0 1

)
, Λ(1 2) =

(
0 1

1 0

)
, Λ(1 3) =

(
0 ω2

ω 0

)
,

Λ(2 3) =

(
0 ω

ω2 0

)
, Λ(1 2 3) =

(
ω2 0

0 ω

)
, Λ(1 3 2) =

(
ω 0

0 ω2

)
,

where ω is a primitive third root of unity. It is easy to see that Λ is a unitary

irreducible representation of G. Suppose that V is an two-dimensional vector space

with an orthonormal basis E = {e1, e2}. Let∆ be a system of distinct representatives

for the equivalence classes of Γ3,2 modulo G. Then

∆ = {α = (1, 1, 1), β = (1, 1, 2), γ = (1, 2, 2), δ = (2, 2, 2)}.

It is obvious that Gα = Gδ = G. Since Λ is an irreducible representation of G,∑
σ∈G

Λ(σ) = 0. Hence Tα = Tδ = 0. Similarly, we can see that

Tβ =
1

2

(
1 1

1 1

)
, Tγ =

1

2

(
1 ω

ω2 1

)
.
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Suppose U = C
2 and F = {u1, u2} is the standard basis of U . Then

∆̄1 = ∆̄2 = {β, γ}.

Thus, dim V 1
Λ (G) = |∆̄1| = 2, dimV 2

Λ (G) = |∆̄2| = 2. But

dimVΛ(G) =
1

|G|

∑

σ∈G

λ(σ)nc(σ) =
1

6
[2(2)3 + 2(−1)(2)] = 2.

Therefore VΛ(G) = V 1
Λ (G) + V 2

Λ (G) is not a direct sum.

The following theorem extends [10], Theorem 6.34 to the generalized symmetry

classes of tensors.

Theorem 2.2 (Generalized Freese’s Theorem). Let Λ be an irreducible unitary

representation of G over unitary space U such that it affords character λ of G. If

α ∈ ∆̄, then

dimV ⊛

α = [λ, 1]Gα
,

where [ , ] is the inner product of characters.

P r o o f. LetG =
t⋃

i=1

Gασi, Γα = {ασ1, . . . , ασt} be the right coset decomposition

of Gα in G. Notice that V ⊛
α = SΛ(Wα), where

Wα = 〈ui ⊗ e⊗ασ : 1 6 i 6 r, σ ∈ G〉.

Then

Eα = {ui ⊗ e⊗ασj
: 1 6 i 6 r, 1 6 j 6 t}

is a basis of Wα, but the set

{ui ⊛ e⊛ασj
: 1 6 i 6 r, 1 6 j 6 t}

may not be a basis for V ⊛
α . Since Wα is an invariant subspace of SΛ, the restriction

Sα
Λ = SΛ|Wα

is a linear operator on Wα. Let

C = (c(i,r),(j,s)) = [Sα
Λ]Eα

.
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Now for each µ ∈ G we have

Sα
Λ(ul ⊗ e⊗αµ) = SΛ(ul ⊗ e⊗αµ) = SΛ(Λ(µ)ul ⊗ e⊗α ) =

1

|G|

∑

σ∈G

Λ(σ−1)(Λ(µ)ul)⊗ e⊗ασ

=
1

|G|

t∑

i=1

( ∑

σ∈Gασi

Λ(σ−1µ)ul ⊗ e⊗ασ

)

=
1

|G|

t∑

i=1

∑

τ∈Gα

Λ(σ−1
i τ−1µ)ul ⊗ e⊗ατσi

=
1

|G|

t∑

i=1

∑

τ∈Gα

Λ(σ−1
i τ−1µ)ul ⊗ e⊗ασi

.

In particular,

Sα
Λ(ul ⊗ e⊗ασj

) =
1

|G|

t∑

i=1

∑

τ∈Gα

Λ(σ−1
i τ−1σj)ul ⊗ e⊗ασi

=
1

|G|

t∑

i=1

∑

τ∈Gα

r∑

k=1

mkl(σ
−1
i τ−1σj)uk ⊗ e⊗ασi

=

t∑

i=1

r∑

k=1

[
1

|G|

∑

τ∈Gα

mkl(σ
−1
i τσj)

]
uk ⊗ e⊗ασi

.

So

c(k,i),(l,j) =
1

|G|

∑

τ∈Gα

mkl(σ
−1
i τσj), k, l = 1, . . . , r, i, j = 1, . . . , t.

We prove that C is an idempotent matrix. We have

(C2)(k,i),(l,j) =
r∑

p=1

t∑

q=1

c(k,i),(p,q) c(p,q),(l,j)

=

r∑

p=1

t∑

q=1

(
1

|G|

∑

σ∈Gα

mkp(σ
−1
i σσq)

)(
1

|G|

∑

τ∈Gα

mpl(σ
−1
q τσj)

)

=
1

|G|2

r∑

p=1

t∑

q=1

∑

σ∈Gα

∑

τ∈Gα

mkp(σ
−1
i σσq)mpl(σ

−1
q τσj)

=
1

|G|2

∑

σ,τ∈Gα

t∑

q=1

mkl(σ
−1
i στσj) =

t

|G|2

∑

g,τ∈Gα

mkl(σ
−1
i gσj)

=
t|Gα|

|G|

1

|G|

∑

g∈Gα

mkl(σ
−1
i gσj) = c(k,i),(l,j).
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Thus,

dimV ⊛

α = rank(Sα
Λ) = rankC = TrC.

Now we calculate TrC. We have

TrC =

r∑

k=1

t∑

i=1

c(k,i),(k,i) =

r∑

k=1

t∑

i=1

(
1

|G|

∑

σ∈Gα

mkk(σ
−1
i σσi)

)

=
1

|G|

∑

σ∈Gα

t∑

i=1

r∑

k=1

mkk(σ
−1
i σσi) =

1

|G|

∑

σ∈Gα

t∑

i=1

TrΛ(σ−1
i σσi)

=
1

|G|

∑

σ∈Gα

t∑

i=1

λ(σ−1
i σσi) =

1

|G|

∑

σ∈Gα

t∑

i=1

λ(σ)

=
t

|G|

∑

σ∈Gα

λ(σ) ([G : Gα] = t)

=
1

|Gα|

∑

σ∈Gα

λ(σ) = [λ, 1]Gα
.

�

We now construct a basis of VΛ(G). By Corollary 2.2, VΛ(G) =
⊕
α∈∆̄

V ⊛
α . In

order to find a basis for VΛ(G), it suffices to find bases of the generalized orbital

subspaces V ⊛
α , α ∈ ∆̄.

Choose a lexicographically ordered set {α1 = α, α2, . . . , αsα} from {ασ : σ ∈ G}

such that

{u1 ⊛ e⊛α1
, u1 ⊛ e⊛α2

, . . . , u1 ⊛ e⊛αsα
}

is a basis of V ⊛
α . The same is done for any α ∈ ∆̄. If {α, β, γ, . . .} is the lexico-

graphically ordered set ∆̄, take ∆̂ = {α1, . . . , αsα , β1, . . . , βsβ , . . .} to be ordered as

indicated. Then {u1 ⊛ e⊛α : α ∈ ∆̂} is a basis of VΛ(G). Obviously, ∆̄ = {α1, β1, . . .}

is lexicographically ordered, but note that ∆̂ is not lexicographically ordered; it is

possible that α2 > β1. Such order in ∆̂ is called an orbital order. If λ is a linear char-

acter, then dim V ⊛
α = 1 and in this case, the set {u1 ⊛ e⊛α : α ∈ ∆̄} is an orthogonal

basis of VΛ(G). We call a basis consisting of generalized decomposable symmetrized

tensors u1 ⊛ e⊛α , an orthogonal ⊛-basis. If λ is not linear, it is possible that VΛ(G)

has no orthogonal ⊛-basis.

Corollary 2.3. Suppose dimV ⊛
α = sα. Then

dimVΛ(G) = |∆̂| =
∑

α∈∆̄

sα =
∑

σ∈∆̄

[λ, 1]Gα
.

Now we give a necessary condition for the existence of orthogonal ⊛-basis.
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Theorem 2.3. Let Λ be an irreducible unitary representation of G over a unitary

space U such that it affords the character λ of G. If there is α ∈ Γm,n such that

λ(1) < [G : Gα] < 2[λ, 1]Gα
,

then VΛ(G) has no orthogonal ⊛-basis.

P r o o f. Let G =
s⋃

i=1

Gαti, [G : Gα] = s be the right coset decomposition of Gα

in G. Then

V ⊛

α = 〈u1 ⊛ e⊛αti : 1 6 i 6 s〉.

For any i and j we have

(u1 ⊛ e⊛αti , u1 ⊛ e⊛αtj ) = (SΛ(u1 ⊗ e⊗αti), SΛ(u1 ⊗ e⊗αtj )) = (SΛ(u1 ⊗ e⊗αti), u1 ⊗ e⊗αtj )

=
1

|G|

(∑

σ∈G

Λ(σ)u1 ⊗ e⊗
αtiσ−1 , u1 ⊗ e⊗αtj

)

=
1

|G|

∑

σ∈G

(Λ(σ)u1, u1)δαtiσ−1,αtj =
1

|G|

∑

σ∈t
−1

i
Gαtj

(Λ(σ)u1, u1)

=
1

|G|

∑

σ∈t
−1

i
Gαtj

m11(σ) =
1

|G|

∑

σ∈Gα

m11(t
−1
i σtj).

Now we define an s× s matrix D as

dij =
1

|G|

∑

σ∈Gα

m11(t
−1
i σtj).

Observe that

D2
ij =

s∑

p=1

dipdpj =

s∑

p=1

(
1

|G|

∑

x∈Gα

m11(t
−1
i xtp)

)(
1

|G|

∑

y∈Gα

m11(t
−1
p ytj)

)

=
1

|G|2

s∑

p=1

∑

x∈Gαtp

∑

y∈t
−1

p Gα

m11(t
−1
i x)m11(ytj)

=
1

|G|2

s∑

p=1

∑

h∈Gα

∑

x∈Gαtp

m11(t
−1
i x)m11(x

−1htj) (xy = h)

=
1

|G|2

∑

h∈Gα

∑

z∈G

m11(z)m11(z
−1t−1

i htj) (t−1
i x = z)

=
1

λ(1)|G|

∑

h∈Gα

m11(t
−1
i htj) (by Schur Relations)

=
1

λ(1)
Dij .

Therefore λ(1)D2 = D.
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Let VΛ(G) have an orthogonal ⊛-basis. Then V ⊛
α has an orthogonal basis. Now

suppose dim V ⊛
α = k and consider that B = {u1⊛e⊛αt1 , . . . , u1⊛e⊛αtk} is an orthogonal

basis of V ⊛
α . Thus, the matrix D has the block partition form

(
E1 E2

E3 E4

)
,

where

E1 =




d11 0
. . .

0 dkk


 .

It follows that

D2 =

(
E2

1 + E2E3 E1E2 + E2E4

E3E1 + E4E3 E3E2 + E2
4

)
.

Using λ(1)D2 = D we obtain

E2
1 + E2E3 =

1

λ(1)
E1.

So

E2E3 =




d11

λ(1)
− d211 0

. . .

0
dkk

λ(1)
− d2kk




.

We know that dii 6= 0 for any 1 6 i 6 k because dii = ‖u1 ⊛ e⊛αti‖
2. If

dii

λ(1)
− d2ii = 0

for some 1 6 i 6 k, then

1

λ(1)
= dii =

∣∣∣∣
1

|G|

∑

x∈Gα

m11(t
−1
i xti)

∣∣∣∣ 6
1

|G|

∑

x∈Gα

|m11(t
−1
i xti)|

6
1

|G|

∑

x∈Gα

1 =
1

[G : Gα]
,

and this contradicts the assumption λ(1) < [G : Gα] of the theorem. Thus, E2E3 is

an invertible k × k matrix. This implies that k 6 s− k. Therefore

[λ, 1]Gα
6

[G : Gα]

2
,

and the result holds. �
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