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Abstract. In a nonflat complex space form (namely, a complex projective space or
a complex hyperbolic space), real hypersurfaces admit an almost contact metric structure
(ϕ, ξ, η, g) induced from the ambient space. As a matter of course, many geometers have in-
vestigated real hypersurfaces in a nonflat complex space form from the viewpoint of almost
contact metric geometry. On the other hand, it is known that the tensor field h (= 1

2
Lξϕ)

plays an important role in contact Riemannian geometry. In this paper, we investigate real
hypersurfaces in a nonflat complex space form from the viewpoint of the parallelism of the
tensor field h.

Keywords: nonflat complex space form; real hypersurface; Hopf hypersurface; ruled real
hypersurface; the tensor field h
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1. Introduction

Let M̃n(c) be a nonflat complex space form (namely, M̃n(c) is congruent to either

a complex projective space CPn(c) of constant holomophic sectional curvature c > 0

or a complex hyperbolic space CHn(c) of holomophic sectional curvature c < 0).

It is well-known that real hypersurfaces M2n−1 in M̃n(c) admit the almost contact

metric structure (ϕ, ξ, η, g), see Section 2. It is not too much to say that the theory

of real hypersurfaces in M̃n(c) have developed from the viewpoint of submanifold

theory and almost contact metric geometry.

In contact Riemannian geometry, the tensor h(= 1
2Lξϕ) plays an important role,

where L is the Lie derivative, see [1]. In fact, it is known that the condition h = 0 is

equivalent to the condition of K-contact manifolds (namely, the characteristic vector

field ξ on a contact manifold is a Killing vector field with respect to the metric g).
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On the other hand, a real hypersurface M2n−1 in a nonflat complex space

form M̃n(c) satisfies h = 0 if and only if M2n−1 is locally congruent to a real

hypersurface of type (A) in M̃n(c), see [5].

The purpose of this paper is to investigate the following problems with respect to

the parallelism of the tensor h of M2n−1.

Problem 1.1. Classify real hypersurfaces in M̃n(c) satisfying the condition

(1.1) ∇ξh = 0 (ξ-parallelism).

Problem 1.2. Classify real hypersurfaces in M̃n(c) satisfying the condition

(1.2) ∇Xh = 0 (T 0M -parallelism)

for any tangent vector field X on M2n−1 orthogonal to the characteristic vector

field ξ.

Condition (1.1) frequently appears in contact Riemannian geometry. In fact, con-

dition (1.1) is equivalent to several conditions on contact Riemannian manifolds,

see [18]. In particular, it is well-known that there exists the relationship between

the structure Jacobi operator l and the tensor h, where l is the tensor of type (1, 1)

such that lX = R(X, ξ)ξ and R is the curvature tensor of the contact Riemannian

manifold. Also, in the theory of real hypersurfaces in M̃n(c), many geometers have

studied real hypersurfaces from the aspect of the structure Jacobi operator, see [4].

Hence, it is natural that we investigate real hypersurfaces satisfying condition (1.1).

Pérez, Santos and Suh investigated the condition ∇X l = 0 for any tangent vector

field X orthogonal to the characteristic vector field ξ, see [17]. They showed the non-

existence of real hypersurfaces in CPn(c) (n > 3) satisfying this equation. Hence,

Problem 1.2 is also a natural problem.

In the latter of this paper, we also consider the η-parallelism of the tensor h,

that is,

(1.3) g((∇Xh)Y, Z) = 0

for all tangent vector fields X , Y and Z on M2n−1 orthogonal to the characteristic

vector field ξ. We emphasize that there exist real hypersurfaces satisfying η-parallel

condition of the tensor h but not those of type (A) in M̃n(c). In fact, real hypersur-

faces of type (B) in M̃n(c) satisfy condition (1.3), see Theorem 5.1. We note that real

hypersurfaces of type (A) and (B) are examples of Hopf hypersurfaces with constant
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principal curvatures in M̃n(c). Moreover, ruled real hypersurfaces in M̃n(c) have the

η-parallelism of the tensor h. It is known that ruled real hypersurfaces in M̃n(c) are

typical examples of non-Hopf hypersurfaces in M̃n(c). We also give the classification

of 3-dimensional real hypersurfaces in M̃2(c) satisfying (1.3).

2. Preliminaries

Let M2n−1 be a real hypersurface with a unit normal local vector field N of

a complex n-dimensional non-flat complex space form M̃n(c) of constant holomorphic

sectional curvature c. The Levi-Civita connections ∇̃ of M̃n(c) and ∇ of M2n−1 are

related by

∇̃XY = ∇XY + g(AX, Y )N ,(2.1)

∇̃XN = −AX(2.2)

for vector fieldsX and Y tangent toM2n−1, where g denotes the induced metric from

the standard Riemannian metric of M̃n(c) and A is the shape operator of M2n−1

in M̃n(c). Equation (2.1) is called Gauss’s formula and equation (2.2) is called

Weingarten’s formula. Eigenvalues and eigenvectors of the shape operator A are

called principal curvatures and principal vectors of M2n−1 in M̃n(c), respectively.

In this paper, V 0
λ = {X ∈ TM : AX = λX, X ⊥ ξ} is said to be a restricted

principal distribution associated with principal curvature λ, where TM is the tangent

bundle of M2n−1.

It is known that M2n−1 admits the almost contact metric structure (ϕ, ξ, η, g)

induced from the Kähler structure J of M̃n(c). The characteristic vector field ξ

of M2n−1 is defined as ξ = −JN and this structure satisfies

(2.3) ϕ2 = −I + η ⊗ ξ, η(X) = g(X, ξ), η(ξ) = 1, ϕξ = η(ϕX) = 0,

g(ϕX, Y ) = −g(X,ϕY ) and g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ),

where I denotes the identity map of the tangent bundle TM of M2n−1. We call ϕ

and η the structure tensor and the contact form of M2n−1, respectively.

The following equations are fundamental tools in the theory of real hypersurfaces

in M̃n(c):

(2.4) (∇Xϕ)Y = η(Y )AX − g(AX, Y )ξ

and

(2.5) ∇Xξ = ϕAX
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for any X and Y tangent to M2n−1. The tensor h of M2n−1 is given by

(2.6) hX =
1

2
(Lξϕ)X =

1

2
(η(X)Aξ − ϕAϕX −AX),

where L is the Lie derivative. The Codazzi equation is given by

(2.7) (∇XA)Y − (∇Y A)X =
c

4
{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ}.

Let R be the curvature tensor of M2n−1 in M̃n(c). Namely,

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

The Gauss equation is given by

(2.8) R(X,Y )Z =
c

4
{g(Y, Z)X − g(X,Z)Y + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY

− 2g(ϕX, Y )ϕZ}+ g(AY,Z)AX − g(AX,Z)AY

for all vectors X , Y and Z tangent to M2n−1.

A real hypersurface M2n−1 in M̃n(c) is said to be a Hopf hypersurface if the

characteristic vector ξ is a principal curvature vector at each point of M2n−1. The

following lemma gives a useful property of Hopf hypersurfaces in M̃n(c).

Lemma 2.1. Let M2n−1 be a Hopf hypersurface M2n−1 with the principal cur-

vature α corresponding to the characteristic vector field ξ in M̃n(c). Then M2n−1

has the following properties:

(1) The principal curvature α is locally constant on M2n−1.

(2) If X is a tangent vector of M2n−1 perpendicular to ξ with AX = λX, then

(2λ− α)AϕX = (αλ+ 1
2c)ϕX.

In M̃n(c), Hopf hypersurfaces with constant principal curvatures are standard

examples. The following classification theorems are well known.

Theorem 2.1 ([3], [9], [19]). Let M2n−1 be a Hopf hypersurface in a complex

projective space CPn(c) (n > 2). Then M2n−1 has constant principal curvatures if

and only if M2n−1 is locally congruent to one of the following:

(A1) a geodesic sphere of radius r, where 0 < r < π/
√
c,

(A2) a tube of radius r around a totally geodesic CP
l(c) (1 6 l 6 n − 2), where

0 < r < π/
√
c,

(B) a tube of radius r around a complex hyper quadric CQn−1, where 0 < r <

π/(2
√
c),
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(C) a tube of radius r around a CP 1(c) × CP (n−1)/2(c), where 0 < r < π/(2
√
c)

and n (n > 5) is odd,

(D) a tube of radius r around a complex Grassmann CG2,5, where 0 < r < π/(2
√
c)

and n = 9;

(E) a tube of radius r around a Hermitian symmetric space SO(10)/U(5), where

0 < r < π/(2
√
c) and n = 15.

These real hypersurfaces are said to be of types (A1), (A2), (B), (C), (D) and (E).

In this paper, summing up real hypersurfaces of type (A1) and (A2), we call them

real hypersurfaces of type (A). The principal curvatures of these real hypersurfaces

in CPn(c) are given in the following table, see [15]:

(A1) (A2) (B) (C), (D), (E)

λ1
1
2

√
c cot(12

√
cr) 1

2

√
c cot(12

√
cr) 1

2

√
c cot(12

√
cr − 1

4π) 1
2

√
c cot(12

√
cr − 1

4π)

λ2 — − 1
2

√
c tan(12

√
cr) 1

2

√
c cot(12

√
cr + 1

4π) 1
2

√
c cot(12

√
cr + 1

4π)

λ3 — — — 1
2

√
c cot(12

√
cr)

λ4 — — — − 1
2

√
c tan(12

√
cr)

α
√
c cot(

√
cr)

√
c cot(

√
cr)

√
c cot(

√
cr)

√
c cot(

√
cr)

Theorem 2.2 ([2], [13]). Let M2n−1 be a Hopf hypersurface in a complex hyper-

bolic space CHn(c) (n > 2). Then M2n−1 has constant principal curvatures if and

only if M2n−1 is locally congruent to one of the following:

(A0) a horosphere in CHn(c),

(A10) a geodesic sphere of radius r, where 0 < r < ∞,
(A11) a tube of radius r around a totally geodesic CH

n−1(c), where 0 < r < ∞,
(A2) a tube of radius r around a totally geodesic CH

l(c) (1 6 l 6 n − 2), where

0 < r < ∞,
(B) a tube of radius r around a totally real totally geodesic RHn 1

4c, where 0 <

r < ∞.

These real hypersurfaces are said to be of types (A0), (A10), (A11), (A2) and (B).

Here, type (A1) implies either type (A10) or type (A11). Summing up real hyper-

surfaces of type (A1) and (A2), we call them real hypersurfaces of type (A). The

principal curvatures of these real hypersurfaces in CHn(c) are given in the table

below, see [15].

(A0) (A10) (A11) (A2) (B)

λ1
1
2

√
|c| 1

2

√
|c| coth(12

√
|c|r) 1

2

√
|c| tanh(12

√
|c|r) 1

2

√
|c| coth(12

√
|c|) 1

2

√
|c| coth(12

√
|c|r)

λ2 — — — 1
2

√
|c| tanh(12

√
|c|r) 1

2

√
|c| tanh(12

√
|c|r)

α
√
|c|

√
|c| coth(

√
|c|r)

√
|c| coth(

√
|c|r)

√
|c| coth(

√
|c|r)

√
|c| tanh(

√
|c|r)
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It is known that real hypersurfaces of type (A) have many properties. In particular,

the following conditions (2) and (3) give the characterization of real hypersurfaces

of type (A) in M̃n(c).

Lemma 2.2 ([5], [14], [16]). Let M2n−1 be a real hypersurface in M̃n(c) (n > 2).

Then the following two conditions an equivalent:

(1) M2n−1 is locally congruent to a real hypersurface of type (A),

(2) ϕA = Aϕ on M2n−1,

(3) h = 0.

Remark 2.1. Obviously, real hypersurfaces of type (A) in M̃n(c) satisfy the

condition ∇h = 0.

Next, we define ruled real hypersurfaces in a nonflat complex space form M̃n(c).

It is known that ruled real hypersurfaces are examples of non-Hopf hypersurfaces

in M̃n(c). A real hypersurfaceM
2n−1 is called a ruled real hypersurface of a non-flat

complex space form M̃n(c) (n > 2) if the holomorphic distribution T 0M defined

by T 0M = {X ∈ TM : η(X) = 0} is integrable and each of its maximal integral
manifolds is a totally geodesic complex hypersurface M̃n−1(c) of M̃n(c). A ruled real

hypersurface is constructed in the following way: Given an arbitrary regular real

smooth curve γ in M̃n(c) which is defined on an interval I, we have at each point γ(t)

(t ∈ I) a totally geodesic complex hypersurface M̃
(t)
n−1(c) that is orthogonal to the

plane spanned by {γ̇(t), Jγ̇(t)}. Then we have a ruled real hypersurface M2n−1 =⋃
t∈I

M̃
(t)
n−1(c) in M̃n(c). The following lemma is a well-known characterization of ruled

real hypersurfaces concerning the shape operator A, see [10] and [15].

Lemma 2.3 ([10], [15]). Let M2n−1 be a real hypersurface M2n−1 in a non-flat

complex space form M̃n(c) (n > 2). Then the following three conditions are mutually

equivalent:

(1) M2n−1 is a ruled real hypersurface.

(2) The shape operator A of M2n−1 satisfies the following equalities on the open

dense subset M1 = {x ∈ M2n−1 : β(x) 6= 0} with a unit vector field U orthogo-
nal to ξ:

Aξ = αξ + βU, AU = βξ, AX = 0

for an arbitrary tangent vector X orthogonal to ξ and U , where α, β are differ-

entiable functions on M1 by α = g(Aξ, ξ) and β = ‖Aξ − αξ‖.
(3) The shape operator A of M2n−1 satisfies g(AX, Y ) = 0 for arbitrary tangent

vectors X,Y ∈ T 0M .
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3. ξ-parallelism

In this section, we investigate real hypersurfaces satisfying condition (1.1). First,

we prepare a fundamental tool. By (2.3), (2.4), (2.5) and (2.6), the equation

(∇Xh)Y = 0 ∀X,Y ∈ TM

is equivalent to saying that

(3.1) g(ϕAX, Y )Aξ + η(Y )(∇XA)ξ + η(Y )AϕAX − η(AϕY )AX + g(AX,AϕY )ξ

−ϕ(∇XA)ϕY − η(Y )ϕA2X + g(AX, Y )ϕAξ − (∇XA)Y = 0

for all vectors X and Y tangent to M2n−1.

By using this equation, we obtain the following result:

Theorem 3.1. Let M2n−1 be a real hypersurface in a non-flat complex space

form M̃n(c) (n > 2). Then M2n−1 satisfies ∇ξh = 0 if and only if M2n−1 is locally

congruent to one of the following:

(i) a real hypersurface of type (A) in M̃n(c),

(ii) a non-homogeneous Hopf hypersurface with Aξ = 0 in M̃n(c).

P r o o f. By using (3.1), we obtain

(3.2) (∇ξh)X = g(ϕAξ,X)Aξ + η(X)(∇ξA)ξ + η(X)AϕAξ − η(AϕX)Aξ

+ g(Aξ,AϕX)ξ − ϕ(∇ξA)ϕX − η(X)ϕA2ξ + g(Aξ,X)ϕAξ

− (∇ξA)X = 0.

Suppose that there exists a non-Hopf hypersurface in M̃n(c) satisfying ∇ξh = 0.

Then the shape operator A forms Aξ = αξ+βU , where the function β satisfies β 6= 0

and a unit vector U is orthogonal to the characteristic vector field ξ.

Putting X = U in (3.2), we have

(3.3) g(Aξ,AϕU)ξ − ϕ(∇ξA)ϕU + β2ϕU − (∇ξA)U = 0.

Taking an inner product of equation (3.3) with the vector ϕU , we obtain

(3.4) β2 = 2g((∇ξA)U,ϕU).

Next, we set X = ϕU in (3.2). Then we have

(3.5) g(ϕAξ, ϕU)Aξ−η(Aϕ2U)Aξ+g(Aξ,Aϕ2U)ξ−ϕ(∇ξA)ϕ
2U−(∇ξA)ϕU = 0.
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Taking an inner product of equation (3.5) with the vector U , we obtain

(3.6) β2 = g((∇ξA)U,ϕU).

This, combined with equation (3.4), yields β2 = 0, which is a contradiction.

Hence, there is no non-Hopf hypersurface satisfying ∇ξh = 0 in M̃n(c).

Next, we suppose that M2n−1 is a Hopf hypersurface (with Aξ = αξ) in M̃n(c).

We take a vector V ∈ T 0M with AV = λV . By (3.2), we can see that

(3.7) (∇ξh)V = −ϕ(∇ξA)ϕV − (∇ξA)V = 0.

From the Codazzi equation (2.7) we can see

(3.8) (∇ξA)ϕV = (∇ϕV A)ξ −
c

4
V = ∇ϕV (Aξ)−A∇ϕV ξ −

c

4
V

= αϕAϕV −AϕAϕV − c

4
V (using (2.5) and Lemma 2.1).

On the other hand,

(3.9) (∇ξA)V = (∇V A)ξ +
c

4
ϕV = ∇V (Aξ)−A∇V ξ +

c

4
ϕV

= αλϕV −AϕAV +
c

4
ϕV (using (2.5) and Lemma 2.1).

It follows from (2) of Lemma 2.1, (3.8) and (3.9) that

(3.10) (2λ− α)(∇ξh)V = −α
(
2λ2 − 2αλ− c

2

)
ϕV.

From (3.7) we can see that

(3.11) α
(
2λ2 − 2αλ− c

2

)
= 0.

If 2λ2 − 2αλ − 1
2c = 0, then we have (2λ − α)λ = αλ + 1

2c. If 2λ − α 6= 0, then we

can see that λ = (αλ + 1
2c)/(2λ− α). This implies that ϕVλ = Vλ. This, combined

with ϕAξ = 0 = Aϕξ, yields ϕA = Aϕ. By Lemma 2.2, M2n−1 is locally congruent

to a real hypersurface of type (A) in M̃n(c). If 2λ − α = 0, then M2n−1 is nothing

but a horosphere in CHn(c). This is included in the class of real hyperusrfaces of

type (A) in M̃n(c).

If α = 0, M2n−1 is locally congruent to either a real hypersurface of type (A) of

radius r = π/(2
√
c) in CPn(c) or a non-homogeneous Hopf hypersurface with Aξ = 0

in M̃n(c). Needless to say, the former is included in the class of real hypersurfaces

of type (A) in CPn(c).

Conversely, if M2n−1 is a Hopf hypersurface with α = 0, then λ 6= 0 (see (2) of

Lemma 2.1). Hence, from relation (3.10), Hopf hypersurfaces with α = 0 in M̃n(c)

satisfy (∇ξh)X = 0 for any vectorX ∈ T 0M . Clearly, Hopf hypersurfaces also satisfy

(∇ξh)ξ = 0. Therefore Hopf hypersurfaces with α = 0 in M̃n(c) satisfy ∇ξh = 0. �
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Remark 3.1. There exist non-homogeneous Hopf hypersurfaces with Aξ = 0

in M̃n(c) (for detail, see [4]).

Remark 3.2. By the work of [18], for contact Riemannian manifolds, the fol-

lowing four conditions are mutually equivalent:

(i) ∇ξh = 0,

(ii) ∇ξl = 0,

(iii) ∇ξτ = 0,

(iv) ϕl = lϕ,

where lX = R(X, ξ)ξ, R is the curvature tensor on the contact Riemannian manifold

and τ = Lξg. In the theory of real hypersurfaces, Cho and Ki classified Hopf hyper-

surfaces in M̃n(c) satisfying condition (ii), see [6]. Moreover, many geometers have

investigated the classification of real hypersurfaces satisfying condition (ii) under an

additional condition, see [4]. Recently, Ghosh studied real hypersurfaces in M̃n(c)

satisfying condition (iii), see [7]. Condition (iv) was investigated by many geometers

under additional conditions, (for detail, see [20]).

4. T 0M parallelism

In this section, we investigate condition (1.2). To prove Theorem 4.1, we prepare

the following results with respect to ruled real hypersurfaces.

Lemma 4.1 ([11]). Every ruled real hypersurfaceM2n−1 in M̃n(c) (n > 2) admits

the η-parallelism with respect to the shape operator A. Namely, M2n−1 satisfy the

condition

g((∇XA)Y, Z) = 0

for all vectors X , Y and Z in T 0M .

Remark 4.1. In general, for a tensor field T of type (1, 1), the condition

g((∇XT )Y, Z) = 0 for any X,Y, Z ∈ T 0M

is equivalent to the condition

(∇XT )Y ∈ span{ξ} for any X,Y ∈ T 0M.

Lemma 4.2. None ruled real hypersurface in M̃n(c) (n > 2) does not satisfies

condition (1.2).
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P r o o f. Suppose that there exists a ruled real hypersurface in M̃n(c) satisfying

condition (1.2). From case (2) of Lemma 2.3, we set X = U and Y = ϕU in (3.1).

By using the properties of ruled real hypersurfaces (see [8], page 404), we have

0 = −ϕ(∇UA)ϕ
2U − (∇UA)ϕU

= −(∇UA)ϕU (from Lemma 4.1)

= Aϕ∇UU (from (2.4))

= −
(
β2 − c

4

)
U.

Hence, there is a possibility that the case when β2 = 1
4 c satisfies (1.2). We only

check whether a ruled real hypersurface having β2 = 1
4c satisfies condition (1.2) or

not. Again, from case (2) of Lemma 2.3, we put X = ϕU and Y = U on the left side

of (3.1). By using the properties of ruled real hypersurfaces (see [8], page 404), we

have

−(∇ϕUA)U = −∇ϕU (βξ) = −
(
β2 +

c

4

)
ξ = − c

2
ξ 6= 0.

Therefore ruled real hypersurfaces in M̃n(c) do not satisfy (1.2). �

Theorem 4.1. Let M2n−1 be a real hypersurface in a non-flat complex space

form M̃n(c) (n > 2). Then M2n−1 satisfies ∇Xh = 0 for any vector X ∈ T 0M if and

only if M2n−1 is locally congruent to a real hypersurface of type (A) in M̃n(c).

P r o o f. Suppose that there exists a non-Hopf hypersurface in M̃n(c) satisfying

∇Xh = 0 for any vector X ∈ T 0M . Then the shape operator A satisfies Aξ =

αξ + βU , where the function β satisfies β 6= 0 and the unit vector U is orthogonal

to the characteristic vector field ξ. For any vector X ∈ T 0M we set Y = U in (3.1).

Then we have

g(ϕAX,U)Aξ + g(AX,AϕU)ξ − ϕ(∇XA)ϕU + g(AX,U)ϕAξ − (∇XA)U = 0

for any vectorX ∈ T 0M . We take the inner product of this equation with U and ϕU ,

respectively. Then we can see that

βg(ϕAX,U) + g((∇XA)ϕU,ϕU)− g((∇XA)U,U) = 0,(4.1)

2g((∇XA)ϕU,U) = βg(X,AU)(4.2)

for any vector X ∈ T 0M . Similarly, we set Y = ϕU in (3.1) and take the inner

product with U and ϕU , respectively. Then we have

g((∇XA)U,ϕU) = βg(X,AU),(4.3)

2βg(X,AϕU) + g((∇XA)U,U)− g((∇XA)ϕU,ϕU) = 0(4.4)
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for any vector X ∈ T 0M . From equations (4.2) and (4.3) we have g(AU,X) = 0 for

any vector X ∈ T 0M . This implies that

(4.5) AU = βξ.

Next, from equations (4.1) and (4.4) we have g(AϕU,X) = 0 for any vector

X ∈ T 0M . Noting that g(AϕU, ξ) = 0, we obtain

(4.6) AϕU = 0.

We take a unit vector V ∈ T 1M = T 0M ∩ span{U,ϕU}⊥ such that AV = λV .

For any vector X ∈ T 0M we set Y = ξ in (3.1). Then we have

(4.7) AϕAX − ϕA2X + β2g(X,U)ϕU = 0

for any vector X ∈ T 0M . Putting X = V in (4.7), we get

λ(AϕV − λϕV ) = 0.

This equation implies the following two cases:

(1) AϕV = λϕV (λ 6= 0),

(2) λ = 0.

Now we shall show that case (1) does not occur. We suppose that AϕV = λϕV

(λ 6= 0). By using the Codazzi equation, we get

(∇V A)ϕV − (∇ϕV A)V = − c

2
ξ.

On the other hand, by (2.4), we have

(∇V A)ϕV − (∇ϕV A)V = (V λ)ϕV + (αλ − λ2)ξ + (λI −A)ϕ∇V V

+ βλU − (ϕV λ)V − (λI −A)∇ϕV V.

These two equations yield

(4.8) αλ− λ2 + βg(∇V V, ϕU) + (α− λ)g(∇ϕV V, ξ) + βg(∇ϕV V, U) = − c

2
.

Next, we compute g(∇V V, ϕU), g(∇ϕV V, ξ) and g(∇ϕV V, U) one by one. By us-

ing (2.5), we have

(4.9) g(∇ϕV V, ξ) = −g(V,∇ϕV ξ) = −g(V, ϕAϕV ) = λ.
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We put X = ϕV and Y = V in (3.1), and take the inner product with ξ. By

using (4.9), we can see that

−αλ+ λ2 − λg(∇ϕV V, ξ) + g(A∇ϕV V, ξ) = βg(∇ϕV V, U) = 0.

Since β 6= 0, we have

(4.10) g(∇ϕV V, U) = 0.

By using (2.4), we then have

g(∇V V, ϕU) = −g(V, (∇V ϕ)V + ϕ∇V U) = −g(V, ϕ∇V U) = g(∇V U,ϕV ).

Hence, we shall calculate g(∇V U,ϕV ). By the Codazzi equation, we obtain

(∇V A)U − (∇UA)V = 0.

On the other hand, we have

(∇V A)U − (∇UA)V = (V β)ξ + βλϕV − A∇V U − (Uλ)V − (λI −A)∇UV.

These equations imply that βλ− λg(∇V U,ϕV ) = 0. Since λ 6= 0, we have

(4.11) g(∇V V, ϕU) = g(∇V U,ϕV ) = β.

Equations (4.8), (4.9), (4.10) and (4.11) give

(4.12) −2λ2 + 2αλ+ β2 = − c

2
.

By the Codazzi equation, we have

(∇V A)ξ − (∇ξA)V = − c

4
ϕV.

On the other hand, we can see that

(∇V A)ξ−(∇ξA)V = (V α)ξ+(αλ−λ2)ϕV +(V β)U+β∇V U−(ξλ)V −(λI−A)∇ξV.

By using equation (4.11), these two equations yield

−2λ2 + 2αλ+ 2β2 = − c

2
.
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This, combined with (4.12), gives β = 0, which is a contradiction. Hence, case (1)

does not occur. Namely, we only consider case (2) for the distribution T 1M . This

implies that AX = 0 for any vector X ∈ T 1M . This, together with (4.6), gives

AX = 0 for any vector X ⊥ ξ, U . Hence, this case means that M2n−1 is locally

congruent to the ruled real hypersurface in M̃n(c). However, by Lemma 4.2, ruled

real hypersurfaces do not satisfy condition (1.2).

Finally, we consider the case of Hopf hypersurfaces in M̃n(c). We suppose that

M2n−1 is a Hopf hypersurface (with Aξ = αξ) in M̃n(c). For any vector X ∈ T 0M

we put Y = ξ in (3.1). Then we obtain

AϕAX − ϕA2X = 0

for any vectorX ∈ T 0M . We take a vector V ∈ T 0M with AV = λV . By Lemma 2.1

and the above equation, we can see that

λ
(
2λ2 − 2αλ− c

2

)
= 0.

This equation implies that the function λ is locally constant and λ = 0 or 2λ2 −
2αλ − 1

2c = 0. The former does not occur (see the tables in Section 2). By the

discussion of Theorem 3.1, the latter gives that M2n−1 is locally congruent to a real

hypersurface of type (A) in M̃n(c). �

5. η-parallel condition

Motivated by the discussion of Theorem 4.1, we would like to find the condition

which ruled real hypersurfaces satisfying a certain parallelism of the tensor h. In

this section, we investigate real hypersurfaces satisfying condition (1.3). We note

that ruled real hypersurfaces in M̃n(c) satisfy condition (1.3). First, we classify Hopf

hypersurfaces in M̃n(c) satisfying condition (1.3). In the latter half of this section,

we classify 3-dimensional real hypersurfaces in M̃2(c) satisfying condition (1.3).

From (3.1), condition (1.3) is equivalent to saying that

(5.1) g(ϕAX, Y )g(Aξ, Z)− η(AϕY )g(AX,Z)− g(ϕ(∇XA)ϕY,Z)

+g(AX, Y )g(ϕAξ, Z)− g((∇XA)Y, Z) = 0

for any X , Y and Z orthogonal to the characteristic vector field ξ. It follows from

equation (5.1) that we obtain the following lemma:
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Lemma 5.1. LetM2n−1 be a Hopf hypersurface in M̃n(c) (n > 2). Suppose that

M2n−1 satisfies condition (1.3). Then M2n−1 satisfies

(5.2) g((∇XA)ϕY, ϕZ) = g((∇XA)Y, Z)

for any X , Y and Z orthogonal to the characteristic vector field ξ.

By virtue of this lemma, we shall classify Hopf hypersurfaces M2n−1 satisfying

η-parallel condition of the tensor h of M2n−1 in M̃n(c).

Theorem 5.1. Let M2n−1 be a Hopf hypersurface in M̃n(c) (n > 2). Suppose

that M2n−1 meets condition (1.3). Then M2n−1 is locally congruent to one of the

following:

(i) a real hypersurface of type (A) in M̃n(c),

(ii) a real hypersurface of type (B) in M̃n(c).

P r o o f. We suppose thatM2n−1 admits condition (5.1). Then we shall show that

M2n−1 is locally congruent to a Hopf hypersurface with constant principal curvatures

in M̃n(c).

Since M2n−1 is the Hopf hypersurface (with Aξ = αξ), we take a unit vector field

V ∈ T 0M with AV = λV . First, we consider the case when (2λ−α)(p) 6= 0 at some

point p on M2n−1. It follows from the continuity of the function λ that 2λ− α 6= 0

on some sufficiently small neighborhood U of the point p. By case (2) of Lemma 2.1,
we can see that AϕV = µϕV on U , where µ = (αλ+ 1

2c)/(2λ− α).

Then we have

(5.3) g((∇XA)V, V ) = g(∇X(AV )−A∇XV, V ) = Xλ

for any vector X ∈ T 0M . On the other hand, we can see that

(5.4) g((∇XA)ϕV, ϕV ) = g(∇X(AϕV )−A∇X(ϕV ), ϕV )

= Xµ = −Xλ
α2 + c

(2λ− α)2

for any vector X ∈ T 0M . From (5.2), (5.3) and (5.4) we obtain

Xλ(4λ2 − 4αλ+ 2α2 + c) = 0

for any vector X ∈ T 0M . If 4λ2 − 4αλ+2α2 + c = 0, by case (1) of Lemma 2.1, λ is

locally constant.
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Next, we shall consider the case when

(5.5) Xλ = 0

for any vector X ∈ T 0M . By the Codazzi equation, we get

(∇ξA)V − (∇V A)ξ =
c

4
ϕV.

On the other hand, by using Lemma 2.1, case (1), we have

(∇ξA)V − (∇V A)ξ = (ξλ)V + λ∇ξV −A∇ξV − αλϕV + λµϕV.

Taking the inner product of these equations and the vector V , we have

(5.6) ξλ = 0.

Hence, equations (5.5) and (5.6) imply that the function λ is locally constant.

Thus, M2n−1 is locally congruent to a Hopf hypersurface with constant principal

curvatures M̃n(c).

Next, we consider the case when (2λ−α)(p) = 0 at some point p onM2n−1. Then

we can see that 2λ−α = 0 on some sufficiently small neighborhood V of the point p.
Hence λ is constant on V . Namely, in this case,M2n−1 is locally congruent to a Hopf

hypersurface with constant principal curvatures M̃n(c).

It is well-known that real hypersurfaces of types (A) and (B) have η-parallel shape

operator A (see [3] and [15]). By this fact, we can see that real hypersurfaces of

types (A) and (B) in M̃n(c) satisfy condtion (5.1).

Finally, we shall show that real hypersurfaces of types (C), (D) and (E) in CPn(c)

do not satisfy condition (1.3). Let M2n−1 be a real hypersurface of either type (C),

type (D) or type (E) in CPn(c). Suppose that the operator h ofM2n−1 is η-parallel.

The holomorphic distribution is decomposed as T 0M = V 0
λ1

⊕ V 0
λ2

⊕ V 0
λ3

⊕ V 0
λ4
(see

the table of Section 2). Each principal distribution satisfies ϕV 0
λ1

= V 0
λ2
, ϕV 0

λ2
= V 0

λ1
,

ϕV 0
λ3

= V 0
λ3
and ϕV 0

λ4
= V 0

λ4
. We take vectors X ∈ V 0

λ3
and Y ∈ V 0

λ1
. By the left

side of equation (3.1), we can see that

(∇Xh)Y =
1

2
(−ϕ(∇XA)ϕY − (∇XA)Y ) =

1

2
(((λ2 − λ1)I +A)∇XY + ϕAϕ∇XY ).

Since h is η-parallel, (∇Xh)Y ∈ span{ξ} for any X ∈ V 0
λ3
and Y ∈ V 0

λ1
(see Re-

mark 4.1). Here we note that ϕAϕ∇XY ∈ T 0M . The above implies that

((λ2 − λ1)I +A)∇XY ∈ span{ξ}.
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Thus, we have

(5.7) ∇XY ∈ span{ξ}

for any X ∈ V 0
λ3
and Y ∈ V 0

λ1
. Moreover, by equation (2.5), we can see that

g(∇XY, ξ) = −g(Y, ϕAX) = −λ3g(Y, ϕX) = 0

for any X ∈ V 0
λ3
and Y ∈ V 0

λ1
. This, together with (5.7), yields

(5.8) ∇XY = 0

for any X ∈ V 0
λ3
and Y ∈ V 0

λ1
.

For any X ∈ V 0
λ (λ = λ1, λ2, λ3 or λ4), from the Codazzi equation (2.7), we have

(5.9) (∇XA)ξ − (∇ξA)X = − c

4
ϕX.

On the other hand, we obtain

(∇XA)ξ − (∇ξA)X = ∇X(Aξ) −AϕAX −∇ξ(AX) +A∇ξX

= αλϕX − λ
αλ+ 1

2c

2λ− α
ϕX − (λI −A)∇ξX.

This, combined with (5.9), gives

(5.10) (λI −A)∇ξX =
(
λ
(
α− αλ+ 1

2c

2λ− α

)
+

c

4

)
ϕX.

Now we take a unit vector X ∈ V 0
λ1
. From equation (5.10) we have

(5.11) g(∇ξX,ϕX) =
α

2
g(ϕX,ϕX) =

α

2
.

Next, we take unit vectors X ∈ V 0
λ3
and Y ∈ V 0

λ1
. Then the Gauss equation (2.8)

gives the following:

(5.12) g(R(X,ϕX)Y, ϕY ) = − c

2
g(ϕX,ϕX)g(ϕY, ϕY ) = − c

2
.

On the other hand, it follows from (5.8) that we have

(5.13) R(X,ϕX)Y = ∇X∇ϕXY −∇ϕX∇XY −∇[X,ϕX]Y

= −∇∇X (ϕX)Y +∇∇ϕXXY.
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We here remark that

∇X(ϕX),∇ϕXX ∈ V 0
λ3

⊕ span{ξ}

for any X ∈ V 0
λ3
, see [12]. Hence, equation (5.13) is expressed as

R(X,ϕX)Y = −∇(∇X (ϕX))λ3
Y −∇(∇X (ϕX))ξY +∇(∇ϕXX)λ3

Y +∇(∇ϕXX)ξY,

where (∗)λ3
and (∗)ξ are the V 0

λ3
-component and the ξ-component of (∗), respectively.

This, together with equations (2.4), (2.5), (5.8) and (5.11), gives us

(5.14) g(R(X,ϕX)Y, ϕY ) = 2λ3g(∇ξY, ϕY ) = αλ3.

By (5.12) and (5.14), we obtain cot2(12
√
cr) = −1, which is a contradiction. Therefore

M2n−1 does not satisfy condition (1.3). �

In the rest of this paper, we consider the case of 3-dimensional non-Hopf hyper-

surfaces M̃2(c). Obviously, by Lemma 2.3 and Lemma 4.1, ruled real hypersurfaces

satisfy equation (5.1). Namely, we have the following:

Lemma 5.2. Every ruled real hypersurface in M̃n(c) admits the η-parallelism

with respect to the tensor h.

By using this lemma, we can establish the following proposition:

Proposition 5.1. Let M3 be a non-Hopf hypersurface in M̃2(c). Then M
3 satis-

fies condition (1.3) if and only if M3 is locally congruent to a ruled real hypersurface

in M̃2(c).

P r o o f. We suppose that M3 is a non-Hopf hypersurface satisfying condi-

tion (1.3) in M̃2(c). Since M3 is a non-Hopf hypersurface, we can take a local

fields of orthonormal frame {ξ, U, ϕU} such that




Aξ = αξ + βU,

AU = βξ + γU + δϕU,

AϕU = δU + εϕU,

where β 6= 0.

Setting X = U , Y = ϕU and Z = U in (5.1), we have

(5.15) βγ = g((∇UA)ϕU,U).
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On the other hand, putting X = U , Y = U and Z = ϕU in (5.1), we have

βγ = 2g((∇UA)ϕU,U).

This, together with equation (5.15), gives γ = 0.

Similarly, we set X = ϕU , Y = ϕU and Z = U in (5.1), and get

(5.16) βδ = g((∇ϕUA)ϕU,U).

On the other hand, we put X = ϕU , Y = U and Z = ϕU in (5.1), and we obtain

βδ = 2g((∇ϕUA)ϕU,U).

This, combined with equation (5.16), yields δ = 0.

Moreover, we set X = ϕU , Y = U and Z = U in (5.1), and we obtain

(5.17) −βε+ g((∇ϕUA)ϕU,ϕU) − g((∇ϕUA)U,U) = 0.

On the other hand, we put X = ϕU , Y = ϕU and Z = ϕU in (5.1), and we get

2βε+ g((∇ϕUA)U,U)− g((∇ϕUA)ϕU,ϕU) = 0.

This, together with equation (5.17), yields ε = 0. Hence, we have Aξ = αξ + βU ,

AU = βξ and AϕU = 0. These imply that M3 is locally congruent to the ruled real

hypersurface. �

By this proposition and Theorem 5.1, we have the following:

Corollary 5.1. Let M3 be a real hypersurface in M̃2(c). Suppose that M
3 sat-

isfies condition (1.3). Then M3 is locally congruent to one of the following:

(i) a real hypersurface of type (A) in M̃2(c),

(ii) a real hypersurface of type (B) in M̃2(c),

(iii) a ruled real hypersurface in M̃2(c).

We do not know the case when n > 3. Hence, we pose the following problem:

Problem 5.2. Does there exist a non-Hopf hypersurfaceM2n−1 in M̃n(c) (n > 3)

satisfying condition (1.3) but being not a ruled real hypersurface in M̃n(c)?
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