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Abstract. Let R be a commutative ring with unity. The notion of maximal non valuation
domain in an integral domain is introduced and characterized. A proper subring R of an
integral domain S is called a maximal non valuation domain in S if R is not a valuation
subring of S, and for any ring T such that R ⊂ T ⊂ S, T is a valuation subring of S.
For a local domain S, the equivalence of an integrally closed maximal non VD in S and
a maximal non local subring of S is established. The relation between dim(R,S) and the
number of rings between R and S is given when R is a maximal non VD in S and dim(R,S)
is finite. For a maximal non VD R in S such that R ⊂ R′S

⊂ S and dim(R,S) is finite, the
equality of dim(R,S) and dim(R′S , S) is established.
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1. Introduction

All rings considered below are commutative with nonzero identity and all ring

extensions are unital. By an overring of R, we mean a subring of the total quotient

ring of R containing R. By a local ring, we mean a ring with a unique maximal

ideal. The symbol ⊆ is used for inclusion, while ⊂ is used for proper inclusion.
Throughout this paper, qf(R) denotes the quotient field of an integral domain R

and R′S the integral closure of a subring R in a ring S. For any ring extension R ⊂ S,

by an intermediate ring, we mean a proper subring of S properly containing R and

[R,S] = {T : R ⊆ T ⊆ S, T is a subring of S}. Also, Supp(S/R) = {P ∈ Spec(R) :

RP 6= SP } is the support of the R-module S/R and dim(R,S) denotes the number
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of terms of the longest maximal chains in Supp(S/R). Our work is motivated by [4]

and [7]. Let R ⊂ S be a ring extension of integral domains. Then R is said to be

a valuation subring of S (R is a VD in S for short), see [4], if whenever x ∈ S, we have

x ∈ R or x−1 ∈ R. Note that if S = qf(R), then R is a valuation domain. Thus, the

concept of valuation subrings of a domain is the generalization of valuation domains.

Moreover, if R is not a valuation domain and each T ∈ [R,S] \ {R} is a valuation
domain, then R is said to be a maximal non valuation subring of S, see [7]. It is

obvious that if R is a VD in S and T is a ring such that R ⊂ T ⊆ S, then R is a VD

in T and T is a VD in S. This motivates us to think of those extensions R ⊂ S of

integral domains such that R is not a VD in S and R is maximal with this property,

and S is minimal with this property. Motivated by this idea, we introduce the notion

of maximal non valuation domain in an integral domain which is a generalization of

the concept of maximal non valuation subrings, see [7]. A proper subring R of an

integral domain S is called a maximal non valuation domain in S (R is a maximal

non VD in S, for short) if R is not a valuation subring of S, and for any ring T

such that R ⊂ T ⊂ S, T is a valuation subring of S. We establish some properties

and characterizations of a maximal non VD in an integral domain. Also, we observe

that no new class of ring extensions is obtained if R is not a VD in S and S is

minimal with this property, that is, R is a VD in each proper subring of S properly

containing R, see Theorem 2.7.

We discuss the properties of a maximal non VD R in an integral domain S and

characterize both R and S. We prove that if R is a maximal non VD in S, then

either R = R′S or R ⊂ R′S has no intermediate ring, see Lemma 2.4. Also, R has

at most two maximal ideals if S is local and R is a maximal non VD in S, see

Lemma 2.3. We also prove that if R is a maximal non VD in S such that R is not

a field, then S is an overring of R, see Proposition 2.1. For a local domain S, the

equivalence of an integrally closed maximal non VD in S and a maximal non local

subring of S is established in Theorem 2.2. A pair (R,S) is a normal pair (see [8])

if R ⊆ S and T is integrally closed in S for all T ∈ [R,S]. In Theorem 2.3, we

prove that R is not local, (R,S) is a normal pair, and either |[R,S]| = 1+dim(R,S)

or |[R,S]| = 3 + dim(R,S) for an integrally closed maximal non VD R in S such

that dim(R,S) is finite. Also, when R is not integrally closed then either |[R,S]| =
1 + dim(R,S) or |[R,S]| = 2 + dim(R,S), see Theorem 2.6.

Recall from [14] that a ring extension R ⊆ T is said to be a λ-extension (equiva-

lently, T is a λ-extension of R) if the set of all subrings of T containing R is linearly

ordered by inclusion. If T = qf(R), then R is said to be a λ-domain. In Theorem 2.4,

we prove that if R is integrally closed in a domain S such that dim(R,S) is finite,

then |[R,S]| = 1 + dim(R,S) if and only if R ⊂ S is a λ-extension and Supp(S/R)

is finite with a unique maximal element. For a maximal non VD R in S such that
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R ⊂ R′S ⊂ S and dim(R,S) is finite, the equality of dim(R,S) and dim(R′S , S) is

established in Proposition 2.4.

For any ring R, Spec(R) denotes the set of all prime ideals of R; Max(R) the set

of all maximal ideals of R. As usual, |X | denotes the cardinality of a set X .

2. Maximal non valuation domains

We begin the section by defining a maximal non valuation domain in an integral

domain formally.

Definition 2.1. A proper subring R of an integral domain S is called a maximal

non valuation domain in S (R is a maximal non VD in S for short) if R is not

a valuation subring of S, and for any ring T such that R ⊂ T ⊂ S, T is a valuation

subring of S.

Recall from [11] that a ring extension R ⊆ S is said to be residually algebraic if

for any prime ideal Q of S, S/Q is algebraic over R/(Q ∩ R). Moreover, if for any

ring T in [R,S], the ring extension R ⊆ T is residually algebraic, then (R,S) is said

to be a residually algebraic pair, see [5]. It is trivial to see that if R is a VD in S,

then (R,S) is a residually algebraic pair, see the proof of Theorem 2.1. However,

in general, it is not true for non valuation subrings of an integral domain. Now, we

will show that if R is a maximal non VD in S, where R is not a field, then (R,S) is

a residually algebraic pair which is a generalization of [7], Lemma 1 (iii). In the next

lemma, we first show that R ⊂ S is an algebraic extension which is a generalization

of [7], Lemma 1 (i). For the sake of completeness, we are giving the proof.

Lemma 2.1. Let R ⊂ S be an extension of integral domains where R is not a field.

If R is a maximal non VD in S, then R ⊂ S is a residually algebraic extension.

P r o o f. Let Q ∈ Spec(S) and set P = Q ∩R. If S/Q is not algebraic over R/P ,

then there exists t ∈ S such that t̄ = t+Q ∈ S/Q is transcendental over R/P . Now,

consider T = (R/P )[t̄ 2]. Then R ⊂ U ⊂ S, where T = U/(Q ∩ U). Therefore, U is

a VD in S as R is a maximal non VD in S. Thus, either t ∈ U or t−1 ∈ U , which is

a contradiction. �

Theorem 2.1. Let R ⊂ S be an extension of integral domains, where R is not

a field. If R is a maximal non VD in S, then (R,S) is a residually algebraic pair.

P r o o f. Let R ⊂ T ⊆ S. Then either R is a maximal non VD in T or R is a VD

in T . If R is a maximal non VD in T , then the result follows from Lemma 2.1. Now,

assume that R is a VD in T . Let Q ∈ Spec(T ) and set P = Q ∩ R. If possible,
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suppose that T/Q is not algebraic over R/P . Then there exists t ∈ T such that

t̄ = t+Q ∈ T/Q is transcendental over R/P . Now, consider T ′ = (R/P )[t̄ 2]. Then

R ⊂ U ⊂ T , where T ′ = U/(Q ∩ U). Therefore, U is a VD in T . Thus, either t ∈ U

or t−1 ∈ U , which is a contradiction. �

Recall from [4], Remark 1.1 (3) that if R ⊂ S is an extension of integral do-

mains and if R is a VD in S, then qf(R) = qf(S). Clearly, this may not be true

if R is not a VD in S. However, if R is a maximal non VD in S, where R is not

a field, then qf(R) = qf(S) as we have the next proposition which is a generalization

of [7], Lemma 1 (ii). The proof is similar to that of [7], Lemma 1 (ii) and thus we

omit it.

Proposition 2.1. Let R ⊂ S be an extension of integral domains, where R is not

a field. If R is a maximal non VD in S, then the following hold true:

(i) qf(R) = qf(S).

(ii) If S is a field, then S is the quotient field of R.

The next proposition is a generalization of [7], Proposition 1 whose proof is a rou-

tine.

Proposition 2.2. Let R ⊂ S be an extension of integral domains such that R is

a maximal non VD in S. Then the following statements hold true:

(i) For each multiplicatively closed subset H of R, either H−1R is a VD in H−1S

or H−1R is a maximal non VD in H−1S.

(ii) For each Q ∈ Spec(S), either R/(Q ∩ R) is a VD in S/Q or R/(Q ∩ R) is

a maximal non VD in S/Q.

In the above proposition, suppose that H = R \ P for any P ∈ Spec(R). Then in

the next proposition we show that H−1R is a VD in H−1S provided R is integrally

closed in S. Under the stated conditions, first we observe that |Max(R)| > 1 in the

next lemma.

Lemma 2.2. Let R ⊂ S be an extension of integral domains and R be integrally

closed in S. If R is a maximal non VD in S, then R is not local.

P r o o f. Suppose R is local. Since R ⊂ S is an algebraic extension, R is a VD

in S by [5], Theorem 2.5, which is a contradiction. �

Proposition 2.3. Let R ⊂ S be an extension of integral domains, where R is

integrally closed in S. If R is a maximal non VD in S, then RP is a VD in SP for

all P ∈ Spec(R).
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P r o o f. If RP is not a VD in SP for some P ∈ Spec(R), then RP is a maximal

non VD in SP such that RP is integrally closed in SP by Proposition 2.2. There-

fore, RP is not local by Lemma 2.2, which is absurd. �

Remark 2.1. It is easily seen that if R is a VD in S then RP is a VD in SP

for all P ∈ Spec(R). The preceding proposition shows that the same is true if R is

integrally closed and a maximal non VD in S.

In Lemma 2.2, we have seen that |Max(R)| > 1 for any integrally closed and

maximal non VD R in S. Now, if we remove the condition of being integrally closed,

then |Max(R)| 6 2 provided S is local. This we see in the next lemma.

Lemma 2.3. Let R ⊂ S be an extension of integral domains such that S is local.

If R is a maximal non VD in S, then the following statements hold true:

(i) |Max(R)| 6 2.

(ii) |Max(R′S )| 6 2.

P r o o f. Let R 6= R′S . Then either S is integral over R or R′S is a VD in S.

Thus, R′S is local by [4], Corollary 1.6. Hence, R is local. Now, assume that

R = R′S . Let M be the maximal ideal of S. Then S = SM = RM∩R by [5],

Lemma 2.9. Suppose that N1, N2, and N3 are any three maximal ideals of R. Then

R ⊂ T = RN1
∩ RN2

⊂ S. Since R is a maximal non VD in S, T is a VD in S.

Therefore, T is local by [4], Corollary 1.6, which is a contradiction. �

Let R ⊂ S be a ring extension. Then R is said to be a maximal non local subring

of S if R is not local but each subring of S which contains R properly is local, see [17].

Theorem 2.2. Let R ⊂ S be an extension of integral domains. If S is local, then

the following statements are equivalent:

(i) R is a maximal non VD in S such that R is integrally closed in S.

(ii) R is a maximal non local subring of S.

P r o o f. First suppose that R is a maximal non VD in S such that R is integrally

closed in S. Then by Lemma 2.2, R is not local. Thus, if R ⊂ S has no intermediate

ring, then we are done. Now, assume that T is a ring such that R ⊂ T ⊂ S. Then T is

a VD in S. Thus, T is local by [4], Corollary 1.6. Hence, R is a maximal non local

subring of S.

Now, suppose that R is a maximal non local subring of S. If R is a VD in S,

then R is local by [4], Corollary 1.6, which is a contradiction. Thus, R is not a VD

in S. Now, if R ⊂ S has no intermediate ring, then either R is integrally closed in S

or S is integral over R. If the latter condition holds, then R is local, a contradiction.

Thus, the former condition holds and we are done. Now, suppose that T is a ring such
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thatR ⊂ T ⊂ S. Then T is local. Now, by [17], Lemma 2 we have that (R,S) is a nor-

mal pair. Thus, R and T are integrally closed in S. Also, by [17], Lemma 1 we get

that (R,S) is a residually algebraic pair and hence (T, S) is a residually algebraic pair.

Therefore, T is a VD in S by [5], Theorem 2.5. Thus, R is a maximal non VD in S. �

For any prime ideals P ⊂ Q in R, let [P,Q[ denote the set of all prime ideals

of R containing P which are properly contained in Q. The next corollary is a direct

consequence of [17], Theorem 1 and Theorem 2.2.

Corollary 2.1. Let R ⊂ S be an extension of integral domains. If R is integrally

closed in S and S is local, then the following statements are equivalent:

(i) R is a maximal non VD in S.

(ii) (R,S) is a normal pair, R is semi local with exactly two maximal ideals N1 and

N2 and either:

(a) S = RN1
and [(0), N2[⊆ [(0), N1[, or

(b) S = RN2
and [(0), N1[⊆ [(0), N2[, or

(c) there exists a prime ideal Q of R such that Q ⊂ N1 ∩ N2, S = RQ and

[(0), N1[= [(0), N2[.

Remark 2.2. In [3], Ayache introduced the notion of dim(R,S) as the number of

terms of the longest maximal chains in Supp(S/R). Ayache, in [3], Proposition 6 (i),

showed the following: If R is integrally closed in S and dim(R,S) is finite, then (R,S)

is a normal pair and R is local if and only if |[R,S]| = 1 + dim(R,S).

One should note the above statement is not correct. For example, take R = Z

and S = Z[1/p], where p is a prime integer. Then R is integrally closed in S

and Supp(S/R) = {pZ}. Clearly, there is no intermediate ring between R and S.

Thus, (R,S) is a normal pair and |[R,S]| = 1 + dim(R,S). However, R is not local.

In the next theorem, we prove that there is a complete class of ring extensions which

counters [3], Proposition 6 (i).

Recall from [10] that a prime ideal Q of a ring R is said to be a divided prime ideal

if QRQ = Q. In [1], Akiba characterized the divided prime ideal of R as a prime

ideal which is comparable to every ideal of R.

Theorem 2.3. Let R ⊂ S be an extension of integral domains. Assume that R is

integrally closed in S and dim(R,S) is finite. If R is a maximal non VD in S, then

R is not local, (R,S) is a normal pair, and either

(i) |[R,S]| = 1 + dim(R,S), or

(ii) |[R,S]| = 3 + dim(R,S).

1024



P r o o f. Let R be a maximal non VD in S. Then R is not local by Lemma 2.2. If

|[R,S]| = 2, then (R,S) is a normal pair as R is integrally closed in S. Also, we have

|Supp(S/R)| = 1 by [2], Lemma 5. Thus, |[R,S]| = 1+dim(R,S). Now, assume that

|[R,S]| > 2. As R is a maximal non VD in S, there is a ring between R and S which is

a VD in S. Thus, S is local by [4], Corollary 1.6. Now, by Corollary 2.1, we have that

(R,S) is a normal pair, R is a semi local domain with exactly two maximal ideals N1

and N2, and either (a) S = RN1
and [(0), N2[⊆ [(0), N1[, or (b) S = RN2

and

[(0), N1[⊆ [(0), N2[, or (c) there exists a prime ideal Q of R such that Q ⊂ N1 ∩N2,

S = RQ and [(0), N1[= [(0), N2[.

We claim that only (c) can hold. If possible, suppose that (a) holds. Then

|Supp(S/R)| = 1 and hence dim(R,S) = 1. Let T be a ring such that R ⊂ T ⊂ S.

Then by Theorem 2.2, T is local with maximal ideal, say L. Now, by Theorem 2.1,

we get that (R, T ) is a residually algebraic pair. Therefore, we have T = TL = RL∩R

by [5], Lemma 2.9. Thus,N1 = L∩R, which is a contradiction. Hence, we get [R,S] =

{R,S}, which again contradicts that |[R,S]| > 2. This proves that (a) does not hold.

Similarly, (b) does not hold. Thus, only (c) can hold. Then R ⊂ RN1
⊂ S and hence

RN1
is a VD in S. Therefore, by [4], Theorem 1.5, there exists a divided prime ideal

PRN1
∈ Spec(RN1

) such that S = (RN1
)PRN1

= RP . Thus, Q = P . Since [(0), N1[=

[(0), N2[, P is a divided prime ideal in R. Now, we assert that there is a one to one

order preserving correspondence between the elements of Supp(S/R) and the ele-

ments of {T : R ⊂ T ⊂ S, T is a subring of S}. First, we show that RP ′ ∈ [R,S] for

all P ′ ∈ Supp(S/R). Suppose that P ′ ∈ Supp(S/R). Then either Q ⊆ P ′ or P ′ ⊂ Q.

If P ′ ⊂ Q, then P ′ /∈ Supp(S/R) as for any (r/s)/(t/1) = r/st ∈ SP ′ , we have

r/st ∈ RP ′ for r ∈ R, s ∈ R \Q and t ∈ R \ P ′. Thus, Q ⊆ P ′. Hence, RP ′ ∈ [R,S]

for all P ′ ∈ Supp(S/R). Note that R is a maximal non local subring of S, by Theo-

rem 2.2. Thus, for any ring T such that R ⊂ T ⊂ S, there exists V ∈ Spec(R) such

that T = RV by [17], Lemma 2. We claim that V ∈ Supp(S/R). If possible, suppose

thatRV = SV . Then Q = V , which is a contradiction as T 6= S. Therefore, our asser-

tion holds. Note that the elements of Supp(S/R)\{N2} are totally ordered. Suppose,
Q1, Q2 ∈ Supp(S/R) \ {N2}. We may assume that Qi 6= N1 for i = 1, 2. Then R ⊂
RQ1

∩RQ2
⊂ S. Since R is a maximal non local subring of S, RQ1

∩RQ2
is local, which

is a contradiction. Thus, we have Supp(S/R) = {Q1 ⊂ Q2 ⊂ . . . ⊂ Qn−1 ⊂ N1, N2},
where dim(R,S) = n. Therefore, [R,S] = {R,RQ1

, RQ2
, . . . , RQn−1

, RN1
, RN2

, S}
and hence we get |[R,S]| = 3 + dim(R,S). �

From Remark 2.2 and Theorem 2.3, it is clear that if R is integrally closed in S,

R ⊂ S, and dim(R,S) is finite, then the conditions that the pair (R,S) is normal

and R is local are not necessary for |[R,S]| = 1 + dim(R,S). In the next theorem,

we present a necessary and sufficient condition for the same.
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Theorem 2.4. Let R ⊂ S be an extension of integral domains. If R is integrally

closed in S and dim(R,S) is finite, then |[R,S]| = 1+dim(R,S) if and only if R ⊂ S

is a λ-extension and Supp(S/R) is finite with a unique maximal element.

P r o o f. Let |[R,S]| = 1+dim(R,S). Then by [2], Theorem 9, (R,S) is a normal

pair and Supp(S/R) is finite. Now, by [3], Theorem 4, there exists a semi local

Prüfer domain T such that |[T, qf(T )]| = 1 + dim(T ). Therefore, T is a valuation

domain by [19], Theorem 7 and hence T is a λ-domain by [14], Corollary 1.5. Thus,

R ⊂ S is a λ-extension and Supp(S/R) is finite with a unique maximal element

by [3], Theorem 4.

Conversely, assume that R ⊂ S is a λ-extension and Supp(S/R) is finite with

a unique maximal element. Then Rm ⊆ Sm is a λ-extension for all m ∈ Max(R).

Thus, by [18], Corollary 2.5, (Rm, Sm) is a normal pair for all m ∈ Max(R). Now,

by [12], Lemma 6.2, (R,S) is a normal pair. Therefore, by [3], Theorem 4, there exists

a semi local Prüfer domain T such that [R,S] ∼= [T, qf(T )] (as partially ordered sets)

and dim(R,S) = dim(T ). Thus, |[R,S]| = |[T, qf(T )]| and T is a λ-domain, and hence
a valuation domain, by [14], Corollary 1.5. Thus, by [19], Theorem 7, |[T, qf(T )]| =
1 + dim(T ) and hence |[R,S]| = |[T, qf(T )]| = 1 + dim(T ) = 1 + dim(R,S). �

Next we offer the following companion for Theorem 2.4.

Corollary 2.2. Let R ⊂ S be an extension of integral domains. Assume that

dim(R,S) is finite, R is integrally closed in S, and there is a maximal ideal M in R

such that |[RM , SM ]| = 2. Then |[R,S]| = 1 + dim(R,S) if and only if |[R,S]| = 2.

P r o o f. If |(R,S)| = 1 + dim(R,S), then the result follows from Theorem 2.4

and [9], Theorem 2.7. The converse follows from [2], Lemma 5. �

Remark 2.3. As we have already seen that if R is integrally closed in S, R ⊂ S,

and dim(R,S) is finite, then the conditions that the pair (R,S) is normal and R is

local are not necessary for |[R,S]| = 1 + dim(R,S), however these are sufficient. To

see this, first note that R ⊂ S is a λ-extension by [18], Corollary 2.5. Then for every

T ∈ [R,S] \ {S}, T = RQ for some Q ∈ Supp(S/R) by [18], Proposition 2.4. Now,

if [R,S] is infinite, then dim(R,S) is infinite, which is a contradiction. Therefore,

[R,S] is finite and hence by [18], Theorem 2.8, Supp(S/R) is finite. Thus, |[R,S]| =
1 + dim(R,S) by Theorem 2.4.

In Theorem 2.5, we characterize a maximal non VD in an integral domain S that is

not integrally closed in S, which can be seen as a generalization of [7], Theorem 3.3.

First, we prove the following lemma:

Lemma 2.4. Let R ⊂ S be an extension of integral domains. If R is a maximal

non VD in S, then either R = R′S or R ⊂ R′S has no intermediate ring.
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P r o o f. Let R ⊂ R′S . Assume that there is a ring T such that R ⊂ T ⊆ R′S .

Then T is a VD in S and hence T is integrally closed in S. Thus, T = R′S . �

Theorem 2.5. Let R ⊂ S be an extension of integral domains. If R is not

integrally closed in S, then the following statements are equivalent:

(i) R is a maximal non VD in S.

(ii) |[R,R′S ]| = 2, either R′S is a VD in S or R′S = S, and S is an overring of R′S .

(iii) [R,S] = {R}∪ [R′S , S], R′S is a VD in S or R′S=S, and S is an overring of R′S .

P r o o f. (i)⇒ (ii) By Lemma 2.4, |[R,R′S ]| = 2. Since R ⊂ R′S ⊆ S, R′S is a VD

in S or R′S = S. Note that if R is a field, then R′S is a field and hence R′S = S.

We may now assume that R is not a field. Then by Proposition 2.1, S is an overring

of R′S .

(ii) ⇒ (iii) If R′S = S, then we are done. Let T ∈ [R,S] \ {R,S}. Since R′S is

a VD in S, R′S is local by [4], Corollary 1.6. Let M be the maximal ideal of R′S and

N = (R : R′S). Then N ∈ Max(R) by [20], Theorem 1. Thus, by [15], Theorem 2.8,

either N ∈ Max(R′S ) or M2 ⊆ N ⊂ M . If the former holds, then N = M . Now,

we claim that R′S ⊆ T or T ⊆ R′S . If possible, suppose there exist x ∈ R′S \ T

and y ∈ T \ R′S . Then y−1 ∈ M = N . Therefore, we have xy−1 ∈ R ⊂ T . Thus,

x = xy−1y ∈ T , which is a contradiction. Hence, [R,S] = {R} ∪ [R′S , S]. Next,

assume that M2 ⊆ N ⊂ M . Again, if there exist x ∈ R′S \ T and y ∈ T \ R′S ,

then y−1 ∈ M . Therefore, y−2 ∈ M2 ⊆ N . Thus, we have xy−2 ∈ R ⊂ T . Hence,

x = xy−2y2 ∈ T , which is a contradiction.

(iii) ⇒ (i) Note that R is not a VD in S as R is not integrally closed in S. If

|[R,S]| = 2, then we are done. Now, suppose that R ⊂ T ⊂ S. Then R′S ⊆ T ⊂ S.

Thus, T is a VD in S. Hence, R is a maximal non VD in S. �

Remark 2.4. If R ⊂ S is an extension of integral domains such that R⊂R′S⊂S,

then, in general, dim(R,S) may not be equal to dim(R′S , S). For example, consider

R = Z, S = Z[
√
2, X ], where X is indeterminate. Then R′S = Z[

√
2]. Clearly,

dim(R,S) 6= dim(R′S , S). However, dim(R,S) = dim(R′S , S) if R is a maximal non

VD in S such that R ⊂ R′S ⊂ S and dim(R,S) is finite. This is our next proposition.

Proposition 2.4. Let R ⊂ S be an extension of integral domains such that R ⊂
R′S ⊂ S and dim(R,S) is finite. If R is a maximal non VD in S, then dim(R,S) =

dim(R′S , S).

P r o o f. We claim that there is a one to one correspondence between the elements

of Supp(S/R) and Supp(S/R′S). Now, by Theorem 2.5, |[R,R′S ]| = 2 and R′S is

a VD in S. Thus, R′S is local by [4], Corollary 1.6 and hence R is local. Let M

be the maximal ideal of R and M ′ be the maximal ideal of R′S . Now, suppose that
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P ∈ Supp(S/R)\{M}. We claim that P ′ ∈ Supp(S/R′S ), where P = P ′∩R. Suppose
that SP ′ = (R′S )P ′ . Note that by [20], Corollary 1, RP = (R′S )P . Now, by [12],

Lemma 2.4, (R′S )P = (R′S )P ′ . Thus, SP ′ = (R′S )P ′ = (R′S )P = RP and hence

RP = SP , which is a contradiction. Now, assume that P
′ ∈ Supp(S/R′S ) \ {M ′}.

We want to show that P ∈ Supp(S/R), where P = P ′ ∩R. If possible, suppose that

RP = SP . Then by [12], Lemma 2.4, (R
′S )P = (R′S )P ′ and SP = SP ′ . Therefore,

RP = (R′S )P = (R′S )P ′ = SP = SP ′ , which is a contradiction. Now, it remains

to show that M ∈ Supp(S/R) and M ′ ∈ Supp(S/R′S ). If possible, suppose that

SM ′ = (R′S )M ′ . Then SM ′ = R′S and hence S = R′S , a contradiction. Thus,

M ′ ∈ Supp(S/R′S ). Now, if RM = SM , then RM = (R′S )M . Therefore, by [12],

Lemma 2.4, (R′S )M = (R′S )M ′ and SM = SM ′ . Thus, RM = (R′S )M = (R′S )M ′ =

SM = SM ′ , which is a contradiction. Hence, M ∈ Supp(S/R). Note that this

correspondence is an order isomorphism as R ⊂ R′S is an integral extension. Thus,

the corresponding map of spectra is closed and hence dim(R,S) = dim(R′S , S). �

In Theorem 2.3, we have shown that |[R,S]| = 1 + dim(R,S) or |[R,S]| = 3 +

dim(R,S) if R is integrally closed, a maximal non VD in S and dim(R,S) is finite.

A somewhat similar statement is true even if R is not integrally closed in S as we

show in the next theorem.

Theorem 2.6. Let R ⊂ S be an extension of integral domains. Assume that

dim(R,S) is finite and R is not integrally closed in S. If R is a maximal non VD

in S, then either |[R,S]| = 1 + dim(R,S) or |[R,S]| = 2 + dim(R,S).

P r o o f. As R is a maximal non VD in S, either |[R,S]| = 2 or R′S is a VD

in S by Theorem 2.5. If the former holds, then |Supp(S/R)| = 1 by [2], Lemma 5.

Thus, |[R,S]| = 1 + dim(R,S). Assume now that R′S is a VD in S. Then (R′S , S)

is a normal pair. Also, by [4], Corollary 1.6, R′S is local. Thus, |[R′S , S]| = 1 +

dim(R′S , S) by Proposition 2.4 and Remark 2.3. Now, by Theorem 2.5, we have

|[R,S]| = 1 + |[R′S , S]|. Hence, |[R,S]| = 2 + dim(R′S , S). Now, the result follows

by Proposition 2.4. �

Let T be a domain and I be an ideal of T . IfD is a subring of T/I andR = ϕ−1(D),

where ϕ : T → T/I is the canonical homomorphism, then we write R := (T, I,D).

This pullback construction was introduced by Fontana in [13]. The next lemma can

be viewed as an extension of [6], Lemma 1.3. For the sake of completeness, we sketch

the proof.

Lemma 2.5. Let V be a VD in S with maximal ideal M and K = V/M . Let D

be a subring of K and R := (V,M,D). If T is a subring of S which contains R, then

either V ⊂ T or T ⊆ V .
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P r o o f. Let V 6⊂ T and v ∈ V \T . To show that T ⊆ V , let t ∈ T . If t /∈ V , then

t−1 ∈ M and hence t−1v ∈ M . Thus, v = tt−1v ∈ T , which is a contradiction. �

Let R ⊂ S be a ring extension of integral domains. Then R is said to be a pseu-

dovaluation subring of S (R is a PV in S for short), see [4] if x−1a ∈ R for all

x ∈ S \ R and for all non-unit a ∈ R. Note that if S = qf(R), then R is a pseudo-

valuation domain, see [16]. Now recall from [4], Proposition 3.3 that a local ring R,

with a maximal idealM , is a PV in S if and only if there is a unique ring between R

and S which is a VD in S with a maximal ideal M . We call this the associated VD

in S of R. The next proposition is a generalization of [7], Proposition 5, where we

characterize a maximal non VD in S which is a PV in S.

Proposition 2.5. Let R be a PV in S such that R is not a VD in S and V be

its associated VD in S. Assume that M is the maximal ideal of V , F = R/M and

K = V/M . Then the following statements are equivalent:

(i) R is a maximal non VD in V ;

(ii) R is a maximal non VD in S;

(iii) [R,S] = {R} ∪ [V, S];

(iv) K is algebraic over F and F ⊂ K has no intermediate ring.

P r o o f. (i) ⇒ (ii) Note that if R is a VD in S, then R is a VD in V , a contra-

diction. Thus, R is not a VD in S. If |[R,S]| = 2, then we are done. Now, suppose

that T is a ring such that R ⊂ T ⊂ S. Then either T ⊂ V or V ⊆ T by Lemma 2.5.

Let T ⊂ V . Then T is a VD in V . Since V is a VD in S, T is a VD in S. Now, if

V ⊆ T , then clearly T is a VD in S.

(ii) ⇒ (i) If R is a VD in V , then R is a VD in S, a contradiction. Thus, R is not
a VD in V . If |[R, V ]| = 2, then we are done. Let T be a ring such that R ⊂ T ⊂ V .

Then T is a VD in S. Thus, T is a VD in V .

(i) ⇒ (iii) If |[R, V ]| = 2, then, by Lemma 2.5, we are done. Now, suppose that

T is a ring such that R ⊂ T ⊂ V . Then T is a VD in V . Therefore, V = T by [5],

Lemma 2.9, which is a contradiction.

(iii) ⇒ (i) If R is a VD in V , then R is a VD in S, a contradiction. Thus, R is

not a VD in V and hence R is a maximal non VD in V .

(iii)⇒ (iv) Since R ⊂ V has no intermediate ring, R ⊂ V is an algebraic extension.

For if x ∈ V \R, then either x2 ∈ R or R[x2] = R[x] and hence x is algebraic over R.

Therefore, K is algebraic over F and F ⊂ K has no intermediate ring.

(iv) ⇒ (iii) Note that |[R, V ]| = 2. Then, (iii) follows by Lemma 2.5. �

Now, we discuss a few examples of a maximal non VD in an integral domain.

1029



Example 2.1. Let F = Q and K = Q(
√
2). Take R = F + XK[[X ]] and

S = K[[X ]]. Then R is a PV in S by [4], Corollary 2.2. Clearly, R is not a VD in S.

Thus, by Proposition 2.5, R is a maximal non VD in S.

Example 2.2. Let F = Q and K = Q(
√
2). Take

S = K+X1K[X1](X1)+X2K(X1)[X2](X2)+ . . .+XnK(X1, X2, . . . , Xn−1)[Xn](Xn).

Clearly, S is local with the maximal ideal M , where

M = X1K[X1](X1) +X2K(X1)[X2](X2) + . . .+XnK(X1, X2, . . . , Xn−1)[Xn](Xn).

Let R := (S,M,F ). Then R is a PV in S by [4], Corollary 2.2. Thus, by Proposi-

tion 2.5, R is a maximal non VD in S.

Example 2.3. Let S = Q[[X ]], T = {p/q : p, q ∈ Z, q /∈ 2Z, 3Z}, T1 = {p/q :
p, q ∈ Z, q /∈ 2Z}, and T2 = {p/q : p, q ∈ Z, q /∈ 3Z}. Let R be the subring of S con-
sisting of the power series whose constant term is in T . Then [R,S] = {R, V1, V2, S},
where the constant term of each power series in V1 and V2 is in T1 and T2, respec-

tively. Then clearly V1 and V2 are VD in S but R is not a VD in S. Thus, R is

a maximal non VD in S. Note that there is nothing special in 2, 3 as we can take

any distinct prime numbers in this example.

Recall that in the beginning, we have defined that a proper subring R of an integral

domain S is a maximal non VD if R is not a VD in S and every proper subring of S

properly containing R is a VD in S. Now, the natural question arises if we can define

a minimal non VD extension, that is, an extension R ⊂ S where R is not a VD in S

and R is a VD in each proper subring of S properly containing R. In Theorem 2.7,

we show that with this definition, no new class of ring extension is obtained. In the

next lemma, first we show that such an extension is a residually algebraic pair.

Lemma 2.6. Let R ⊂ S be an extension of integral domains. If R is a VD in each

proper subring of S properly containing R, then (R,S) is a residually algebraic pair.

P r o o f. Let T be a ring such that R ⊂ T ⊆ S. It is enough to show that R ⊂ T is

a residually algebraic extension. Let Q ∈ Spec(T ) and set P = Q∩R. Suppose that

T/Q is not algebraic over R/P . Then there exists t ∈ T such that t̄ = t+Q ∈ T/Q

is transcendental over R/P . Consider T ′ = (R/P )[t̄ 2]. Then R ⊂ U ⊂ T , where

T ′ = U/(Q ∩ U). Therefore, R is a VD in U . Thus, U is local by [4], Corollary 1.6,

which is a contradiction. �

Theorem 2.7. Let R ⊂ S be an extension of integral domains. If R is a VD in

each proper subring of S properly containing R, then either R is a VD in S or R ⊂ S

has no intermediate ring.
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P r o o f. Case 1 : Let R = R′S . Assume that T is a ring such that R ⊂ T ⊂ S.

Then R is a VD in T . Therefore, R is local by [4], Corollary 1.6. Now, by

Lemma 2.6, (R,S) is a residually algebraic pair. Thus, R is a VD in S by [5],

Theorem 2.5.

Case 2 : Let R′S = S. Assume that T is a ring such that R ⊂ T ⊂ S. Then R is

a VD in T and hence is integrally closed in T , which is a contradiction.

Case 3 : Let R ⊂ R′S ⊂ S. Then R is a VD in R′S and hence is integrally closed

in R′S , which is a contradiction. �
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